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Types of Experimental Procedures 

IN a recent review article (1), this writer traced the d~velopment of 
multifactor experimental procedures. A brief resume of this de­
velopment seems desirable at this time: In the first multifactor 

experiments, a single factor was varied at a time. For example, with 
five factors, one might plan 5f experiments, in which each of the factors 
in turn was used at f levels while the other four factors were held at 
some starting level. Fisher (14) and Yates (25) encouraged the use of 
complete factorials and developed a large number of special designs in­
volving them. In a complete factorial, all combinations of the factor 
levels are used, e.g., f for the above experiment. These designs were 
developed for experiments in which the experimental error could not be 
neglected. In order to estimate the magnitude of this error in each ex­
periment, the experiment had to be repeated several times, e.g., r. 
These factorial designs were formed largely for useful field experiments 
in which sequential experimentation would be less than the laboratory 
experiments, and the factors were often of the discrete type, e.g., varie­
ties or rations. 

Because of the large number of factor combinations required in 
many field experiments, it was felt that some form of incomplete block 

· design was needed to reduce the experimental error. This resulted in 
the so-called confounded designs, e.g., with 2k, 3k, 3 x 2k, 3k x 2, 4k 
designs. These are described by Yates (26). More complicated fac­
torial designs have been constructed by Nair (21, 22), Bose (4), Finney 
(13), and Li (20), among others. 

When physical scientists and engineers became interested in multi­
factor experiments, they found that complete and confounded factorials 
required too many experimental units, especially since the experimental 
errors were often much lower than in field experiments. One method of 
reducing the number of experimental units was to use higher order in­
teraction effects to estimate the error and hence avoid repetition of the 
design. Fisher ( 14) and Cornish (9) described the analysis of the singly 
replicated unconfounded factorial design and used the higher order 
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interactions for this purpose. Jeffreys (17) and Kempthorne ( 18) have 
advance justifications for this approach. Then Finney ( 11, 12), Plackett 
and Burman (23), Kempthorne ( 18), Rao (24), and Davies and Hay ( 10) 
developed the fractional replication designs, based on using parts of the 
confounded designs. Yates (25) and Hotelling ( 16) had already men­
tioned the use of such designs. 

Some General Considerations of Factorial Experiments 

The results of multifactor experiments are usually summarized in 
various two- and more-way tables of means and an analysis of vari­
ance. For example, let us assume there are two factors (A and B), one 
with p and the other with q groups, each of the pq classes having r sam­
ples. Some characteristic, such as yield, is measured for each of the 
pqr samples. The results are summarized in a (p x q) table of class 
means (Yij) with the corresponding (p + q) border means (Ai and B). 

B 

1 2 q 

1 Yu Y12 

2 Y21 Y22 

A . 

p YPl YP2 

B1 ~ 

For example, the border means for A represent averages over all 
B-groups. There are two circumstances under one or both of which 
these A-means are of importance: 

1. Differences between B-groups are the same for all A-groups, 
i.e., there is no AB interaction. 

2. The experimenter desires to make inferences regarding A only 
when averaged over these particular B-groups. 

H item 1 is true, one can set up the following model to represent the 
yield for a given sample: 

( 1) Y = (mean) + (A effect) + (B effect) + (error). 

The A and B effects are estimated by computing the deviations of 
group means from the general mean, e.g., 

A1 effect = A1 - Y • 

The errors are assumed to be normally and independently distributed 
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with zero means and same variances, a 2, In this case, analysis of vari­
ance is: 

Source of Variation d. f. s. s. M. S. 

A p-1 SSA MSA 

B q-1 SSB MSB 

Residual (p-l)(q-1) SSI MSI 

Error (r-1) pq SSW 52 

In the above analysis of variance, SSA= qr ~ A~ - pqr Y2 and SSB 
=pr~ Bj - pqr r. The residual sum of squares measures the failure 
of the A and B effects to be additive, i.e., presence of AB interaction. 
It is computed as: 

The error variance, a2, is estimated from the variability within classes. 
The mean squares are all computed by dividing the sums of squares by 
the corresponding degrees of freedom. One can test for the existence 
of interaction by use of F = MSI/s2• Presumably, if this is significant, 
inferences about A effects must be confined to averages over these q B­
groups. Otherwise one should consider the general model: 

(2) Y = (class mean) + (error). 

Then each of the pq classes is considered separately and the simple 
analysis of variance is: 

Source of Variation d. f. s. s. M. S. 

Treatments pq-1 SST MST 

Error (r-1) pq SSW s2 

SST = r ~ Y2 - pqr y2 

The same procedures can be followed for more than two classifi­
cation variables. In this it is advisable to look at the individual contri­
butions to the interaction: AB, AC, BC • • • ABC • • • • In many cases it 
is even possible to subdivide SSA, for example, into pertinent single de­
gree of freedom contracts; hence, SS(AB) can also be subdivided. This 
subdivision of SSI is useful in detecting particular aspects of nonaddi­
tivity which may be concealed in blanket tests of MSI/s2• For more ex­
act discussion of these problems, see Chapter 20 of Anderson and 
Bancroft (2). 
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Extension of Factorial Experimentation to Continuous Variables 

In the past, even though the factors could be varied continuously, 
most analyses of experimental data have followed the same procedures 
as for discrete classifications. For example, if one had an experiment 
to study the effect of nitrogen (n) and potash (k) on the yield of corn, one 
might consider a simple 2 x 2 experiment with four treatment combi­
nations: low n and k (00); low n and high k (02); high n and low k (20); 
and high n and high k (22). 1 Suppose each treatment were randomly as­
signed to r plots. The usual summary procedure would be to form the 
four-treatment totals and means in 2 x 2 tables. The totals are indi­
cated as follows: 

Potash 

low high 

low (00) (02) No 
Nitrogen 

high (20) (22) N2 

Ko Ka G 

The border totals are indicated by capital letters, with G for the grand 
total. 

If one were unwilling to make any assumptions about the compara­
bility of the four treatments, he would look only at the four-cell mean 
(cell totals divided by r) and use model 2 and the accompanying analy­
sis. 

If the experimenter feels that the effect of increased n or k is the 
same regardless of the level of the other element, he would use an 
adaptation of model 1 as follows: 

(1') Y = (mean) :!: (n effect) :!: (k effect) :!: (error) , 

where the + sign refers to high level plots and the - to low level plots. 
For example, the average or expected yield for a plot receiving high n 
and low k is: 

(mean) + (n effect) - (k effect) . 

The n effect, for example, represents the expected increase in yield due 
to high n over the average of high and low n, and is estimated by 

~ - y 
2r · 

The analysis of variance is the same as for model 1. The residual 
can be used to test the adequacy of the additive model 1 ', i.e., test for 
the existence of an (NK) interaction. If this residual is significant, the 

1 0 is used for the low level and 2 is used for the high level, so that 1 may be introduced 
as a middle level. 
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Source of 
Variation 

N 

K 

Residual 

Sum of Squares = 
Mean Square 

(N2 - No)2 
4r 

(K2 - Ko) 2 
4r 

[(00)-(02)-(20)+(22)] 2 

4r 

effect of increased n is not the same for low and for high k (and vice 
versa). Hence it is necessary to interpret each cell mean separately, 
i.e., use model 2. 

Continuing this aping of the models for discrete factors, the follow­
ing general model has been constructed for the 2 x 2 experiment: 

(3) Y = (mean) ! (n effect) :!: (k effect) :!: (nk interaction effect)+ (error), 
where the interaction effect receives a plus sign for the (0,0) and (2,2) 
plots and a minus sign for the (0,2) and (2,0) plots. For example, the 
expected yield for a plot receiving high n and low k is: 

(mean) + (n effect) - (k effect) - (nk interaction effect) • 

The interaction effect is estimated by: 

(00) - (02) - (20) + (22) 
4r 

H the response surface can be approximated by a simple mathemati­
cal function, it seems more logical to estimate the parameters of this 
function instead of main effects and interactions. In the present ex­
ample, consider the following continuous model: 

(4) Y = /3o + /31X1 + /32X 2 + /312X1X 2 + (error). 

X 1 and X 2 represent the respective levels of nitrogen and potash as 
deviations from the mean level in the experiment (X = -1 for low and 
X = +1 for high level); {30 is the expected yield for n and k midway be­
tween the amounts applied in the experiment (X1 = X 2 = 0); (3 1 and {32 are 
linear effects of added n and k; /312 is the interaction parameter. Using 
model 4, the cell totals (of r plots each) have these expectations: 

low k(X2=- l) high k (X:r=l) Total 

low n (X1=-l) r(/30-/31-/32+/312) 1'/30-/31+/32-/312) 2r(/3o-/31) 

high n (X1=l) r({3o+/31-f32-f312) r(/30+/31+/32+/312) 2r(f3o+/31) 

Total 2r(f3o-/32) 2r(f3o+/32) 4r {3 0 
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The estimators of the {3's in equation 4 are: 

Parameter Estimator 

/31 b1 = N:,N0 
4r 

/32 b2 = K2-Ko 
4r 

/312 b12 = ( 00)-( 02)-(20)+(22) 
4r 

f3o bo = G/4r = Y. 

The variance of each estimator is a 2/4r. Note that these estimators 
are the same as for the effects of model 3. {3i, for example, measures 
the average difference in yield per unit change in n for these two k 
treatments, i.e., the change in Y for a unit change in Xi, neglecting 
interaction. 2 Also the analysis of variance produces the same three 
orthogonal sums of squares for treatments, using either models 3 or 4. 

Hence it appears that models 3 and 4 are identical. However, there 
is a very important difference. Model 3 makes no assumption regard­
ing the shape of the response surface, but model 4 implies a definite 
continuity of response; hence, one would feel free to use the results of 
model 4 to interpolate between the actual levels used in the experiment. 
H he did use model 3 for this purpose, he would actually be assuming 
the continuous model 4. One is often tempted to extrapolate the results 
beyond the levels used in the experiment; such extrapolation assumes 
the same response surface holds beyond the experimental levels. In 
other words, one uses model 2 or 1 if he does not wish to assume a 
quadratic response surface, but uses model 4 if experience or theory 
indicates such a surface would be satisfactory. 

H the design is spread out so that the low and high levels differ by 
2d units (instead of 2), bi will have a denominator of 4rd and b12 a de­
nominator of 4rd 2• Hence the variance of biis reduced by a factor of d 2 

and b12 by a factor of d 4• The only reason for not using extremely di­
vergent levels is that. the response surface may have a different shape 
at extremely large or small fertilizer applications. 

H the continuous model 4 is used, it seems unreasonable to include a 
quadratic term involving X 1 X 2 without also including terms involving X ~ 
and ~- The shape of a response surface such as model 4 is rather gro­
tesque. In other words one would be more likely to consider the follow­
ing general quadratic model: 

(5) Y = f3o + f31X1 + /32~ + f312X1~ + f311Xf + /32~~ + (error) • 

2 It should be clear that the difference between low and high levels is a two-unit change, 
e.g., if low is 50 pounds per plot and high is 100 pounds per plot, a unit change is 25 pounds 
and fl, and /J2 measure the linear effects of 25-pound increases. 
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If model 5 is the true continuous model, the expectations of the cell 
totals are: 

low k (X.=-1) high k (Xa= 1) Total 

It turns out that the estimates of /31, /32, and /312 are the same as for 
model 4 and are not mixed up with the quadratic terms (/311 and /322), i.e., 
they are unbiased estimates. However, there is no method of estimating 
fo, {311, or {322, since their sum is estimated by Y. Hence this analysis 
indicates that it is safe if only statements are made regarding the 
treatments used in the experiment and no attempt is made to predict the 
results for other fertilizer levels. 

Of course the solution to the above dilemma is to add other levels of 
n and k. The traditional design to estimate quadratic effects is the 3 x 3 
complete factorial with the three levels of n and k equally spaced.3 As­
suming the middle values of n and k are the averages of the low and 
high levels used in the 2 x 2 experiment, i.e., if the low and high appli­
cations were 50 and 100 pounds per plot, the middle application would be 
75 pounds per plot. In the factorial setup, the levels are designated as 
0, 1, and 2 with X = -1, 0, 1, respectively. Henceforth, factor combi­
nation will be designated by the levels used, e.g., (-1, -1). Assuming r 
plots per cell and using model 5, the expectations for the (-1, -1), 
(-1, 1), ( 1, -1) and ( 1, 1) totals would be as before. The expectations 
for the other five class totals and the border totals would be: 

(-1, 0) r(f3o - /31 + /311) 
(0, -1) r(/3o - /32 + /322) 
(0, 0) r f3o 
(0, 1) r(/3o + /32 + /322) 
(1, 0) r(f3o + /31 + /311) 

No 3r(/3o - /31 + /311) + 2r /322 
N1 3r {3 0 + 2r /322 
N2 3r(/3o + /31 + /311) + 2r /322 
Ko 3r(/3o - /32 + /322) + 2r {311 
K1 3r /3 0 + 2r /311 
K2 3r(/30 + /32 + f32J + 2r {3 11 

G 9r f3o + 6r (/311 + /32J 

3 Equal spacing enables one to analyze linear and quadratic components in a simple man­
ner, but it is not an essential, or even the most efficient, method of spacing. 
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The following estimators and variances are obtained: 

Parameter Estimator 
Variance of 
Estimator 

/31 b1 = (N2-N0)/6r 

/32 ~ = (K:i-Ko)/6r 

/3 12 b12 = [(-1,-1) - (-1,1) - (1,-1) + (1,1)]/4r 

f3u bu= (N2-2N1+No)/6r 

/322 b22 = (Kr2K1+Ko)/6r 

/3o bo = [5(N1+K1)-(No+N2+Ko+K2)]/18r 

a2/6r 

a2/6r 

a2/4r 

a2/2r 

a2/2r 

5 a2/9r 

Note that b1, b2, and b12 are the same as before; also, if the levels are 
(-d,O,d), the variances for the linear coefficients are again reduced by 
a factor of d2 and for the quadratic and interaction coefficients by a 
factor of d4 • 

The analysis of variance is as follows (f stands for linear and q for 
quadratic component): 

Effect d.f. M. S. 

Nf 1 (N2-N,i)2/6r 

Kf 1 (K2-KJ2/6r 

NfK{ 1 [(-1,-1)-(-1,1)-( 1,-1)+( 1, 1)]2/4r 

Nq 1 (N2-2N1+N1i)2/l8r 

Kq 1 (K2-2K1+KJ2/l8r 

Residual 3 [SST- SS(Nf + Kf+ ••• + K4)]/3 

Error 9(r-1) s 2 = SSW/9(r-1) 

The residual mean square can be used to test for the adequacy of the 
model. If the 3 x 3 complete factorial is used, it turns out that these 
three degrees of freedom can be subdivided into three orthogonal com­
ponents, which measure NfK~, N4Kf, and N4 K4 interaction effects 
[/312:zX1X~ + /3nJc:~2 +/3112Jc:1x2 is added to model 5]. 

Once again a factorial model similar to model 3 can be constructed 
with the same linear and quadratic effects as in model 5. However, 
there seems little reason for estimating such effects unless one is will­
ing to assume a quadratic response surface. If he does not wish to as­
sume a quadratic response surface, he has two possible factorial 
models: 

1. Model 2 with nine treatments 
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2. Model 1' with two effects for each factor: above and below the 
middle application or referred to either the high or low appli­
cation. 4 

The analysis based on model 1' would include a sum of squares attriut­
able to the interactions, giving a test of the adequacy of the model. 
These remarks hold for any number of factors and levels per factor. 

If there is a mixture of classification variables (e.g., varieties) and 
continuous variables, a combined factorial and continuous model can be 
set up and analyzed in a manner analogous to covariance. This would 
assume that the parameters for the continuous variables were the same 
for each discrete classification; a test of this hypothesis can also be 
constructed. 

The Use of Blocking Methods to Reduce Experimental Error 

The use of blocking methods in the previous discussion has not been 
considered because they only complicate the presentation without alter­
ing any of the conclusions. However, one must consider the blocking 
procedure if there is confounding. Unfortunately, the procedures used 
in constructing such designs have been based on confounding certain 
parts of the higher order interactions which are not related to higher 
degree components. For example, the so-called I and J parts of the NK 
interaction in a 3 x 3 experiment do not pertain to any one of the four 
degree components, N(Nf, N[Kq, NqKf, or NqKq. One would prefer a 
design which minimized the confounding on N(Kf, 

A bulletin now in press by Binet, Leslie, Weiner, and Anderson (3) 
presents the confounding patterns in terms of degree components. This 
bulletin should be of use in three ways: 

1. It presents short-cut methods of analyzing these confounded 
experiments when degree components are of interest. 

2. Several new confounded designs are presented. 
3. It presents the confounding patterns for various designs, so the 

reader can select the design which will be best for his problem. 

To illustrate the procedures, suppose the nine treatments in the 3 x 3 
experiment were put in 3 blocks of 3 plots each. One such arrangement 
would be (the treatments refer to levels, and Bi are block totals): 

1 

( 1,-1) 
(-1,0) 
(0,1) 

Block 

2 

(-1,-1) 
(0,0) 
(1,1) 

•er. Anderson and Bancroft (2), Section 20.5. 

3 

(0,-1) 
(1,0) 
(-1, 1) 
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H b'j represents the mean of the j-th block, then two block contrasts 
are formed: 

2 C 1 = ~ - bf and 6c2 = b; - 2b~ + bf • 

The least squares equations for the two block and four NK effects are: 

C1 NfKq NqK.( C2 NfKf NqKq Yield Sum 

6 -6 6 0 0 0 B3-B1 

-6 12 0 0 0 0 (NfKq) 

6 0 12 0 0 0 (NqKf) 

0 0 0 18 -6 -18 B1 - 2B 2 + B3 

0 0 0 -6 4 0 (NfKf) 

0 0 0 -18 0 36 (NqKq} 

The yield sum for NfKq, for example, is: 

[(1,1) - 2(1,0) + (1,-1)] - [(-1,1)-2(-1,0) + (-1,-1)]. 

The usual procedure in analyzing these results would be to assume 
the block contrasts and NfK fwere the only real effects. This leaves 
only one contrast for testing the model, since there are only four de­
grees of freedom in the above six equations. The method of analysis 
proposed in the bulletin is the abbreviated Doolittle method, which is 
also discussed in detail by Anderson and Bancroft (2). Obviously there 
is no estimate of error from this experiment. H such an estimate is 
needed, another replicate should be used, preferably one which has a 
different confounding pattern, as indicated in the bulletin. 

For experiments with many factors, it is often possible to estimate 
the pertinent contrasts by use of fractional designs. 

Special Designs To Estimate Parameters of Response Surfaces 

The material by Binet et al. (3) furnishes a method of using existing 
confounded factorial designs to estimate the important degree compo­
nents. However, for most experiments in which the experimenter has 
evidence that a smooth response surface is suitable, he should consider 
designs especially constructed to estimate the parameters of this sur­
face and not to estimate class means for a classification model. Box (5) 
developed some general design principles for estimating the parameters 
of planar surfaces. 

Box and Wilson (8) proposed a new design for estimating quadratic 
surfaces which gives more information on the quadratic effects and less 
on the high-degree effects. Their composite design would push the (0,l), 
(0,-1) 1 (1,0), and (-1,0) points a units from the center of the design as 
indicated in figure 3.1. 
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(0,,.:) 

(-1, I l ( I , I l 

( 1,-1) 
(-1, - I l 

• 3 X 3 DESIGN 
X COMPOS I TE DES I GN 

Fig. 3,1 - The Box and Wilson composite design for 
estimating quadratic surfaces. 

If a = 2, the expectations of the totals for the four altered cells are: 

(-2,0) 

(0,-2) 

(0,2) 

(2,0) 

r (/30 - 2A_ + 4/3 1J 
r (/30 -2/3.i + 4/322 ) 

r (/30 +2/3.i + 4f3.i2) 

r (/3o + 2/31 + 4/311) 

In this case one cannot analyze the results as for a 3 x 3 table, be­
cause it is an incomplete 5 x 5 factorial experiment. Here one must 
use the general least-squares approach. The matrix for the normal 
equations is: 

Coefficients of Estimators Right hand side 

Equation bo bi ~ b12 bi1 ~2 

bo 9r 0 0 0 12r 12r G 

b1 0 12r 0 0 0 0 gl = SX1Y 

b2 0 0 12r 0 0 0 g2 = SX2Y 

b12 0 0 0 4r 0 0 gl2 = SX1X2Y 

bu 12r 0 0 0 36r 4r gu = sx~ 
b22 12r 0 0 0 4r 36r g22 = SX~Y 
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In the preceding, for example, g1 = (1,1) + 2(2,0) + (1,-1) - (-1,1)-
2(-2,0)-(-1,-l), where (1,1), etc., stand for class totals. The solutions 
and variances 5 of the estimators are: 

Variance of Estimator (X ao/r) 

3x3 
Parameter Estimator Composite 3 x 3 (Adjusted) 

f:31 gJ12r 1/12 1/6 1/12 

f:32 g~12r 1/12 1/6 1/12 

f:312 gl~4r 1/4 1/4 1/16 

f:311 (30gu + l8g22 - 64G)/384r 5/64 1/2 1/8 

f:322 (30gz2 + 18gu - 64G)/384r 5/64 1/2 1/8 

f:3o ( lOG - 3gu - 3gzz)/18r 5/9 5/9 5/9 

One gets the impression that there is a tremendous reduction in 
variances of estimators by use of the composite design instead of the 
3 x 3 factorial. However, most of this gain is the natural result of us­
ing a wider range of X's; the incompleteness of the factorial in the 
composite design is not responsible for all the gain. This was indicated 
for the 2 x 2 experiment. One could adjust the coordinates of the 3 x 3 
design so that the spread is the same as for the composite design. The 
variance of the coordinates for the latter ( with a = 2) is [2( 4) + 4(1) 
+ 3(0))/9 = 4/3. Let the new coordinates for the 3 x 3 design be (-d,0,d), 
so that the variance of these coordinates is 2d2/3 = 4/3; or d = ft. 
Hence, the variances of linear terms are reduced by 1/2 and of quad­
ratic terms by 1/4. Therefore, the composite design has improved the 
quadratic estimators at the expense of the interaction one. Box and 
Wilson (8) show that this is desirable in estimating the optimal factor 
combination, 

Another criterion of the relative efficiency of two different designs 
in estimating the parameters of a response surface would be the amount 
of information used to estimate the high degree coefficients, which are 
assumed to be unimportant, 

Box and Hunter ( 7) have advanced another principle of a good 
surface-fitting design; it should be rotatable; i.e., the accuracy of the 
estimates of the parameters should not depend on the orientation of the 
design with respect to the true surface itself. They have constructed 
several incomplete factorial designs which meet this requirement. 

Mason discusses in Chapter 5 some recent experiments in which the 
composite designs have been used. 

5These are obtained by inverting the left-hand matrix. The abbreviated Doolittle or 
square-root method is usually used, although special pattern matrices can be used. 
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Sequential Experimentation 

Much of the impetus for the Box-Wilson paper (8) came from a need 
to develop sequential procedures for determining optimal factor combi­
nations. Various procedures have been summarized in Anderson's re­
view article ( 1). Since then, Box ( 6) has published an extensive dis­
cussion of the entire problem. Although the use of these sequential 
methods may be somewhat limited in fertilizer experiments because of 
the length of time needed to obtain results, it probably would be desira­
ble to develop a more systematic procedure of utilizing past experience 
in designing future experiments. 

Better methods are needed to pool data from a series of experi­
ments. Researchers should be encouraged to spend more time on these 
problems. 

Some Special Comparisons of Discrete and Continuous Models 

Comparison of Discrete Model 2 and Quadratic Model 5 
Using 3 x 3 Design 

1. The quadratic model is correct. In this case the estimated aver­
age yield for plots receiving X1 units of N and ~ units of K (measured 
from the mean level) is: 

~ = bo + b1X1 + b2X2 + b12X1X2 + b11Xf = b2~~. 
I\ 

In order to obtain the sampling variance of Y, it requires the variances 
of the estimators given previously and the covariances. All of these 
could be obtained by inverting the matrix of sums of squares and prod­
ucts of the regression variables in the normal equations. This matrix 
is as follows: 

bo b1 ~ b12 bu b22 

bo 9r 0 0 0 6r 6r 
b1 0 6r 0 0 0 0 
b2 0 0 6r 0 0 0 
b12 0 0 0 4r 0 0 
b11 6r 0 0 0 6r 4r 
b22 6r 0 0 0 4r 6r 

Since b0, b11, and b12 are the only correlated variables, consider them 
separately in a 3 x 3 matrix A, which when multiplied by its inverse C 
is the identity matrix. 

A [:: :: ::1 
6r 4r 6r 

,C 



52 R. L. ANDERSON 

There are only four different elements of C. These can be determined 
quite simply as follows: 

9r Ci + 12r C2 = 1 
6r Ci + lOr C2 = 0 } 
6r C2 + 6r Cs + 4r C4 = 1 } 

9r C2 + 6r Cs + 6r C4 = 0 

/ 3C2 C4 = -1 2r - 2 = 0 

Cs = 1/6r - C 2 = 1/2r 

Hence the matrix of variances and covariances of the b's is: 

5/9 0 0 0 -1/3 -1/3 

0 1/6 0 0 0 0 

2 
(1 

0 0 1/6 0 0 0 

r 0 0 0 1/4 0 0 

-1/3 0 0 0 1/2 0 

-1/3 0 0 0 0 1/2 
I\ 

The variance of Y is:. 
A 2 

a2(Y) = !:!:... [5/9 + 1;t (Xf + x~ + 1/4 (~~)+ 1/2 (:x1 + X:> r 

- 2/3 (~ + X!)] 
2 

= : [5/9 + 1/2 (X~ + X!- X~ - X!) + 1/4 ~X!] 

H the discrete model is used, every mean will have a sampling vari­
ance of a 2 /r. For even the most divergent points (:t 1, ! 1), 

2 A 2 
a (Y) = 29 a /36r 

which is less than a 2 /r. Hence, if the quadratic model is correct, even 
the yields at the experimental points are estimated more accurately 
from the regressi_Qn model instead of the simple average yield at that 
point. Of course Y is even more accurate for the other five points. 

The same conclusio9.s hold for comparing two mean yields. The 
largest variance using Y is the comparison of ( 1, 1) and 1,-1), which is 
5 a 2 /3x_, as compared to 2 a 2 /r for model 2. Many of the comparisons 
using Y have much lower variances than this. 

The results might be even more favorable if another design were 
used. 

2. The quadratic mode} is biased. Suppose the true model is model 
5 plus {3 ~. In this case Y is too small by {3 when Xi = 1 and too large 
by {3 when Xi= -1. Some mean differences would be biased by 2{3, 
others by {3, and others not at all. However, the estimates using 
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model 2 would be unbiased. The problem of whether to use the biased 
estimates depends on a comparison of the suspected magnitude of the 
bias and the variances mentioned above. This problem may be even 
more serious if the form of the response equation is radically different 
from the quadratic, e.g., if. it is exponential or logistic. 

Returning to the bias of (3 ~' it should be mentioned that at least one 
of the other {3's will also be biased if this term is not considered in the 
estimation procedure (when (3 -/ O); for example: 

E (b1) = /31+ /3 . 

(3 is called an alias of {31• Box and Wilson (8) consider possible aliases 
in evaluating various designs. It is possible to construct designs so 
that possible aliases will not have much effect on the estimates. This 
may be one of the chief reasons why agricultural experimenters have 
not considered continuous models. Hildreth (15) has considered an esti­
mation procedure which is built on model 2, but uses certain inequality 
restrictions on the production function. The estimation procedure used 
by Hildreth is discussed in Chapter 4. 

Pseudo-Interactions in Some Factorial Experiments 

The tendency to follow the mechanical procedure of analyzing fac­
torial experiments in terms of main effects and interactions can result 
in serious loss of information, often of a misleading nature. As an ex­
ample, consider an experiment involving two levels of nitrogen (coded 
n = -1 and 1) and two different cover crops to be plowed under. Suppose 
C 1 supplies no nitrogen to the soil, whereas C2 supplies 2 units of n 
( coded n = -1 and 1). In addition, the two crops supply other unspecified 
nutrients. Assume that the yield is a quadratic function of nr plus some 
additive amount due to the unspecified nutrients in the soil and furnished 
by the two crops: /3o - y for C 1 and (3 o + y for C 2 ( y may be positive or 
negative). Hence the model is: 

Y = f3o + f31n + {311n2 ! y + (error) , 

where y is added for C2 plots and subtracted for C1 plots. 6 The expected 
class and border total yields are: 

Crop 1 Crop 2 Total ---
n = -1 r( f3o- 2/31 +4/311 -y) r(f3o + y) 2r(f3o-f31 +2/311) 

n= 1 r( o- ) r(f3o+2/31+4f311+ y) 2r(f3o+f31+2/311) 

2r(f3o-f31 +2/311 - Y) 2r(f3o+f31 +2/311 + y) 4r(f3o+2/311) 

0 The center of the system is now one unit more than the average of the two nitrogen 
levels. 
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The estimators and their variances are: 

Parameter Estimator Variance 

/31 (Ni - N-1)/4r a2 /4r 

f3u [(-1,1)-(-1,2)-(1,1)+(1,2)] /Br a2 /16r 

'Y [(-1,2)-( 1, 1)] /2r a 2 /2r 

/3o [(-1,2)+( 1, 1)] /2r a 2 /2r 

Compare these results with those obtained by use of traditional fac­
torial methods. 

Effect Yield E(Yield) E(MS) 

Nitrogen N1-N -l 4r/h 4r{3~+ a 2 

Crop C2-C1 4r( 'Y +/3i) 4r( 'Y +/31)2 + (j2 

NxC (-1, 1)-(-1,2)-( 1, 1)+( 1,2)8rf3u 16rf3~1+ a 2 

An N x C interaction is indicated if there is a quadratic effect of nitro­
gen; also the crop effect will be mixed up with the linear effect of 
nitrogen (this is satisfactory if one only wants to test for differences in 
yields and not to determine basic causes of such differences). But a 
major criticism is a failure to provide a method of estimating the quad­
ratic effect of nitrogen. The N x C interaction effect is the least 
squares estimate of /3n, but this fact is concealed in a routine factorial 
analysis of variance. 

This is a very simple illustration of the need for more basic models 
in discussing responses to treatments. Classification models may con­
ceal basic response patterns. One might consider this problem when 
three instead of two levels of n were used. In this case the factorial 
estimate of /311 probably would be inefficient, because of neglect of the 
information from the N x C interaction, 

Yates (26) presents a 23 experiment with 4 replications, the factors 
being N, K, and D (dung). Levels were none and some, the latter being 
0.45 cwt. N per acre, 1.12 cwt. K 20 per acre, and 8 tons of D per acre: 
Assume that this amount of dung supplies the same as the "some" of n 
and k, plus "some" other nutrients (called d). Code these data with -1 
for none and +1 for some. Hence, the values of the variables for the 
various plots are:7 

7A unit of nitrogen is 0.225 cwt., of potash is 0.56 cwt., and of dung is 4 tons: the center 
is at 0.45 N, 1.12 Kand 4 D. 
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NKD n k d Yield of 4 plots 

0 0 0 -2 -2 -1 425 

1 0 0 0 -2 -1 426 

0 1 0 -2 0 -1 1118 

1 1 0 0 0 -1 1203 

0 0 1 0 0 1 1283 

1 0 1 2 0 1 1396 

0 1 1 0 2 1 1673 

1 1 1 2 2 1 1807 

Assume a quadratic equation inn and k, with d appearing linearly. 
Hence: 

(6) Y = /3o+/31n+fl2k+flun2+/322k2+/31:ink+/33d+ (error) • 

Because this experiment was not designed to estimate quadratic effects, 
it turns out that if a complete quadratic model was used with fl33d2, 
/313nd, and /323kd included, the f0llowing pairs of coefficients could not be 
separated: /3o and /3s3 ; fl 11 and /313 ; and /322 and /323. In other words the 
constant and d2, n2, and nd and k2 and kd are aliases. It is assumed 
here that d is essentially a residual variable, which is unlikely to have 
any effect and especially not a quadratic one; however, one cannot be 
sure which of two aliases is responsible for an effect. 

The matrix for the least squares equations for model 6 is: 

bo bi b2 bu b22 b12 bs Yield Sum 

32 0 0 64 64 32 0 9,331 

64 32 0 0 0 32 3,320 

64 0 0 0 32 5,258 

256 128 128 0 18,984 

256 128 0 17,324 

128 0 8,928 

32 2,987 

The forward solution of the abbreviated Doolittle method is as 
follows: 
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bo b1 l'2 bu b22 b12 ba Yield 
32 0 0 64 64 32 0 9331 

bo 1 0 0 2 2 1 1 9331/32 
64 32 0 0 0 32 3320 

b1 1 1/2 0 0 0 1/2 3320/64 
48 0 0 0 16 3598 

b2 1 0 0 0 1/3 3598/48 
128 0 64 0 322 

bu 1 0 1/2 0 322/128 
128 64 0 -1338 

b22 1 1/2 0 -1338/128 
32 0 105 

b 12 1 0 105~32 
32/3 383 3 

ba 1 383/3 

The variance-covariance matrix and the estimates are: 

bo b1 ~ bu b22 b12 ba Estimates 

16 0 0 -4 -4 4 0 bo 310. 75 

4 0 0 0 0 -4 b1 10.41** 

0"2 4 0 0 0 -4 l'2 70.97** 

128 2 1 -2 0 bu ,88 

2 -2 0 ~2 -12.09** 

4 0 b12 3.28 

12 ho 11.97* 

Since the error variance in the experiment was 347.01 (with 21 de­
grees of freedom), o- 2 /128 is estimated by 2. 71. This is multiplied by 
the diagonal terms to obtain the estimated variances for the estimates. 
All linear terms and the quadratic term fork are significant (b 3 barely 
so at the 5% level) while b12 is about the same size as its standard 
error. The sum of squares can be compared with those of Yates as 
follows: 
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Effect Yates Here8 

Nf 3,465.3 172,225.0 

Kf 161,170.0 269,700.1 

Nq and NfDf 810.0 810.0 

Kq and Kf,Df 13,986.3 13,986.3 

Nf.Kf 344.5 344.5 

Df 278,817.8 1,528.0 

NfKf,Df 124.0 124.0 

This is only an illustrative example, however, and should serve as 
an example of the procedure. There may be some questions concerning 
the use of the coded values. These are put in so that the estimators 
will be as nearly uncorrelated as possible; this enables one to better 
evaluate the usefulness of various predictors in the model. Box and 
Wilson (8) generally follow this procedure. 

Problem of Adjustment for Available Nutrients With Continuous Models 

One of the major needs in the determination of fertilizer response 
surfaces is a method of adjusting for nutrients available in the soil be­
fore the experiment is started. In a single experiment, it is usually 
assumed that the variation in basic levels is random, with the average 
level being taken account of by the constant term. H there are no es­
sential differences between the basic levels in the plots for each of the 
treatments, the results of the experiment can be used to indicate treat­
ment contrasts. However, if a continuous model such as the quadratic 
model 5 is used, the experimenter should be careful about extending the 
results to plots with different available nutrients. 

H the effect of the available nutrients is to merely increase the 
actual levels of X, the results can be converted to a prediction equation 
in terms of the available plus added nutrients. In order to simplify the 
results, consider a quadratic prediction equation for an experiment in­
volving only one nutrient, 

( 7) E (X) = f:3o + f:31X + f:3uX 2 , 

where Xis the added amount of the nutrient. The actual amount (avail­
able plus added) of the nutrient in an experiment is designated as 
N = X + d (X = N - d). Then: 

(8) E (N) = ({:3o - f:31d + f:3ud 2) + ({:31 -2{:3ud) N + f:3uN 2 • 

Now try to apply the results of this experiment to a farm. The 

8These are not adjusted sums of squares; i.e., Nf is not adjusted for Kf or Df; Kf is not 
adjusted for Df; and Nq and Kq not for NfKf. Note the Nq = Yates' NfDf and the Kg= Yates' 
KfDf, as indicated above. 
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predicted yield if Xis applied is E(X). Suppose the value of d for this 
farm is d0 (N = X + do); then the expected yield when Xis added should 
be: 

F(X) = (130- 131d + 1311cf) + (131 - 21311d) (X +do)+ t3 1JX + dJ 2 

= [(13o - 131(d - do) + 1311 (d - do) 2] + [131 - 21311 (d - do)] X + 1311X 2 

The bias in using E (X) instead of F (X) is: 

(9) E (X) - F (X) = (d - do) (131 + 2A1X) - (d - do) 2 1311 

One might suppose that even though the predicted yield is biased, at 
least the difference between the predicted yields for two different levels 
of farm application would be unbiased. Even this is not true. The bias 
in the predicted increase in yield for an application of X2 instead of X1 
is 2/311 (X2 - X1) (d -d0), which will be negative for X2 > X1 and d > d0, 
since B11 is expected to be negative; hence, one would tend to under­
estimate the effect of added nutrients if the available nutrients at the 
farm are less than at the experimental plots. 

These problems become further aggravated when one attempts to 
combine the results of experiments at two locations with different 
values of d. Supposed= d1 for one location and d = d2 for a second lo­
cation, but the same rates of application are used in each experiment, 
e.g., X = -1, O, 1. Jf a quadratic model is used, the experimental model 
E(N) is: 

(10) E (N) = 130* + 131* N + 1311* N2 , 

where /30*, /31 * anti /311 * can be found from model 8 above. The values of 
the 13* are assumed to be the same for each experiment (neglecting 
other nutrients in this discussion); however, the values of /30 and /31 in 
model 7 are not the same. Let 13t and M represent the values of /31 in 
experiments 1 and 2, respectively. · 

Then solving for the 13's in terms of the 13*'s, yields: 

13~ = 13~ + d1M + d!/311* and 13fi' = t3t + d~f + d~1t 

13t = M + 2d11311 * and 13r = M + 2d~1t • 

On the basis of the above results, the experimenter would make one 
of two incorrect decisions if he did not take account of the inequality of 
the available nutrients for the two experiments: · 

1. He would conclude that the true response pattern was different at 
the two localities and publish two predition equations, each of which 
represents an inefficient use of the data in estimating the basic para­
meters. This may prevent the savings in extension work which over­
all recommendations entail. However, the biases mentioned above are 
less likely to be so important, because the experimenter realizes his 
prediction equation is different for different locations. 

2. Jf the experimental error is large compared with (d2 - d1), he 
might conclude that the differences in the estimates of the 13' s was a 
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chance difference, and use average {3's for his prediction equation. 
This would produce the biased results mentioned above. However, the 
important point here is that the estimates of the parameters are quite 
inefficient because the large spread in N over both experiments is neg­
lected. There is uncertainty as to which incorrect procedure is worse, 
since this is a matter of weighing the extra costs of a wide variety of 
recommendations against the inefficiencies and biases of over-all 
recommendations. 

To illustrate the fact that one can obtain more information regarding 
the response surface by combining the two experiments, suppose only 
two levels of X (X = -1 and 1) are used for each experiment but the 
available coded levels are d1 = -1 and d2 = 1. H single estimates are 
made for each experiment, no estimator of /3i_1 will be available; hence, 
if /3 11 is not zero, the separate estimators of the linear coefficient will 
be biased. However, in this case, the pooled estimator of /31 will be un­
biased because d1 + d2 = 0. Also, in this case, the objective is to com­
pare the response surfaces in terms of the total nutrients (X + d). The 
number of plots for each level of N and the estimators of /3'i and their 
expected values when /31! -/ 0: 

-1.L 
Experiment -2 0 2 b* l E(bi*) 

1 r r (No-N_2 )/2r f3t - 2/31! 

2 r r (NrNJ/2r f3t + 2/31! 

In both experiments, o-2 (bt) = o-2 /2r. The pooled estimate of f3t is un­
biased and has o-2 (bt) = o-2 /4r. 

H a combined analysis is made, b1f = (N2 - N 0 + N-2)/8r, where N 0 

is the sum of the yields of the 2 rplots with N = O; a 2 (b1t) = a 2 /16r. In 
this case bt = (N2 - N_2)/4r with o- 2 (bt) = o-2 /Br; note that this variance 
is one-half the pooled variance. Even if the experimenter wants to as­
sume different values of f3t in each experiment because of unequal 
amounts of other nutrients, he obtains the same estimate of flit from 
the combined data, and the above pooled estimate of f3!. 

H a more complicated model is considered, such as an exponential 
or logistic model, the experimenter will probably find that the inclusion 
of the available nutrients in the model is just as important. It may be 
that one of the reasons for obtaining such unrealistic production func­
tions from combined data is the failure to adjust for the available nutri­
ents. Also, this may account for the divergent shape of combined re­
sponse surfaces when various mathematical forms are used. Someone 
might make studies similar to these for the more complicated pro­
duction models. 

Hone can obtain more efficient and more nearly unbiased estimates 
by adjusting for available nutrients in several experiments in a com­
bined analysis, why is this not done more often? In many cases, the 
answer may be lack of knowledge of how to make even the simple 
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combined analyses. However, the real answer may be generally more 
complimentary to experimenters: 

1. Statisticians have not developed easy and efficient estimation pro­
cedures for the more complicated models. 
2. Procedures for determining available nutrients are not too well de­
veloped. 
3. It is often difficult to calibrate available and applied nutrients. 
4. Even though only a few nutrients are added in the experiment, ad­
mustments must be made for all available nutrients. This may result 
in a much more complicated analysis. 
5. Research has not been well coordinated. As a result, computations 
may be complicated and total levels may not be spread out very much 
in the various experiments. 
6. Adjustments for weather factors are also needed, especially when 
combining data from several years. Crop-weather and soil-weather 
relationships are even more poorly known than are crop-nutrient 
relationships. 

Much of the computing difficulty will probably be relieved as more 
use of electronic computers is made. Hence, it should be recommended 
that coordination of efforts in the direction of setting up realistic 
models and measuring and calibrating available nutrients is needed. 
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