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Geometry and Geography

One of the fundamental types of quantities that we use as natural
resource scientists and professionals is a measure of distance or size.
Whether we’re describing the board-feet of merchantable lumber
in a ponderosa pine, the fork length of a trout, the size of a white-
tail deer’s home range, or the storage capacity of a flood-control
reservoir, we are concerned with spatial quantities that ultimately
manifest from linear measurements in space. Much of this may feel
familiar to you, but there are important messages to take home from
working with both simple and compound spatial quantities that
will serve you well in working with maps, photos, design plans, and
other tools that professionals use.

8.1 Length, Area, and Volume

Consider the wetland shown in the map below (Figure 8.1). How
might we characterize its size? Perhaps the answer depends on the
context of the question. Are we interested in how far it is to cross
it in a canoe? How long the shoreline habitat is for waterfowl? The
number of acres it occupies? What about the amount of water it
holds? In turn these questions point to linear distance, curvilinear
distance, area and volume, respectively. Each of these types of quan-
tities can be expressed in a variety of ways1 according to the setting, 1 For example, we can express all the

quantities in terms of SI units of m, m2,
and m3, or we can use more traditional
U.S. agricultural units like feet, acres,
and acre-feet.

the application, or the purpose of communication.
The distinctions between length, area, and volume are more than

just trivia. They clearly reflect not only different ways of estimat-
ing size, but different numbers of spatial dimensions. In common
parlance, length is one-dimensional or 1D, area is two-dimensional
or 2D, and volume is three-dimensional or 3D. The units can be a
clue to how many dimensions are indicated in a spatial description.
From Chapter 4, recall that we can generalize units in terms of the
fundamental dimensions they entail. From this perspective then, a
1D length has dimensions of [L], a 2D area [L2], and a 3D volume
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Figure 8.1: Map of a wetland in Iowa.
The blue polygon shows the extent of
seasonal open water overlain on shaded
relief.

[L3]. This is true regardless of the specific units used to describe the
quantity of interest, though sometimes the dimensionality can be
obscured by the use of compound units. For example, if we’re told
that a woodlot is 820,000 ft2, that is a straight-forward 2D measure of
area. If that same woodlot is described as 126,000 board feet2, now2 One board-foot is equivalent to 144

cubic inches of merchantable timber;
can be visualized as a 12 inch long and
12 inch wide board that is 1 inch thick.

we’re talking about a volume of wood expressed in a unit that is not
particularly transparent to outsiders, though it is customary among
foresters. If we need to do computations involving quantities of this
sort we need to be certain that we understand what makes sense and
what doesn’t make sense to do; what’s permissible and what isn’t.

Note that some of our commonly-used spatial units are compound
by definition. An acre, for example, is a unit of area even though
it is not expressed in a squared-length form. Originally defined as
the area of land that could be plowed with oxen in a day, an acre is
43,560 ft2 or roughly 4,047 m2. If you measured out a square 208.7 ft
on a side, that would be approximately an acre. The acre’s cousin in
SI units, the hectare, is also a unit of area with a simpler definition:
an area of land 100 m wide and 100 m long, or 10,000 m2.33 Neither the acre nor the hectare need

be any particular shape, nor do they
necessarily need to be contiguous,
though they usually are.

We’re also familiar with several alternative ways of expressing vol-
ume with derived units, particularly when talking about liquids. It’s
not unheard-of to talk about fluid volumes in cubic meters or cubic
feet (particularly if we’re referring to volume per unit time as we do
when describing river flows in cubic feet per secod or cfs), but it is
more common to hear fluid volumes expressed in gallons, millileters
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or liters. These are all legitimate expressions of fluid (gas or liquid)
volumes and some have relatively straight-forward relationships to
length-cubed volumes: for example, 1 ml is the same as 1 cm3 or cc.
However, if we wish to perform computations more complex than
addition or subtraction on such quantities, it can be advantageous
to convert them into more fundamental units like cubic meters. One
interesting unit of volume mentioned above is the acre-foot, which
(as you might guess) is the volume corresponding to a one acre area
of something that is one foot deep. This means its dimensions are
an area [L2] times a depth [L], therefore its a volume [L3]. We en-
counter this unit of volume sometimes in descriptions of ponds or
stormwater-basins because it may be easier to visualize, but this can
also make it more difficult to perform computations.

8.1.1 Unit conversions in space

Here’s an common exercise that American students often need to
perform in earth science, geography or natural resource courses4: 4 perhaps this exercise is going the

way of the paper map itself as people
increasingly interact with only digital
maps these days!

measure a rectangular land area on a USGS map with a scale in feet
and miles, and convert it to square meters or square kilometers.

0.5 1 mile
scale = 1:31,680

5000 ft. Figure 8.2: A generic map scalebar
showing map distances in feet and
miles.

This exercise will typically begin with each student begrudgingly
making tickmarks on the edge of a sheet of paper that is lined up
with the map scale. For purposes of illustration, we’ll follow the
hypothetical (but not uncommon) path of a student who is prone
to making some common mistakes. Our student uses the marked
paper to estimate the length of each side of the rectangular land area
using the scaled map units5. Perhaps the values are 6.2 miles and 5 see the next section for more on

scaling
2.1 miles. He then proceeds to multiply them together, because he’s
aware that the area of a rectangle is the product of its sides. So he
punches 6.2× 2.1 into his calculator and gets 13.02. When asked to
supply units for his answer, he reasons that since the units he was
measuring distances in were miles, the answer is also in miles. His Common Mistake #1: leaving the

units out of computations can lead to
errors in unit assignment for solutions.

instructor points out that miles are a unit of length not area, and that
he should write the equation out complete with units to ensure that
his result comes out in units of area. So he writes:

6.2 mi× 2.1 mi = 13.02 mi2

and the instructor nods approval but says, “and now we need the
area in square kilometers”. Our downtrodden student proceeds to
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look up the conversion factor between miles and kilometers: 1mi '
1.609 km. Great. The calculator buttons click away until the student,
exasperated, inquires “so the area in square km is 13.02 × 1.609,
which equals about 20.95 right?” The ever-patient instructor shakesCommon Mistake #2: using length

conversion factor for area conversion. her head: “there are 1.609 km in a mile, but how many square km
in a square mile?”. Our student stares at the map and feigns interest
in the question. On a whim, he asks “do I need to square the 1.609

too?” The instructor pats him on the shoulder and remarks “yep,
write it all out, and don’t forget the units” as she walks away. Our
student, relieved at having guessed correctly, writes:

6.2 mi× 2.1 mi = 13.02 mi2

13.02 mi2 ×
(

1.609
km
mi

)2

= 33.71 km2

To see why we need to square the conversion factor like our student
ultimately did, let’s write out the conversion equation the way he did
it at first, but using only the units (this is a variation of the dimen-
sional homogeneity heuristic from Chapter 4):

mi2 × km
mi

= km2

If we cancel common units, we should be able to show that the units
of the left-hand side are equal to the units on the right-hand side,
but here we can only cancel miles in the numerator from miles in
the denominator on the left-hand side, leaving a meaningless unit
equation: mi km = km2. That can’t be true.

If instead we reason that our conversion factor needs to allow us to
cancel through to make the units equivalent on both sides, we square
the conversion factor and its units to yield:Heuristic: Unit conversions can be

written as equations with the current
quantity and units on the left-hand
side and the quantity in desired units
on the right-hand side. All conversion
factors should include units and be
subject to operations such that the ex-
pression satisfies unit and dimensional
homogeneity.

mi2 ×
(

km
mi

)2

= km2

This approach can be generalized for other types of spatial unit
conversions as well, provided that our original and desired units are
not compound. Suppose we are measuring the size of something in
units based on the length unit U1 and we need to convert it into units
based on the length unit U2. If the conversion factor between U1 and
U2 is C1→2, the conversion equation can be written:

Ud
1 × Cd

1→2 = Ud
2 (8.1)

In this equation, d is the spatial dimensionality of the quantity, so its
1 for lengths, 2 for areas, and 3 for volumes. It’s important to note
that the conversion factor C1→2 should correspond to the number of
unit 2’s per unit 1, as we did for the map area conversion above.
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Note that unit conversion factors between compound units like
acres and hectares are not subject to these concerns. There is no such
thing as a square acre because an acre is already a unit of area, so
nothing needs to be done to the conversion factor if you are convert-
ing from, for example, acres to hectares: there are 0.4047 hectares
in an acre, period. In this way these compound units can make life
easier, but if you are simultaneously working with other quantities in
meters, this convenience comes at a price.

It might have occurred to you to approach the map problem in
a slightly different way. Suppose that instead of computing the area
in square miles immediately after measuring the sides of the rect-
angle, our student had converted the sides from miles to kilometers
first. Does this make any difference?

In this case, the map distances are 6.2 × 1.609 = 9.976km and
2.1× 1.609 = 3.379km. Their product is 33.71km2, which is the same
result as before. That should come as no surprise, since the only
difference is that the unit conversions from miles to km occurred
before finding the area rather than after. Indeed this is one way to
make the problem a bit simpler to think about, but thanks to the
commutative property of multiplication there is no real difference
between the approaches.

8.1.2 Scales and Scaling

The map scalebar in Figure 8.1.1 shows not only a graphical scale
that can be used to directly measure real-world distances from the
(scaled) map representation, but also indicates a ratio: 1:31,680. What
does this scale mean? Does it have units?

Map scales are like most other dimensionless proportions, as we
discussed in Chapter 4. The beauty of many dimensionless propor-
tions is that we can use any units we want in them provided that both
parts of the scale ratio or proportion have the same units. So for the
map scale, we can say that 1 inch on the map is equal to 31,680 inches
in the world that the map represents6. If we measure out a path on 6 For better or worse, the US still per-

sists with using inches, feet, and miles
as conventional measures of distance
in official maps and documents. Even
though most scientists adopted the met-
ric system long ago, we retain imperial
units here to recognize the persistence
of legacy units in our maps.

the map that is x inch long, the distance we would cover walking
along that path in the real world is x × 31680 inches. That’s not a
very easy distance to envision because there aren’t any very familiar
benchmarks near that quantity of inches, but we could convert the

Recall that benchmarking is a process
of conceptualizing the size of a quantity
by comparing it with a known reference
quantity.

latter to feet or miles to make it simpler, and then we can re-express
the scale in as a dimensional ratio: 31680 in.× 1 ft./12 in. = 2640 ft..
We can go one step further still: 2640 ft.× 1 mi./5280 ft. = 0.5 mi..

1 mile = 5280 feet

That works out pretty nicely, and it often does so by design! So we
can restate the map scale as 1 inch = 0.5 miles, or equivalently 2
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inches per mile. This means the same thing as the scale ratio 1:31,680

but is more specific because we have already chosen the units that we
wish to measure with. Note that we cannot say that the map scale is
2:1 or 1:0.5 because in converting the second number from inches to
miles we’ve made the scale statement unit-specific.

Maps aren’t the only thing that we encounter that are scaled repre-
sentations of reality. When we are learning about microscopic prop-
erties of molecules or cells, we often look at diagrams or physical
models of things that are too small to see. When looking through
a microscope, we perceive a much enlarged version of the object of
study. In each case, we are seeing representations of reality scaled
to size that is easier for us to grasp. Importantly, we are also (usu-
ally) seeing things scaled isometrically, meaning that all dimensions
are enlarged or shrunk by the same constant factor. We’ll see in later
chapters some interesting problems associated with scaling that is not
isometric.

8.1.3 Example: the area of roads in a county (Problem 3.3)

One reasonable sub-problem to address in the issue of deer-car col-
lisions is how widespread are roads in the area of interest? As with
several of the other teaser problems in this book, no specific county
is cited, so as a first approximation I’ll just estimate numbers for my
own home county: Story County, Iowa. According to Wikipedia,
Story County has an area of 574 mi2. The extent of roads in Story
County or elsewhere in the US is something that could be readily
assessed with a GIS system, and that would certainly be among the
most accurate and efficient ways to obtain this value for specific
counties. However, for the sake of a first approximation let’s try
something easier. Literature about road systems in the US suggests
that there is about 1.2 miles of road per square mile of land, on av-
erage7. Clearly this is an underestimate in urban areas, and perhaps

7 This number comes from: Trans-
portation Research Board and Na-
tional Research Council, 2005. As-
sessing and Managing the Ecological
Impacts of Paved Roads. Washington,
DC: The National Academies Press.
https://doi.org/10.17226/11535.

an overestimate in remote, rural areas. In the not-so-remote grid-
ded farmscape of central Iowa (Figure 8.3), a road density closer to
2 mi./mi.2 is perhaps more appropriate. By this estimate, my county
would have approximately 2× 574 = 1148 miles of roads.

Figure 8.3: In rural farm country, roads
are often arranged in an almost-regular
grid with spacing of 1 mile. In these
settings, we can estimate the “road
density” by imagining a square-mile
box centered on a road intersection.
Within the box shown above, there
are 2 miles of road, suggesting a road
density of 2 miles per square mile.

Road density is informative, but it only gets us partway to the
notion of area. What we need to know now, given that we have road
length, is the average width of a road. Let’s assume this is 20 feet.
To be a meaningful area, we either need to decide to convert length
to feet or width to miles8. Since the county area was estimated in8 This is a seemingly-trivial but still

significant decision. In Schoenfeld’s
framework for problem-solving, making
this kind of decision deliberately with
the broader goals and practical issues in
mind is an example of control.

miles, it would be wise for comparison purposes to convert road
width into miles as well. Thus, the average road is about 20/5280 =

0.003788 miles wide. Multiplying that road width (in miles) by the
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total road length (in miles) yields about 4.35 square miles. That’s
about 4.35/574× 100% = 0.76% of the county area!

8.2 Geometric Idealization or Approximation

Some problems require spatial measurements or computations that
are complex, time-consuming, or difficult to visualize. In some of
these cases, a rough estimate may be adequate for the type of solu-
tions we seek; in other cases, we may wish to establish quick ballpark
estimates before we dig too deeply into the complex computations,
much like we just finished doing in the previous section. For these
spatial problems, it can be helpful to idealize the spatial information
we have in terms of simple geometric figures that we know some-
thing about. For example, suppose we wish to estimate roughly how
much an 40cm-long snake might weigh, and we have no prior infor-
mation or experience upon which to base this estimate. If we are able
to estimate its diameter, we may make some progress by idealizing
the snake as a long cylinder. Consulting the table below, we find that
a cylinder’s volume is expressed as:

V = πr2h (8.2)

where r is half of the diameter and h is the length of the snake. If
the largest r is around 1cm and h is 40cm, a first guess for the to-
tal volume is about 126 cm3. Now if this radius corresponds to the
largest part of the snake, this volume might be an upper bound.
Since the snake’s body tapers a bit, perhaps a mean radius is better –
say 0.7cm. Now the volume is 61.6 cm3.

Next, given that many non-avian animals have densities close to
that of water9, we can estimate the mass of the snake using density 9 in so-called cgs units, the density of

water is 1.0 g/cm3.and volume. To see how we should do that, we might use a strategy
described in an earlier chapter: write out the problem with just di-
mensions. We’re looking for how much it weighs, but really what we
want is a mass. If we list the dimensions of the variables we have and
want, they look like this:

mass:[M] volume:[L3] density:[M L−3] (8.3)

we see that the mass we are looking to solve for appears in the den-
sity term. The volume term appears as a negative 3rd power in the
density term and a positive 3rd power in the volume itself, so when
multiplied together, volume (V) and density (ρ) should yield dimen-
sions of mass: m = ρV. If we remind ourselves that the definition
of density is indeed ρ = m/V, this makes sense as a simple alge-
braic modification of that definition. Thus, our estimated mass for the
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snake would be:

61.6cm3 × 1.0g/cm3 = 61.6g. (8.4)

Is this close enough? Perhaps, but that depends on the nature of the
problem: why do we wish to know how much the snake weighs, and
what will we do with that information?

8.2.1 Example: herbicide purchase (Problem 3.2)

We can use a similar approach to get a start with the herbicide vol-
ume needed to eliminate woody shrubs from our city greenspace. A
reasonable assumption is that, when cut with a saw or lopper, the ex-
posed stem cross-section of a woody plant is approximately circular.
If the goal is to cover the stumps completely with a coating of herbi-
cide, each stump will have a volume (from Equation 8.2) equal to its
cross-sectional area πr2 times the thickness h of the herbicide coating
applied to the stump.

8.3 Measuring polygon area

Not all spatial bodies of interest to us are easily measured using the
simple idealized shapes reviewed above. Alternatively, geometric
idealizations introduce too much error for certain applications. Non-
ideal shapes can, however, be approximated by irregular polygons in
some settings. Here, we describe a method for computing the area
of an arbitray two-dimensional polygon using a clever trick that is
frequently built into CAD, GIS, and other geospatial software pack-
ages. The primary requirement we must meet to use this method is
to have coordinate pairs for each vertex in the polygon in a Cartesian
(i.e., a plane with two orthogonal, linear axes; a.k.a. an x-y plane) co-
ordinate system. This algorithm may be implemented easily enough
by hand, but finding the area of a more complex shape is better left
up to a computer. Let’s have a look at how this algorithm works.
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Table 8.1: Geometric relationships for
common shapes.

Properties of simple geometric forms

shape property

circle
circumference: 2πr

area: πr2 r

rectangle
perimeter: 2b + 2h

area: bh b

h

triangle
perimeter: a + b + c

area: 1
2 ch c

b
a

h

sphere
surface area: 4πr2

volume: 4
3 πr3

r

rectangular prism
surface area: 2bw + 2bh + 2hw

volume: bwh
b

w

h

cylinder
surface area: 2πrh

volume: πr2h

h

r
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Figure 8.4: A trapezoid (in gray) with
dashed line indicating the rectangle
with the same area.

First, recall that a trapezoid is a four-sided shape in which only
two sides are parallel, as in Figure 8.4. At first glance, it might seem
that the area of the trapezoid would be challenging to estimate, but
when we realize that it should be the same as the area of a rectangle
that’s as tall as the average “height” of two vertical sizes of the trape-
zoid, we may see some hope10. We know that the area of a rectangle

10 In Figure 8.4 you can imagine snip-
ping the tope of the trapezoid on the
dashed line, flipping it over and filling
the void in the upper right. Alterna-
tively, we could imagine splitting the
trapezoid into a shorter rectangle and
a full-width triangle and compute the
area as the sum of those two areas.
With a bit of algebra, we find that the
result is the same.

is just its height times its width: Arect = hw. For a trapezoid whose
vertical sides have heights hl and hr for left side height and right side
height, respectively, we can restate the formula for area in terms of
the average of those heights:

Atrap =
1
2
(hl + hr)w (8.5)

Now suppose that instead of defining heights and widths in terms
of h and w, we have the vertices of our trapezoid in Cartesian coor-
dinates11. Each point at a vertex (corner) of the trapezoid therefore

11 Cartesian just means that we are
specifying the location of points in a
two-dimensional coordinate system
where the coordinate directions are
perpendicular to one another. We will
see below that the UTM coordinate
system for maps is Cartesian, whereas
latitude and longitude are not.

has an x, y coordinate, where x refers to the horizontal coordinate
direction and y is vertical. In this system, note that the width of the
trapezoid will be defined by the difference in two x coordinates. So
if we take the upper left corner in Figure 8.4 to have an x coordinate
of x1 and the upper right corner to be at x2, the width of the trape-
zoid is x2 − x1. Similarly, if our trapezoid height extends to zero12

12 in fact we could show that it needn’t
go all the way to zero provided that
all of the y values in the trapezoid
collection are positive all are negative,
but this is left as an exercise.

in the y coordinate direction, the “average” height of our trapezoid
can be re-written by substituting y1 and y2 for hl and hr. If we make
these changes to the area formula above, any given trapezoid in our
coordinate system has an area:

Atrap =
1
2
(y1 + y2)(x2 − x1) (8.6)

Now consider the polygon depicted in Figure 8.5. Each pair of
adjacent vertices can be viewed as the upper corners of a trapezoid. If
we apply the formula above to each pair of adjacent vertices and add
the areas together, what do we get?

A =
1
2
[(x2 − x1)(y2 + y1) + (x3 − x2)(y3 + y2) + ...

... + (x1 − xn)(y1 + yn)] (8.7)

Here, n is the number of vertices and the ellipsis “. . . ” means that
we’ve left out some number of terms in the equation, though in this
case we’ve only got five vertices so we’ve only left out two terms.
Notice that if we systematically label the vertices in our polygon in
a clockwise manner, about half of the trapezoids will have negative
areas and half will have positive areas, though the negative areas will
be somewhat smaller. This is because as we come around the bottom
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of the polygon as we march clockwise from one pair of vertices to
the next pair, our x coordinates are becoming smaller as we go from
right to left. This is good! The result is that the width value (and con-
sequently the area) computes as negative, and as a result this lower
trapezoid is subtracted from the total area of the polygon, which is
exactly what we want! If we order the vertices counterclockwise we’d
get the opposite result, but the resulting (negative) area would still be
correct.
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Figure 8.5: An arbitrary polygon.
Using the trapezoidal algorithm,
areas for individual trapezoids are
computed one-by-one in clockwise
order. In the lower part of the polygon
(where trapezoid fill is darker gray), the
computed areas are negative, trimming
the unwanted trapezoid area from
below the polygon.

As mentioned earlier, this algorithm is readily implemented on a
computer, using either spreadsheet software like Excel, or computa-
tional/statistical software like R. Likewise, this method is built into
other software tools that natural resource students and professionals
use, including most GIS packages.

8.3.1 Example: open-water waterfowl habitat (Problem 3.1)

One important variable that influences waterfowl abundance is the
presence of different types of habitat. Most waterfowl feed exten-
sively in open water, so the area of open wetland is a key habitat
variable. In Section 8.3 we identified the trapezoidal algorithm as a
tool for estimating the area of arbitrary shapes. We also acknowl-
edged that, while it is possible to do the required computations by
hand, automating the algorithm improves computational efficiency
by orders of magnitude. The algorithm can be implemented as a for-
mula in a spreadsheet containing the coordinates of the polygon but,
as we’ve discussed, this operation is common enough that it is incor-
porated in most GIS software. Therefore, comparing watershed areas
between the parcels described in Problem 3.1 is a geospatial prob-
lem. We nevertheless provide an opportunity in the chapter Exercises
below to work with this algorithm directly.
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Exercises

1. What is the longest distance across the wetland in figure 8.1?

2. Estimate the dimensionless map scale ratio from the scalebar in
figure 8.1.

3. Would the map scale be the same or different if you made an
enlarged photocopy of a map?

4. Use geometric approximation to estimate the area of the wetland
in figure 8.1.

5. Use the trapezoidal algorithm to make a more precise estimate of
the wetland area. The data table below contains UTM coordinates
of the wetland perimeter.
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easting, m northing, m
1 477698 4651450

2 477720 4651488

3 477738 4651524

4 477746 4651549

5 477768 4651554

6 477776 4651574

7 477784 4651607

8 477792 4651630

9 477789 4651652

10 477794 4651668

11 477825 4651670

12 477855 4651675

13 477882 4651671

14 477906 4651678

15 477923 4651701

16 477946 4651714

17 477971 4651721

18 477994 4651723

19 478002 4651737

20 478009 4651761

21 478015 4651779

22 478035 4651794

23 478053 4651792

24 478066 4651792

25 478083 4651794

26 478099 4651794

27 478116 4651789

28 478131 4651780

29 478136 4651757

30 478132 4651736

31 478114 4651714

32 478099 4651694

33 478081 4651678

34 478066 4651661

35 478070 4651633

36 478068 4651604

37 478065 4651587

38 478065 4651562

39 478065 4651539

40 478061 4651516

41 478053 4651500

42 478040 4651491

43 478033 4651472

44 478023 4651449

45 478010 4651425

46 477986 4651406

47 477953 4651394

48 477923 4651379

49 477905 4651371

50 477882 4651364

51 477857 4651356

52 477837 4651359

53 477814 4651368

54 477797 4651363

55 477781 4651368

56 477761 4651368

57 477740 4651368

58 477716 4651376

59 477705 4651391

60 477698 4651412

61 477690 4651432

62 477698 4651450




