
Frequency Response: Notch and Bandpass Filters

EE 224: Signals and Systems I

1 Overview

The goal of this lab is to study the response of finitie impulse response (FIR) filters to inputs
such as complex exponentials and sinusoids. In the experiments, you will use MATLAB’s
conv function to implement filters in the time domain and freqz to obtain each filter’s
frequency response. As a result, you should learn how to characterize a filter by knowing
how it reacts to different frequency components in the input. This lab also introduces
two practical filters: bandpass filters and nulling filters. Bandpass filters can be used to
detect and extract information from sinusoidal signals, e.g., tones in a touch-tone telephone
dialer. Nulling filters can be used to remove sinusoidal interference, e.g., jamming signals
in a radar or 60 Hz power signals from lights.

2 Learning Objectives

By the end of this lab, students will be able to:

1. Plot the frequency response of an FIR filter

2. Implement and apply an FIR filter in MATLAB

3. Design an FIR filter for nulling frequency components

4. Design an FIR filter for isolating specific frequencies

3 Pre-Lab Reading

3.1 Frequency Response of FIR Filters

The output or response of a filter for a complex sinusoidal input, ejΩ, depends on the
frequency, Ω. Often a filter is described solely by how it affects different input frequencies–
this is called the frequency response. For example, the frequency response of the two-point

1



averaging filter

y[n] =
1

2
x[n] +

1

2
x[n− 1]

can be found by using a general complex exponential as an input and observing the output
or response.

x[n] = Aej(Ωn+φ)

y[n] =
1

2
Aej(Ωn+φ) +

1

2
Aej(Ω(n−1)+φ)

= Aej(Ωn+φ) 1

2

(
1 + e−jΩ

)
= Aej(Ωn+φ)H

(
ejΩ
)

(1)

In (1) there are two terms, the original input and a term that is a function of Ω. This
second term is the frequency response, and it is commonly denoted by H(ejΩ), which in
this case is

H(ejΩ) =
1

2

(
1 + e−jΩ

)
Once the frequency response, H(ejΩ), has been determined, the effect of the filter on
any complex exponential may be determined by evaluating H(ejΩ) at the corresponding
frequency. The output signal, y[n], will be the original input complex exponential signal
times a complex number. The phase of this number imparts a phase shift and the magnitude
describes the gain applied to the complex exponential. The frequency response of a general
finite impulse response (FIR) linear, time-invariant system is

H(ejΩ) =
M∑
k=0

bke
−jΩk (2)

In the example above, M = 1 and b0 = b1 = 1
2
.

3.2 MATLAB Function for Frequency Response

MATLAB has a built-in function called freqz for computing the frequency response of a
discrete-time LTI system. The following MATLAB statements show how to use freqz1

to compute and plot both the magnitude (absolute value) and the phase of the frequency
response of a two-point averaging system as a function of Ω in the range −π ≤ Ω ≤ π:

1If the output of the freqz function is not assigned, then plots are generated automatically; however,
the magnitude is given in decibels which is a logarithmic scale. For linear magnitude plots a separate call
to plot is necessary.

2



1 bb = [0.5, 0.5]; \% Filter Coefficients

2 ww = -pi:(pi /100): pi; \% omega

3 HH = freqz(bb , 1, ww);

4 subplot (2,1,1);

5 plot(ww, abs(HH)); axis([-pi,pi ,0 ,1]);

6 subplot (2,1,2);

7 plot(ww, angle(HH)); axis([-pi,pi ,-2,2]);

8 xlabel(‘Normalized Radian Frequency ’)

For FIR filters, the second argument of freqz must always be equal to 1. The frequency
vector ww should cover an interval of length 2π for Ω, and its spacing must be fine enough
to give a smooth curve for H(ejΩ). Note: we will always use capital HH for the frequency
response in this lab.

3.3 Periodicity of the Frequency Response

The frequency responses of discrete-time filters are always periodic with period equal to
2π. Explain why this is the case by stating a definition of the frequency response and then
considering two input sinusoids whose frequencies are Ω and Ω + 2π:

x1[n] = ejΩn

x2[n] = ejΩn+2πn

Notice that x2[n] = x1[n], so the output will be the same for both inputs. Include your
answer in your lab report.

The implication of periodicity is that a plot of H(ejΩ) only needs to extend
over the interval −π ≤ n ≤ π or any other interval of length 2π.

4 Lab Exercises

4.1 Frequency Response of the Four-Point Averager

Filters that average input samples over a certain interval are called “running average” filters
or “averagers,” and they have the following form (for an L-point averager):

y[n] =
1

L

L−1∑
k=0

x[n− k]

In other words, the impulse response of an L-point averager is:

h[n] =

{
1
L

0 ≤ n ≤ L− 1

0 otherwise
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(a) Use Euler’s formula, (2), and complex number manipulations to show that the fre-
quency response for the 4-point running average operator is given by:

H
(
ejΩ
)

=
cos (0.5Ω) + cos (1.5Ω)

2
e−j1.5Ω (3)

(b) Implement (3) directly in MATLAB and plot the frequency response. Use a vector
that includes 400 samples between −π and π for Ω. Since the frequency response is a
complex-valued quantity, use abs and angle to extract the magnitude and phase of
the frequency response for plotting. Plotting the real and imaginary parts of H(ejΩ)
is not very informative.

(c) Use freqz in MATLAB to compute H(ejΩ) numerically (from the filter coefficients)
and plot its magnitude and phase versus Ω. Include the appropriate MATLAB code
to plot both the magnitude and phase of H(ejΩ) in your lab report’s appendix. Follow
the example in Section 3.2. The filter coefficient vector for the 4-point averager is
defined via:

1 bb = 1/4* ones (1,4);

Note: the function freqz(bb,1,ww) evaluates the frequency response for all frequen-
cies in the vector ww. It uses the summation in (2), not the formula in (3). The filter
coefficients are defined in the assignment to vector bb. How do your results compare
with part (b)?

4.2 The MATLAB find Function

Often signal processing functions are performed in order to extract information that can be
used to make a decision. The decision process inevitably requires logical tests, which might
be done with if-then constructs in MATLAB. However, MATLAB permits vectorization
of such tests, and the find function is one way to do lots of tests at once. In the following
example, find extracts all the numbers that “round” to 3:

1 xx = 1.4:0.33:5 , jkl = find(round(xx)==3), xx(jkl)

The argument of the find function can be any logical expression. Notice that find returns
a list of indices where the logical condition is true. See help on relop for information.

Now, suppose that you have a frequency response:

1 ww = -pi:(pi /500): pi; HH = freqz( 1/4* ones(1,4), 1, ww );

Use the find command to determine the indices where HH is zero, and then use those
indices to display the list of frequencies where HH is zero. Since there might be round-off
error in calculating HH, the logical test should probably be a test for those indices where
the magnitude (absolute value in MATLAB) of HH is less than some rather small number,
e.g., 1 × 10−6. Compare your answer to the frequency response that you plotted for the
four-point averager in Section 4.1.
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4.3 Nulling Filters for Rejection

Nulling filters are filters that completely eliminate some frequency component. If the
frequency is Ω = 0 or Ω = π, then a two-point FIR filter will do the nulling. The simplest
possible general nulling filter can have as few as three coefficients. If Ω is the desired nulling
frequency, then the following length-3 FIR filter will have a zero in its frequency response
at Ω = Ωn:

y[n] = x[n]− 2 cos (Ω)x[n− 1] + x[n− 2]

For example, a filter designed to completely eliminate signals of the form Aej0.5πn would
have the following coefficients because we would pick the desired nulling frequency to be
Ωn = 0.5π.

b0 = 1, b1 = −2 cos (0.5π) = 0, b2 = 1

(a) Design a filtering system that consists of the cascade of two FIR nulling filters that
will eliminate the following input frequencies: Ω = 0.44π, and Ω = 0.7π. For this
part, derive the filter coefficients of both nulling filters.

(b) Generate an input signal x[n] that is the sum of three sinusoids:

x[n] = 5 cos (0.3πn) + 22 cos
(

0.44πn− π

3

)
+ 22 cos

(
0.7πn− π

4

)
Make the input signal 150 samples long over the range 0 ≤ n ≤ 149.

(c) Use conv to filter the sum of three sinusoids signal x[n] through the filters designed
in part (a). Include the MATLAB code that you wrote to implement the cascade of
two FIR filters in the appendix.

(d) Make a plot of the output signal and show the first 40 points. Determine (by hand)
the exact mathematical formula (magnitude, phase, and frequency) for the output
signal for n ≥ 5. (Hint: recall that an LTI system alters the magnitude and phase of
sinusoidal inputs.)

4.4 Simple Bandpass Filter Design

The L-point averaging filter is a lowpass filter. Its passband width is controlled by L, being
inversely proportional to L. It is also possible to create a filter whose passband is centered
around some frequency other than zero. One simple way to do this is to define the impulse
response of an L-point FIR as:

h[n] =
2

L
cos (Ωcn), 0 ≤ n < L

where L is the filter length and Ωc is the center frequency that defines the frequency location
of the passband. For example, we would pick Ωc = 0.44π if we want the peak of the filter’s
passband to be centered at 0.44π. The bandwidth of the bandpass filter (BPF) is controlled
by L; the larger the value of L, the narrower the bandwidth.
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(a) Generate a bandpass filter that will pass a frequency component at Ω = 0.44π. Make
the filter length (L) equal to 10. Since we are going to be filtering the signal defined
below, measure the gain of the filter at the three frequencies of interest: Ω = 0.3π,
Ω = 0.44π and Ω = 0.7π.

x[n] = 5 cos (0.3πn) + 22 cos
(

0.44πn− π

3

)
+ 22 cos

(
0.7πn− π

4

)
(4)

(b) The passband of the BPF is defined by the region of the frequency response where
|H(ejΩ)| is close to its maximum value. If we define the maximum to be Hmax, then
the passband width is defined as the length of the frequency region where the ratio
|H(ejΩ)|/Hmax is greater than 1/

√
2 = 0.707. The stopband of the BPF filter is

defined by the region of the frequency response where |H(ejΩ)| is close to zero. In
this case, we will define the stopband as the region where |H(ejΩ)| is less than 25%
of the maximum.

Figure 1 shows how to define the passband and stopband. Note: you can use
MATLAB’s find function to locate those frequencies where the magnitude satisfies
|H(ejΩ)| ≥ 0.707Hmax.

Figure 1: Passband and Stopband for a typical FIR bandpass filter. In this case, the
maximum value is 1, the passband is the region where the frequency response is greater
than 1/

√
2 = 0.707 times the maximum value, and the stopband is defined as the region

where the frequency response is less than 25% of the maximum.

Make a plot of the frequency response for the L = 10 bandpass filter from part (a),
and determine the passband width (at the 0.707 level). Repeat the plot for L = 20
and L = 40 so you can explain how the width of the passband is related to filter
length L, i.e., what happens when L is doubled or halved.

(c) Comment on the selectivity of the L = 10 bandpass filter. In other words, which
frequencies are “passed by the filter”? Use the frequency response to explain how the
filter can pass one component at Ω = 0.44π, while reducing or rejecting the others at
Ω = 0.3π and Ω = 0.7π.
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(d) Generate a bandpass filter that will pass the frequency component at Ω = 0.44π,
but now make the filter length (L) long enough so that it will also greatly reduce
frequency components at (or near) Ω = 0.3π and Ω = 0.7π. Determine the smallest
value of L so that

(a) Any frequency component satisfying |Ω| ≤ 0.3π will be reduced by a factor of
10 or more2.

(b) Any frequency component satisfying 0.7π ≤ |Ω| ≤ π will be reduced by a factor
of 10 or more.

This can be done by making the passband width very small.

(e) Use the filter from the previous part to filter the “sum of three sinusoids” signal in
(4). Make a plot of 100 points of the input and output signals, and explain how the
filter has reduced or removed two of the three sinusoidal components.

(f) Make a plot of the frequency response (magnitude only) for the filter from part (d),
and explain how H(ejΩ) can be used to determine the relative size of each sinusoidal
component in the output signal. In other words, connect a mathematical description
of the output signal to the values that can be obtained from the frequency response
plot.

4.5 Report Checklist

Be sure the following are included in your report.

1. Section 3.3: explanation of periodicity of frequency response

2. Section 4.1: derivation of (3)

3. Section 4.1: (labeled) plots of magnitude and phase of H(ejΩ)

4. Section 4.1: plots of H(ejΩ) using freqz (code in appendix)

5. Section 4.2: list of frequencies where HH is 0 (and compare to above)

6. Section 4.3: coefficients of two nulling filters

7. Section 4.3: MATLAB code for filtering signal (appendix)

8. Section 4.3: plot of nulled output and formula for output signal

9. Section 4.4: coefficients of bandpass filter; gain at three frequencies

2For example, the input amplitude of the 0.7π component is 22, so its output amplitude must be less
than 2.2
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10. Section 4.4: plots of frequency response for L = 10, 20, and 40 with a description of
the passband widths

11. Section 4.4: comments on selectivity of the L = 10 BPF

12. Section 4.4: the smallest L that satisfies the criteria

13. Section 4.4: plot of input and output; explanation of effect on three sinusoid signal

14. Section 4.4: plot of frequency response; explanation of size of each sinusoidal compo-
nent in output
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