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Triangles

9.1 Measuring with Triangles

It is fair to ask why we should bother learning about triangles, since
their relevance to ecology and natural resources isn’t immediately ap-
parent. Indeed, natural materials tend to approximate more tabular
or rounded shapes, and true triangles are harder to find in nature by
comparison. But the real power of triangles is not in where we can
see them, but where we can imagine them. Believe it or not, imag-
inary triangles can help us measure properties of a landscape or
organism, and that fact is firmly incorporated into many of the tools
and technologies that researchers and professionals use. In particular,
the ratios between the lengths of triangle sides is one of their key as-
sets. In this chapter, we’ll review some of the properties of triangles
and see how these properties can be leveraged to measure things we
care about.
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Figure 9.1: A simple triangle. Note that
the corners (or vertices) are labeled
with capital letters, and that the sides
opposite those vertices are labeled with
the lower-case version of the same
letter. This is partly by convention, and
to facilitate some of the techniques we’ll
review below.

9.2 Trigonometry primer

Trigonometry is the study of triangles, specifically the relationships
between the lengths of their sides and the angles between them. At
first glance, that might not seem like it is very relevant to the natural
sciences, but a few examples might convince you otherwise:

• Determining the distance “as the crow flies” between two geo-
graphic points is often most easily done with the help of triangles.

• Measuring the height of a tree or a mountain can employ triangles.

• Telemetry often uses triangulation to determine the geographic
location of collared animals.

If you’ve had a trigonometry class, you might associate the dis-
cipline with manipulating equations with sec 2θ and cot(1 + π/2).
Outside of math class, did you ever find yourself needing to find
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the secant of an angle? Not likely. But it isn’t too uncommon to en-
counter the likes of sine and cosine, which are often written sin and
cos, respectively. That’s because they are really, really useful1. And1 At this point you may just need to take

my word for it, but I hope that you’ll
appreciate this fact by the time you
finish this chapter.

it turns out, nearly all the other trig functions you may have learned
about are readily defined using sines and cosines! For example, the tan-
gent of an angle can be defined as the ratio of the angle’s sine to its
cosine, but it is so useful that we should recognize it as well.

As far as I’m concerned, on the off chance that you ever need to
manipulate an equation containing the hyperbolic cosine (cosh) of
something, you can look it up or type it into an internet tool like
Wolfram|Alpha. If this is your first experience with trigonometry,Wolfram|Alpha is a web-based tool

developed by mathematician and en-
trepreneur Stephen Wolfram. It is based
on the same underlying computational
engine as the math software Mathe-
matica, but can be used (for free with
slightly-limited functionality) from
any web browser. In addition to per-
forming computation and algebraic
simplification, it can attempt to com-
prehend simple written questions and
can retrieve data from a few established
databases, concerning for example
weather, fincance, and sports.

have no fear, we’ll take it slow!

Similarity

Similarity is a concept that may not boast enough sophistication to
warrant its inclusion in a trigonometry class. However, it is an intu-
itively easy idea to grasp and its utility can be great. And fortunately
for modern scientists, the formal application of similarity allows us to
design tools for measuring things efficiently in the field.

The principle of geometric similarity2 is straight-forward. If we
2 In some fields this concept is endowed
with a more sophisticated sounding
name: geometric similitude.

have a given shape with known side lengths and/or known angles
formed between the sides, we can say that another shape is similar
if it has the same number of sides and a relationship between those
sides and angles that is the same as our reference shape. The two
shapes can still be similar even if they are not the same size or orien-
tation. If any combination of translation (moving the shape), rotation,
reflection (a mirror image), or isometric3 scaling could allow you3 The word isometric in this context

means that any change in one spatial
dimension of a shape (e.g., length) is
matched by a proportional change in all
other dimensions.

to overlay one shape on the other to find them to be identical, the
shapes are similar.

For triangles, the qualifying criteria for similarity are simple, since
there are only three sides and one internal angle at each of the three
vertices. For shorthand, when two triangles have one angle that is
identical, we’ll call that A. When two triangles have all three angles
equal, we’ll refer to that is AAA. Likewise, if the side-length of one
side of two triangles is equal, we’ll describe that with S. With these
definitions, we’ll make the following claims, as yet unproven, about
the criteria for determining similarity:

http://www.wolframalpha.com
http://www.wolframalpha.com
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Triangle Similarity

Two triangles are similar if any one of the following can be es-
tablished:

• AAA. The angles of one triangle are equal to the angles of the
second.

• SSS. The side-lengths of one triangle are equal to those of
the second. Side lengths may be scaled by a constant C if that
constant is the same for each side.

• SAS. Two side-lengths and one angle of one triangle are equal
to those of the second. Side lengths may be scaled by a con-
stant C if that constant is the same for each side.

When you’ve reached the end of this chapter, you should be able to
show how each of these criteria for similarity could be derived from
one of the others. That is left as an exercise for you to work on, one
that can build your intuition for using triangle properties for problem
solving.

9.2.1 The right triangle and sohcahtoa

The mnemonic SOHCAHTOA is one of a small number of things
that most trig students remember years after taking the class. Indeed
this is really helpful way to remember the algorithms relating the
basic trig functions to ratios between the sides of a right triangle4. 4 As you may know, a right triangle is

defined as a triangle with one right, or
90
◦ angle.

But it reveals nothing about the ways that triangles can be employed
for practical purposes. So before we deal with these functions, let’s
revisit what a right triangle is, where we might encounter one, and a
few terms and rules regarding these beasts. Figure 9.2 shows a nice,
well-behaved one.
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Figure 9.2: A right triangle.

Notice that each vertex (a corner point) joins two of the three sides
and doesn’t touch the side that is opposite it. For reasons that might
be apparent in a moment, we choose names for the sides and vertices
that imply a relationship between a vertex and the side opposite
it. So for example, side a is opposite vertex A (meaning the vertex
A is not one of the endpoints of side a). It probably satisfies your
intuition that the size of the angle at a vertex might have some simple
relationships to the length of its opposite side – at least there is a
more intuitive relationship there than between vertex A and one of
the other two sides. Imagine keeping vertices A and C stationary,
but allowing the angle at A to grow. It is plain to see that if the angle
∠A increases, the vertex B must move up and the length of side a
increases accordingly. This thought experiment produces similar
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results for the other opposing side/angle pairs as well, and we’ll use
it to our advantage shortly in dealing with triangulation.

One of the most fundamental properties of all triangles is that the
three vertex angles sum to 180

◦ (∠A + ∠B + ∠C = 180◦). For the
special case of a right triangle, the right angle by definition is 90

◦, so
the other two angles must be smaller than 90

◦. This seems obvious,
but it has an important consequence: the longest side of a triangle is
the one that is opposite the largest angle. Therefore, since the right
angle is the largest angle in a right triangle, the longest side (which
we call the hypotenuse) is across from the right angle (Figure 9.3).
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Figure 9.3: A right triangle.

In addition to the rule that angles must sum to 180
◦, one of the

most powerful properties of right triangles is their adherence to the
Pythagorean theorem:

a2 + b2 = c2. (9.1)

This is always true provided that c is the hypotenuse of a right trian-
gle. It turns out that there is a simple modification that can be made
to this if we are dealing with any arbitrary triangle. But before we go
much farther, consider an example setting where a right triangle can
be a useful aid to measurement.

9.2.2 Example: overland distances

If you are visiting GPS waypoints stored as UTM coordinates5, the5 Universal Transverse Mercator, or
UTM, refers to a projected geographic
coordinate system wherein locations
are given coordinates (meters easting,
meters northing) according to their
distance in meters east and north of a
predefined datum. The benefit of UTM
coordinates compared with latitude
and longitude is that it is an orthogonal
coordinate system analogous to the
Cartesian x-y coordinate system we
sometimes use for abstraction in math.

distance on-the-ground between two points might not be obvious
from the coordinate sets. For example, what is the distance between
(452632,4660214) and (452991,4660580), the marked locations of
two observed dickcissel nests? Once we recognize these ordered
pairs as the geographical equivalent of (x,y) pairs, it is pretty easy
to see that the second nest is 452991 − 452632 = 359 m east and
4660580− 4660214 = 366 m north of the first. But neither a dickcissel
nor an ornithologist would likely go from one nest to another by first
going 366 m north and then 359 m east. Both would be more likely to
go in an approximately straight line. Since east and north are perpen-
dicular, we can construct a triangle like Figure 9.4, with a 359 m long
easting side and a 366 m long northing side to represent the coordi-
nate distances. The as-the-crow-flies distance is the hypotenuse of the
triangle since it is opposite the right angle. Therefore we can use the
pythagorean theorem to find that distance, which we can call d:

d2 = (easting)2 + (northing)2 (9.2)

d =
√
(easting)2 + (northing)2 (9.3)

d =
√
(359 m)2 + (366 m)2 = 513 m (9.4)
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Figure 9.4: Dickcissel nest distances.
North is toward the top of the page.

Knowing that the second nest is about 513 m away from the first is
great. But if you were to give instructions to a field assistant to walk
513 m from the first nest to find the second nest, that alone is insuffi-
cient information to get to the correct place. Which direction does she
have to go? You could, of course, simply have her walk north 366 m
and then east 359 m, but that wouldn’t be terribly efficient. What is
missing is obviously the direction. If she’s carrying a compass, you
could give her a bearing or compass direction to follow, but what is
that bearing, and do we have enough information to determine it?

9.2.3 Angles and azimuths

At this point, we need to draw more important distinctions regard-
ing coordinate systems and conventions. When we need to be more
accurate than simply saying “northeast”, compass bearings are of-
ten given as angles in degrees. Some people prefer to use quadrant
bearings, where directions are given with respect to deviations from
north or south. For example, due northeast might be expressed as
“north 45 east”, or equivalently N45

◦E. That can be interpreted
as 45

◦ east of due north. Similarly, southeast could be S45
◦E and

southwest is S45
◦W. This can sometimes be easier to understand

in conversation, but bearings expressed in azimuth are less prone
to mis-interpretation. Azimuth is the compass direction in degrees
clockwise from north, increasing continuously from 0

◦ to 360
◦. In this

system, north is both 0
◦ and 360

◦, east is 90
◦, south is 180

◦ and west
is 270

◦ (Figure 9.5).
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Figure 9.5: The azimuth coordinate
system in a compass. Graphic modified
from D. Orescanin.

In the world of mathematics, angles are usually measured counter-
clockwise from the x-axis6. Not only does this mean that the starting

6 In math and physics, angles are also
frequently measured in radians rather
than degrees. Note also that many
computer programs that are able to do
trigonometric computations assume
that your argument (or desired result)
will be in radians. Radians make
alot of sense for geometry because,
by definition a radian is the angle
traversed when you traverse a length
along the perimeter of the circle that
is equal to the radius of the circle. But
for practical use in the field, degrees
are easier to work with. So here’s a
quick rule of thumb in case you need
to convert: once around a circle is 360

◦

and 2π radians.

point (0◦) is in a different place, but it increases in a different di-
rection. We will occasionally employ this convention, since it is so
prevalent in quantitative topics unrelated to geography. But for the
current problem, we’ll stick with azimuth.

Returning to the problem of finding the dickcissel nest, how can
we decide what bearing to give to the field assistant? Since the east-
ing and northing distances are similar, we can be fairly confident
that it will be near 45

◦ (NE), but probably not exactly that. But how
do you determine the unknown angles in a triangle when you only
know one angle (the right angle) and all of the side lengths? Aha!
sine and cosine to the rescue!!

9.3 Angles, circles and sines

Before we proceed with finding the azimuth, let’s more formally
define a few trigonometric quantities. We’ll do this initially in a
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mathematics framework, using an x-y coordinate system with an-
gles increasing counterclockwise from the x-axis. Figure 9.6 shows
what we might call the “unit circle”, a circle centered on the point
(0,0) (also called the “origin”) with a radius of 1 unit. If we choose
any point on the circle, call it p, it lies a distance of 1 unit from the
origin. But its coordinates are not immediately obvious. As with the
case of the dickcissel nests, however, we can break the path from the
origin to p into a component in the x direction and a component in
the y direction. Connecting each of those component paths with the
direct path (the radius line), we end up with a right triangle 4OAH,
as illustrated in yellow in Figure 9.6.
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Figure 9.6: Right triangle inscribed
inside the unit circle.

Since we have a right triangle, we could use the Pythagorean the-
orem again to find an unknown side length, provided that we know
two of the sides. But in this case, we do not know two sides. Instead
we know the angle θ between the x-axis and the line connecting the
origin with point p. We also know that this line, call it H for hy-
potenuse, has length 1 by definition. The other two sides, O and A
for opposite and adjacent, are unknown but can be found from the
fundamental trigonometric functions.

Trigonometric Ratios

The sine of an angle is the ratio of the length of the opposite
side (O) to the length of the hypotenuse side (H).
The cosine of an angle is the ratio of the length of the adjacent
side (A) to the length of the hypotenuse side (H).
The tangent of an angle is the ratio of the length of the opposite
side (O) to the length of the adjacent side (A).

The tangent is identical to the ratio of the sine to cosine of an
angle, which you can see is equivalent to the above definition if you
cancel the hypotenuse terms in the ratio of ratios. These are loaded
definitions, so let’s take a few moments to ponder what we’ve just
seen.

• The trig functions are functions in the formal sense: they convert an
input (angle) to a unique output (ratio of side lengths).

• The opposite and adjacent sides are defined relative to the angle
that is the argument of the trig function.

• The output of each trig function is a dimensionless quantity that
represents the ratio of two side lengths.

• If we know one angle (other than the right angle) and one side
length, we can find the two remaining side lengths using the
trigonometric functions.
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In equations, we don’t spell the full name of these functions, but
instead use sin, cos, and tan as shorthand. With this shorthand and
the definitions above, we can construct a few simple equations that
can help us find the unknown side lengths O and A in Figure 9.6:

sin θ =
O
H

(9.5)

cos θ =
A
H

(9.6)

Since we know θ and H on the unit circle, we can rearrange these
equations to solve for the unknowns. Multiplying both sides of each
equation by H, we get:

H sin θ = O (9.7)

H cos θ = A (9.8)

Now the reason we have done this in the unit circle is that H = 1,
so we essentially end with the definitions sin θ = O and cos θ = A.
An important thing to realize, then, is that we can scale up to any
arbitrary side lengths. Suppose we were interested in not a triangle
with hypotenuse 1 unit, but one with hypotenuse 55 meters. Defining
f = 55 and isometrically scaling all the triangle sides by that factor,
we can see for example that:

sin θ =
f O
f H

[
m
m

]
. (9.9)

Of course the f ’s simply lengthen H and O by the same common
factor, and could be easily canceled. But this illustrates the fact that
sine and other trig functions describe dimensionless side-length
ratios, and that those ratios can scale proportionally without changing
the sine, cosine, and tangent of the angles! An obvious implication is
that if one vertex of a right triangle has the same cosine and sine as
another triangle, the triangles can be shown to be similar.

Actually, we already knew that, since by knowing one angle other
than the right angle in a right triangle we can easily find the third.
Recall, then, that one of the criteria for identifying similarity in trian-
gles is AAA, or equality of all three angles regardless of side length.
For any pair of similar right triangles, the only difference in side
lengths is a constant scaling factor f . Thus, any right triangle can be
scaled down to a similar one on the unit circle by dividing all side
lengths by the length of the hypotenuse, so that H/ f = 1!

In addition to simplifying triangle scaling, the unit circle also
allows us to imagine moving point p along the perimeter and ob-
serving how the lengths of A and O change accordingly. In fact, the
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software Geogebra is perfectly suited for doing this, and I highly
recommend playing around with it to boost your intuition. The key
thing to notice is that the denominator of the side ratios defined as
the sine and cosine is the hypotenuse, or 1 on the unit circle. So the
lengths of the opposite (sine) and adjacent (cosine) sides are the out-
put of those respective functions. For angles between 0

◦ and 90
◦,

both functions range from 0 to 1. If you allow x and y to take on neg-
ative values as point p goes down or to the left of the origin, you’ll
see that both functions remain between −1 and 1, inclusive.

But tangent is a different story. Recall that one definition for the
tangent of an angle is O/A. You can see that for a small angle θ, O
is quite small and A is pretty close to 1, so the ratio of the two will
be nearly 0. O and A are equal and tan θ = 1 when θ is 45

◦, and as
θ approaches 90

◦, A approaches 0 and O approaches infinity, so tan θ

approaches infinity as well. What do you suppose happens as θ gets
larger than 90

◦?

9.3.1 Example: tree clinometry

One of the most common ways to measure the height of a tree is
with a clinometer. This is a small handheld device with a sighting
lens and crosshair and one of a variety of different mechanisms for
measuring the inclination angle (either positive or negative) of the
sight-line from horizontal. Figure 9.7 illustrates the hypothetical
triangles constructed with vertices at the observer’s eye, and the base
and crown of the target tree. Obtaining the height distribution of
merchantable timber in our forest parcel in Problem 3.5 could include
a set of representative height measurements with a clinometer.
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Figure 9.7: Clinometry measurement of
tree height.

In measuring the height of a tree, two readings are often taken
with the clinometer: one to the crown θu and one to the base or
stump θl . The observation point E is a pre-determined distance D
from the tree itself. From this information, what is the height of the
tree?

We identify H as the quantity of interest, and observe that H =

Hu + Hl . As a first step, we must therefore determine Hu and Hl .
We assume the geometry of the problem allows us to construct two
imaginary right triangles as illustrated and that our clinometer gives
us angles in degrees from the horizontal. Since we know the hori-
zontal distance to the tree D and have measured the angles to the top
(θu) and bottom (θl) of the tree, we know the adjacent side length (D)
and an angle for both triangles. The target unknowns are the oppo-
site sides of each triangle, and from sohcahtoa we know that we can
use tan to find the opposite sides when we know the adjacent sides.

https://www.geogebra.org/
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Thus:
tan θu =

Hu

D
(9.10)

D tan θu = Hu (9.11)

and
tan θl =

Hl
D

(9.12)

D tan θl = Hl (9.13)

and since H = Hu + Hl ,

H = D tan θu + D tan θl (9.14)

H = D(tan θu + tan θl). (9.15)

Thus, we can use an elementary trigonometric function (tan) and
a bit of algebra to produce a formula that relates clinometer angle
measurements to tree height.

9.4 Arbitrary triangles

While some problems may be approached profitably with imaginary
right triangles, others present triangles without right angles. We’ll
call these arbitrary or general triangles. Triangulation is a typical
task in which ecologists or wildlife managers might encounter arbi-
trary triangles. When radio-tracking a collared animal, for example,
one method for determining the animal’s location at a given time is
by triangulation from multiple directional antennae. Figure 9.4 is the
same as Figure 9.1, except that now we are considering the vertices to
be radio transmitters (animals) and receivers (ecologists).
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Figure 9.8: Triangulation in telemetry. B
is a target radio-collared animal and A
and C are directional antennae.

Thus far, we only have two tools that are safe to use with triangles
that lack a right angle: the rule that all the interior angles sum to
180
◦ (for which we may use the shorthand (Σ∠180) and the general

criteria for and implications of similar triangles. These might be of
limited use if our goal is to determine the distance to or location of a
collared animal. But if we know the length of one side (say side b in
Figure 9.4), and a few angles, we can make some progress.

9.4.1 Law of sines

The law of sines is valid for general triangles, including right trian-
gles. If we are careful to define our sides and vertices as we have
(with vertex angle A opposite side a and so on), we can state the law
of sines as follows:
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Law of Sines

sin A
a

=
sin B

b
=

sin C
c

. (9.16)

Note that this equation is strange in that there are two equals
signs. Don’t get worried, this is just a shorthand that allows us to
say on one line that each ratio between the sine of an angle and
the length of its opposite side is equal to the other corresponding
sine/side ratios. If we wrote each equation with a single ‘=’, there
would be three of them and it would simply take more space. But in
actual implementation you can use any of the implied equalities in
Equation 9.16, such as:

sin A
a

=
sin C

c
. (9.17)

The key concept here is that there is a simple and consistent relation-
ship between the sine of each angle and the length of its opposite
side, and that this applies to all triangles, no matter what size or shape.
That makes plenty of sense right? If you imagine taking a triangle
formed by three knotted rubber bands and lengthening one side
(without changing the length of the other sides), what happens to the
angle opposite that stretched side? It grows right? But to accommo-
date the growth of that angle, the other two angles must get smaller.
The law of sines is especially helpful if you know two sides and one
angle (SSA) or two angles and one side (AAS).

9.4.2 Law of cosines

Another tool that is useful for general triangles is called the “Law
of cosines”. In many ways, it provides the same information that
you can easily find from other tools we have already discussed, so
we won’t derive it or discuss it in great detail. But mathematician
Paul Lockhart makes the case that the law of cosines might be a
misleading name, and that the relationship might be better described
as a modified version of the Pythagorean theorem that is good for all
general triangles. Check it out:

c2 = a2 + b2 − 2ab cos C. (9.18)

As you can see, it is identical to the Pythagorean theorem except that
there is a correction factor 2ab cos C that is subtracted to account for
deviations from a right triangle. As with the Pythagorean theorem,
the law of cosines gives you the third side length if you know the
other two, but you also need to know the angle between the known
sides (SSA). As such, it’s function overlaps that of the law of sines.

http://www.hup.harvard.edu/catalog.php?isbn=9780674057555
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9.5 Triangle tools: a summary

Trigonometry is a large subdiscipline of mathematics, and can and
does fill more than a semester in math classes. Our treatment here
has focused on the tools that are most commonly encountered in
practical field settings in the natural sciences. Many additional func-
tions, relationships and skills can become important in specific, more
technical applications, but most of these can be derived from the
basic functions discussed here. These functions and properties are
summarized in the table that follows.

Rule name Relationship right general use for
Angle sum ∑∠ = 180◦ X X AA known, want A
Pythagorean theorem c2 = a2 + b2 X SS known, want S
Similarity X1 = CX2 X X C known, want X (A,S or other)
sine sin θ = O/H X AS(O or H) known, want S(H or O)
cosine cos θ = A/H X AS(A or H) known, want S(H or A)
tangent tan θ = O/A X AS(O or A) known, want S(A or O)
Law of sines sin A

a = sin B
b = sin C

c X X AAS or SSA known, want S
Law of cosines c2 = a2 + b2 − 2ab cos C X X SSA known, want S

9.5.1 Example: shoreline waterfowl habitat (Problem 3.1)

Some dabbling duck species like Mallards seem to prefer very shal-
low water. This means that small, shallow wetlands can fit the bill,
but even the shallow shoreline areas of larger and deeper wetlands
may be adequate. Shorelines are also the interface between feeding
and nesting areas for many species, and often support diverse flora
and fauna across the ecotone.

One way we could estimate the extent of shoreline habitat is to
find the length of wetland perimeters, or outlines. If, as described in
the last chapter, we have digitized (or obtained existing data for) the
outlines of wetlands in our candidate parcels, we should have easting
and northing coordinates for these outlines. As with polygon area,
most GIS software will automatically compute the perimeter of any
shape. However, it is instructive to see how this follows from our
earlier discussion of triangle-assisted spatial reasoning.

Recall that when we were traversing between dickcissel nests,
we used an implementation of the Pythagorean theorem to find the
straight-line distance from the coordinates of both end points. We can
write this relationship in an x, y coordinate system as follows:

l1→2 =
√
[(x2 − x1)2 + (y2 − y1)2], (9.19)

where l1→2 is the length of the straight-line distance from point 1

(with coordinates x1, y1) and point 2. Notice that the result is always
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a real, non-negative number because the differences are squared.
If we have a series of n points describing the wetland outlines, the
sum of all n of the lengths forming a closed polygon approximate the
perimeter P of the polygon7. We can generalize this as follows:7 How good is this sort of approxima-

tion of the perimeter? This is a simple
question with a not-so-simple answer.
For our purposes here, the more points
we have, the better – particularly if
we’ve got an automated way to do
the computations. However, in a more
philosophical sense this is the crux of
the coastline paradox, first popularized
by mathematician Benoit Mandelbrot.

P =
√
[(x2 − x1)2 + (y2 − y1)2] +

√
[(x3 − x2)2 + (y3 − y2)2] + ...

...
√
[(x1 − xn)2 + (y1 − yn)2]. (9.20)

As with the trapezoidal area formula, this can be implemented by
hand, in a spreadsheet, or with GIS software.

Exercises

1. Use Figure 9.4 and the right triangles formed by dropping the
perpendicular h, to derive the law of sines from the trig functions
you already know.

2. Explain how you could find the telemetered location of B if you
know the locations of A and C and their internal angles.

3. What happens if you try to apply the law of sines to a right trian-
gle?

4. What happens if you use the law of cosines on a right triangle?
Assume angle C is the right angle.

5. Triangles can be used to measure distant objects, even if we can’t
get to them. This can be used to estimate the height of an object
(e.g., a mountain peak or tree) where we cannot access the base,
and therefore cannot measure the full horizontal distance that
separates us from the object we wish to measure. The general
premise of the remote method is illustrated in figure 9.9. If we
can use a clinometer (a device for determining the angle between
horizontal and a sight-line to an object of interest) to determine
the sight-line angles to the object of interest p from two different
places b1 and b2, and we know the distance between those places
l, we can use trigonometry and algebra to determine the desired
height H.

b1 b2
α β

l

p

H

Figure 9.9: Triangle abstraction of the
mountain problem.

Devise a strategy for measuring H from the information gathered
at b1 and b2. Derive and justify a formula that can be used for this
task.

https://en.wikipedia.org/wiki/Coastline_paradox
https://en.wikipedia.org/wiki/Benoit_Mandelbrot



