
Synthesis of Sinusoidal Signals using Tuning Forks

EE 224: Signals and Systems I

1 Overview

Tuning forks are physical systems that generate sinusoidal signals. When a tuning fork
is exposed to vibration, it disturbs nearby air molecules, creating regions of higher-than-
normal pressure (called compressions) and regions of lower-than-normal pressure (called
rarefactions). A microphone converts these variations to an electrical signal which can
be digitized with an analog-to-digital converter (ADC). The digital signal can be recorded,
analyzed, processed, and replayed through a digital-to-analog converter (DAC) and speaker.
This lab allows you to analyze sounds produced by tuning forks.

2 Learning Objectives

By the end of this lab, students will be able to:

1. Use the CyDAQ to record data

2. Write and use a MATLAB function

3. Measure the period of a signal

4. Determine the fundamental frequency of a measured signal

3 Pre-Lab Reading

Read the lab manual and the “Getting Started with the CyDAQ” document. Also read the
Wikipedia on tuning forks (in particular to see how the frequency of a fork is calculated).
This lab uses tuning forks with frequencies ranging from 128 Hz to 4096 Hz. Assuming
that the stiffness of the tuning forks is the same, how does the length of a tuning fork
change as the frequency increases? Enter your answer in the Canvas pre-lab and verify
your hypothesis when you get to the lab.

Do not strike the tuning forks on the table.

1

https://en.wikipedia.org/wiki/Tuning_fork


4 Lab Exercises

4.1 Overview

In this lab, you will be introduced to the CyDAQ, a device created specifically for this
course. The CyDAQ is capable of recording signals from a variety of sensors, and storing
the data in a way that can be easily used in MATLAB. For more information, refer to the
Getting Started with CyDAQ document on Canvas.

Using a tone generator smartphone app, a pure sinusoidal tone can be generated and
recorded using the microphone on the CyDAQ. In order to observe a decaying signal, a
tuning fork can also be used. The CyDAQ will convert the generated sound to an electrical
signal, which in turn is converted to a sequence of numbers stored in a digital file which
can be displayed on computer screen as a sinusoidal curve. Characteristics of the sound
wave, such as its period T and frequency f can be determined from this curve. Knowing
the wave’s period, its frequency f is easily computed using the formula:

f = 1/T

4.2 MATLAB Preliminaries

In this section, you will write an m-file function that takes a sound signal at a specific
sampling rate and plots the FFT (Fast Fourier Transform) of the signal. You will need to
import the data recorded from the CyDAQ into MATLAB. Your function should take the
‘data’ vector imported from the CyDAQ, and the sampling rate, Fs.

4.2.1 Introduction to Using Functions in MATLAB

Functions are m-files that can accept input arguments and return output arguments. The
names of the m-file and of the function should be the same. Functions operate on variables
within their own workspace, separate from the workspace you access at the MATLAB
command prompt. The first line of a function m-file starts with the keyword function. It
gives the function name and order of arguments. A simple function, called compmag5 that
computes five times the magnitude of a complex number of the form x+ jy is given below.
In this case, there are two input arguments and one output argument.

1 function [z] = compmag5(x,y);

2 % % % % % % % % %

3 % this function computes the magnitude of the complex number

4 % x+jy and returns it in variable z.

5 % Inputs:

6 % x - real part of complex number

7 % y - imaginary part of complex number

8 %Outputs:

9 %z - magnitude of complex number times 5

2



10 %written by J.A. Dickerson , January , 2005

11 a=5;

12 % compute magnitude and multiply

13 z = a * sqrt(x^2+y^2);

The next several lines, up to the first blank or executable line, are comment lines that
provide the help text. These lines are printed when you type

1 >>help compmag5

The first line of the help text is the H1 line, which MATLAB displays when you use the
lookfor command or search a directory with MATLAB’s Current Folder browser. The rest
of the file is the executable MATLAB code defining the function. The variable a introduced
in the body of the function, as well as the variables on the first line, m, x and y, are all local
to the function; they are separate from any variables in the MATLAB workspace. This
means that if you change the values of any variables with the same name while you are in
the function, it does not change the value of the variable in your workspace.

If no output argument is supplied, the result is stored in ans. You can terminate any
function with an end statement but, in most cases, this is optional. Functions return
when the end of the function is reached. The function is used by calling the function
within MATLAB or from a script. For example, the commands below can be used to call
compmag5 and get a result of m = 14.1421.

1 >> x=2; y=2; m=compmag5(x,y);

4.2.2 Writing an FFTPlot Function

For this lab, you will need a function that plots the frequency spectrum of a recorded signal.
This function can also be reused in future labs. Using the FFT function in MATLAB will
allow you to do so. For more information, refer to the following link: https://www.

mathworks.com/help/matlab/ref/fft.html. Be sure to plot the amplitude spectrum
with amplitude on the y-axis and frequency on the x-axis. You function should take as
input arguments the ‘data’ vector imported from the CyDAQ, and the sampling frequency
(Fs) used when collecting the signal.

The following will help you get started:

1 function [] = FFTPlot(data , Fs)

2 % FFTPlot: convert data vector from time domain to frequency

3 % domain

4 % data: imported ‘data ’ vector from the CyDAQ

5 % Fs: sampling frequency specified on the CyDAQ

6

7

8

9 end

3

https://www.mathworks.com/help/matlab/ref/fft.html
https://www.mathworks.com/help/matlab/ref/fft.html


4.2.3 Labeling Plots in MATLAB

It is very important to label all plots and graphs submitted with your lab report. Recall
how to use the functions xlabel, ylabel, and title from Lab 1. The axis command can
be used to set the beginning and end values for the graph axes. For example, if the time
should start at 2 s and end at 5 s and the recorded signal should range between 0 and 10
volts, use the command axis([2, 5, 0 10]);. Type help axis for more information.

4.3 Signal Collection

A. First, using the CyDAQ, collect signals generated by a tone generator app. Refer
to the ‘Getting Started with CyDAQ’ document for instructions. Collect the signals
using a sampling frequency of 8000 Hz on Channel 0, with ‘No Filter’ selected. Select
two frequencies greater than 150 Hz and less than 1000 Hz. For each of the selected
frequencies, plot both the time domain of the signal (plot(time,data)) and the
frequency domain of the signal (FFTPlot(data,Fs)) in the same figure using subplot.
Remember to include title and axis labels for both subplots! Include these plots in
your report.

B. Use the data cursor tool to measure the frequency. In the frequency domain plot, this
can be done by finding the x coordinate of a peak value. In the time domain plot,
this can be done by measuring the time difference between two peaks. (The time
difference between two consecutive peaks would give the period.) You may be able
to achieve better accuracy by measuring the time it takes for N peaks to occur, then
dividing by N−1. Verify that your two frequency measurements are reasonably close
to each other. How do your measurements compare to the frequency you specified
in the tone generator? Explain any discrepancies between your measured data and
your expected value.

C. Next, collect tuning fork signals. Use the CyDAQ to collect signals for two different
tuning forks with frequencies at or under 2048 Hz using a sampling frequency of
8000 samples/sec. Repeat parts A and B for each of the tuning forks. How do your
measurements compare to the frequency listed on the tuning fork you used? Explain
any discrepancies between your measured data and the expected frequency. Note: If
your measured frequency is not reasonably close to the tuning fork frequency, it is
possible that you are collecting data for too long. With your lab partner, have one
person strike the tuning fork and one person push start and stop. Stop data collection
within three seconds of starting.

D. Measure how the amplitude in the signal falls off over time for each of the tuning
forks. Provide an annotated figure that shows how you measured the signal decay.

4



Figure 1: Example tuning fork recording.

E. Comment on the other signals present in the spectrum. Why don’t you see a nice
clean delta function in the frequency plot?

F. Fill in the table below as part of your report. Include entries for the ‘Frequency
Estimate from Time Plot’ and the ‘Frequency Estimate from Frequency Plot’ for
both frequencies from the tone generator as well as the entries for both tuning forks.

Signal Source
Frequency Estimate
from Time Plot (Hz)

Magnitude Decay
Rate (V/s)

Frequency Estimate
from Frequency Plot
(Hz)

Tuning fork
labeled 1024

Signal genera-
tor 440 Hz

N/A

5



4.4 Report Checklist

Be sure the following are included in your report.

1. All your MATLAB code in an appendix of the report (including your FFTPlot func-
tion)

2. Section 4.3A.: Time and frequency plots of data measured from a tone generator app

3. Section 4.3C.: Time and frequency plots of data measured from a tuning fork

4. Section 4.3B.: Frequency measurements of the tone generator app’s signal from time
and frequency plots (report in table)

5. Section 4.3C.: Frequency measurements of the tuning fork from time and frequency
plots (report in table)

6. Section 4.3B.: Explanation of discrepancies between measured and expected frequen-
cies

7. Section 4.3D.: Plot and measurement of tuning fork amplitude decay (report estimate
in table)

8. Section 4.3E.: Comment on other signals in the spectrum

6


	Overview
	Learning Objectives
	Pre-Lab Reading
	Lab Exercises
	Overview
	MATLAB Preliminaries
	Introduction to Using Functions in MATLAB
	Writing an FFTPlot Function
	Labeling Plots in MATLAB

	Signal Collection
	Report Checklist


