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Working with Numbers

Among the most fundamental operations we do with quantities is
arithmetic. We can encounter the need for arithmetic in any phase Arithmetic according to Wikipedia: a

branch of mathematics that consists
of the study of numbers, especially
the properties of the traditional opera-
tions on them – addition, subtraction,
multiplication and division.

of problem solving, from making a ballpark estimate in the Under-
stand phase to computing and double-checking a final result in the
Execute and Check phases. Once we have a solid grasp of the op-
erations that are allowable and those that aren’t – for example, is it
OK to add or subtract quantities expressed in different units or on
different scales? – we may get down to business with performing
basic operations.

Most of us probably feel comfortable with most of these opera-
tions, at least when they concern simple numbers. However, it be-
comes easy to make errors or overlook important steps when we’re
dealing with extremely large or small numbers, or when unit con-
versions become necessary. One setting in which we often encounter
such difficulties is in working with proportions, including concentra-
tions, ratios, and percentages. Though quantities like these are often
conceptually simple, working with them and converting among ways
of expressing them can be challenging. This chapter highlights some
concepts and techniques for working with these sorts of unwieldy
numbers so that we can work confidently, avoid simple mistakes, and
even catch more complex ones.

We begin with a method for doing arithmetic that can be used to
simplify computations, or to approximate solutions when a back-of-
the-envelope computation is all you need. The method is particularly
powerful when computations involve very large or very small num-
bers. As such, it can be useful for making ballpark estimates in the
early stages of problem-solving. Our method makes strategic use
of scientific notation, which you’ve probably encountered in sec-
ondary science classes. The philosophical basis of scientific notation
also leads to the notion of order of magnitude, a concept that can
be useful for comparing quantities as well as for judging the the ap-
propriateness of estimates. Along the way, we’ll compare some ways

https://en.wikipedia.org/wiki/Arithmetic
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of expressing normalized quantities like concentrations and propor-
tions, and review the rules for arithmetic with exponents.

5.1 Scientific Notation

In high school chemistry, we learn that there are more than 602 sex-
tillion molecules in a mole of a chemical substance1. But we don’t1

602 sextillion, or 6.022×1023 is Avo-
gadro’s constant, the number of
molecules in one mole of a chemical
substance

normally see Avogadro’s constant written as some number of sextil-
lions, nor do we see it elaborated with all of the 24 digits necessary
to write it in integer form: it is difficult to keep track of all those dig-
its when writing them, and even more difficult to keep track when
you’re reading or comparing different numbers. Instead of writing
the entire number out, we use the shorthand of scientific notation,
where Avogadro’s constant looks more like 6.022×1023. In general,
scientific notation has the form:

a = 10b

where a and b are sometimes called the mantissa and power, respec-
tively. So Avogadro’s constant has a mantissa of about 6.022 and a
power of 23, which is equivalent to saying that the complete quantity
has 23 digits after the mantissa2. Obviously this is a very large num-2 A related issue is that of significant

digits. Scientific notation allows us
to clearly specify how precise we are
claiming to be through the number of
digits included in the mantissa: in this
case, 4.

ber. We can just as easily express very small numbers with scientific
notation. An e. coli bacterium is roughly 2 µm (micrometers) long,
which is 2×10−6m. Here, the power of −6 indicates not that it’s a
negative number (it would be absurd to say something has a negative
length, because length is a ratio scale!), but that it is smaller than 1

and that there should be 6 digits to the right of a decimal point if we
wished to express it as a decimal number. So we could express this
equivalently in a few ways:

2µm = 0.000002m = 2× 10−6m.

Note that these equalities both amount to unit conversions, but the
second equality is specifically a conversion to scientific notation.

Negative exponents indicate numbers smaller than 1, and there
are occasions where it can be helpful at times to can write these as
fractions. When we have a quantity expressed in scientific notation
with a negative exponent 10−b, that is equivalent to the same quan-
tity divided by 10b. Therefore, another way to express the length of e.
coli is:

2× 10−6m = 2× 1
106 m.

So dividing by 106 is the same as multiplying by 10−6. Notice here
that the order of operations is important. By convention, exponentsIn the standard order of operations,

parentheses take precedence, then
exponents, then multiplication or
division, and finally addition and
subtraction.

http://en.wikipedia.org/wiki/Avogadro_constant
http://en.wikipedia.org/wiki/Avogadro_constant
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take precedence over multiplication, division, addition and subtrac-
tion. So we don’t divide by the mantissa (2) when we express this
quantity in fractional terms because the only thing that is raised to
the exponent is the base, in this case 10. We could, however, move
the mantissa to the denominator with its 106 by taking its reciprocal,
right? That’s another way of invoking the old grade-school rule: di-
viding by a number is the same as multiplying by it’s reciprocal. In
this case, we’d end up with an equivalent value for the length of e.
coli that looks like

2× 10−6m =
1

0.5× 106 m =
1

5.0× 105 m.

Notice that in the last step we’ve borrowed a “ten” from the power
to make the mantissa greater than 1: this is by convention3. A gen- 3 Quantities expressed in scientific

notation should have one nonzero digit
to the left of the decimal point.

eral rule for expressing a quantity in scientific notation is to have
one nonzero digit before the decimal point in the mantissa, and as
many significant figures as appropriate for the problem to the right
of the decimal. So we could express the e. coli length as 0.2×10−5 m
or 200×10−8 m, but in most cases that is bad form. We shall see be-
low, however, there are times when doing arithmetic by hand can be
simplified by temporarily expressing quantities in such an unconven-
tional way.

A useful concept in working with really large or really small num-
bers is the order of magnitude of a quantity. In obtaining a ballpark The order of magnitude of a quantity

is essentially the value of the exponent
when expressed in scientific notation.

estimate of a quantity or in computing something using only very
rough approximations for the input values, it may be unnecessary
or inappropriate to worry about being off by a factor of 2 or so. We
might be satisfied knowing that the result is “a few thousand” or “a
coupe hundredths”. If we’re using scientific notation, this is equiva-
lent to ignoring the mantissa and just citing the base and power. So
instead of saying that an e. coli is 2×10−6m, we can say it is on the
order of 10−6 m long. This kind of reasoning is particularly useful in
comparing multiple quantities. A grain of coarse sand, for example,
is on the order of 10−3m in diameter, so it is three orders of mag-
nitude larger (−3 is three more than −6) than an e. coli bacterium.
Once we wrap our minds around what that means (three orders of
magnitude is a factor of 103, or a thousand!), comparisons can be
enlightening in assigning quantitative “importance” to different vari-
ables in an equation.

The fact is, in normal communication about the length of
e. coli, we’d probably stick with 2 µm as a clear way to express it in
written text. Most of the alternative ways above are more clumsy
in writing, and certainly the last few equivalent expressions above
are not intuitive (we only went there to demonstrate the technique!).
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However, in comparisons with other qantities or when performing
computations with other quantities that are expressed in different
units, it is usually smart to convert all quantities to a uniform system
of units, like the systeme internationale, or SI.

5.2 Normalized quantities

In the sciences, normalization of quantities often refers to the process
of dividing some scaled quantity by a standard, total, or reference
value of the same quantity. Consider some schemes form normal-
ization that you are already very familiar with. A percentage is a
normalized quantity, determined by dividing some number that
represents a subset of a larger collection by the total number in the
collection and then multiplying by 100%. For example, suppose we
have tested 360 white-tail deer carcasses (from road-kill and hunter
harvest) for chronic wasting disease (CWD) and find that 83 are posi-
tive. Given this data, we can all agree that the percent of the sampled
population infected with CWD is:

83
360
× 100% = 23.0556% (5.1)

En route to computing this, we created the ratio 83 to 360, which is
around 0.23 if you simplify it with your calculator. As with many
such ratios, we can choose from a variety of different but equivalent
ways of expressing this quantity. We could just express it as the ratio
of two whole numbers like 83:360

4, or as the fraction:4 this is the way we usually express a
map scale, like 1:24,000. See Part III of
this book for more on that issue. 83

360
. (5.2)

Or as we’ve already seen, it is simple to write it as a decimal number
(0.230556). But since we encounter percentages frequently, we may
more readily appreciate it expressed as a percentage. For the present
purposes, we could describe a percentage as “parts per hundred”,
since it is just the same ratio scaled to an arbitrary reference value of
100. In other words, for every hundred deer in the sample, about 23

have CWD. Expressing a quantity in “per mil” is closely analogous,
except instead of multiplying by the factor 100% we’d multiply by
1000h(that’s the per mil symbol)5. In this case, we’d end up saying5 Although not common in many

disciplines, isotope concentrations
are often expressed in h, where the
reference value is the isotopic ratio of a
standard substance.

that about 83/360 ×1000h= 231h(or 231 per thousand deer) are in-
fected. To make this even more absurd, we could express the same
information just as easily as parts per million (ppm) or parts per bil-
lion (ppb) following a similar tactic. Each of these ways of expressing
a normalized quantity is arithmetically equivalent, but implies a dif-
ferent realm of precision about the quantity of interest and the scope
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of its possible values. We’d likely never talk about deer in parts per
million, but we might talk about lead concentrations that way!

Other types of normalized quantities in science include frequen-
cies, concentrations, and probabilities, to name a few. The quantities
may be expressed somewhat differently, but in most cases there is
a comparison being made between values of the same dimensions
(and often the same units!). Indeed this is sometimes a simplifying
strategy: when you normalize a quantity to a standard of the same
units, details about the specific units by which the quantities were
measured can be discarded. Often this is a good thing. For exam-
ple, when we use a map that is scaled at, for example, 1:24,000, we
are not told what units that ratio was constructed with, because it
doesn’t matter! If you use a ruler to find that the map distance be-
tween two features on the map is 2 inches, that distance in the real
world is equal to 2× 24, 000 = 48, 000 in. It doesn’t matter whether
your ruler is ruled in inches, centimeters, furlongs or rods, the quan-
tity you measure on the map only needs to be multiplied by the scale
factor (24,000) to find the true distance! As we’ve seen, however, ne-
glecting the specific units used to derive a normalized quantity can
also be the cause of some confusion (is the concentration of one sub-
stance mixed with another computed on the basis of their masses,
volumes, or something else?). It becomes a good thing if the proce-
dural statement for the quantity is either made clear or is known by
convention.

How do we use a normalized quantity to our advantage? Suppose
I extrapolate from our sample of CWD in deer carcasses to predict
that 23% of the deer in the entire county are infected with CWD. If
we take for granted that my science is good, all we need to know to
find out the number of CWD-infected deer in the county is the total
number of deer in the county, Ndeer. Once we recognize that the ratio
of infected deer to total deer is 0.23 (23% of the total population of
100%), we need only perform a simple multiplication:

NCWD
Ndeer

=
23%

100%
= 0.23 (5.3)

NCWD = 0.23Ndeer (5.4)

Thus, the benefit of expressing the number of infected deer as a nor-
malized quantity (assuming our 23% assertion is accurate) is its gen-
erality. We can write a simple relationship like Equation 5.4 and, as
long as the relationship remains valid, apply it on any relevant scale6. 6 Recognizing how far one can safely

scale up from a representative sample is
a rich, but complex issue.

The process of re-scaling a ratio (or other normalized quantity)
is sometimes called proportional reasoning, and is one of the key
strategic processes in probability, and as we’ll see in the next chapter,
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it is the foundation of much of trigonometry. The construction of
abstract triangles in the service of problem-solving is usually a means
of comparing the ratios of two lengths or distances.

There are some oddball normalized quantities in science that are
frequently expressed in inhomogeneous units, either as a conse-
quence of their very high or low intrinsic magnitudes or due to the
procedure used to measure them. One example is slope in the con-
text of river channels or footpaths, which are often less than 1%. Be-
cause typical channel slopes are so small, it is common to see slopes
expressed in units of “feet per mile” or “meters per kilometer”. They
are still normalized quantities, but the inhomogeneous units must be
stated explicitly. Similarly, concentrations of solutes or suspensions
are sometimes expressed in units like mg/L (milligrams per liter),
where the dimensions are a weight per volume. This is convenient
because of the relative simplicity of weighing a solid component
added to (or isolated from) a volume of liquid. On the other hand,
concentrations of substances like dilute hydrochloric acid (HCl; often
used in soil chemistry) are are often described as percentages: 5%
HCl usually means a mixture in which 5% of the total volume is pure
HCl and the remaining (100-5)% = 95% is pure water. Again, this
makes sense because when mixed, both components are liquids and
their volumes are simple to measure.

5.2.1 Example: maximized effluent, (Problem 3.6)

Phosphorus (P) is a limiting nutrient in many freshwater ecosys-
tems7. That means that primary productivity is limited by the avail-7 A great review of nutrients in ter-

restrial ecosystems can be found in
Weather, K.C., D.L. Strayer, and G.E.
Likens, 2013. Fundamentals of Ecosystem
Science, Academic Press, Elsevier Inc.

ability of P, and that excessive loads of P from fertilizer runoff or
municipal and industrial wastes can promote excessive productivity
and eutrophication. Thus, we are often seeking ways to reduce the
inputs of P into surface waters.

P concentrations in water are often expressed in mg/l, so they are
among those normalized quantities that are not dimensionless. A
given concentration in mg/l can be visualized as the mass of solute
that could be hypothetically extracted from a volume of water, if we
somehow had a perfect P-filter. No such filter exists, so not only do
we need a different way of measuring P8, we need more clever ways8 In practice, measuring dissolved

P is most efficiently done using a
“colorimetric” method wherein a
reagent is introduced to a dilute P
solution, resulting in the development
of a blue color in proportion to the P
concentration.

to extract P from water if it does get in there.
The TMDL selected for P in surface water bodies depends on the

designated uses (drinking water? swimming?) of the water bodies in
question, but are often on the order of 0.1 mg/l. It’s worth remem-
bering that this means that for every one liter of water, we should have
no more than 0.1 mg of P. So if we happen to take a two-liter sam-
ple of water in a water body under this TMDL, we should find no
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more than 0.2 mg P in that sample, as that (0.2 mg divided by 2l)
corresponds to a concentration of 0.1 mg/l.

5.3 Tricks with scientific notation

As we’ve already discussed, simple order-of-magnitude computations
can be very informative, particularly in the early phases of problem-
solving. This is an occasion when scientific notation can really be
useful! To deftly manipulate expressions with scientific notation, it is Heuristic

Get a ballpark or order-of-magnitude
estimate by hand using scientific
notation

helpful to remember some key rules for working with exponents.

Rules for Manipulating Exponents

x0 = 1 x1 = x x−1 =
1
x

xa × x = x(a+1) xa

x
= x(a−1)

xaxb = x(a+b) xa

xb = x(a−b)

x−a =
1
xa xa =

1
x−a

(xa)b = x(a×b)

When confronted with problems where multiplication or division
of very large or very small numbers might be involved, we can set
the problem up in scientific notation to make things simpler. Con-
sider the simple example of determining how many milliliters (ml)
are in a cubic meter of water. One thing that is useful to know is that
a ml is the equivalent of a cubic centimeter (cm3). And we also know Numerical Benchmarks: Volume

1 ml = 1 cm3

1 m3 = 1000 l
that there are 100 (= 102) cm in a linear meter (m). So how do we de-
termine the number of cm3 in a m3? Recall from earlier that if we are
converting between, for example, one set of squared units to another
set of squared units, we need to square the conversion factor for the
linear units too! So for this problem, since there are 102 cm in every
m:

1 m3 = (102)3 cm3 (5.5)

Using one of the above rules for exponents to modify the right-hand
side of this relationship, we can find that:

1 m3 = 10(2×3) cm3 (5.6)

1 m3 = 106 cm3 (5.7)
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and we have our result. There are 106 cm3, and therefore 106 ml
in a cubic meter! It would be just as easy to look up the conver-
sion online, but the same basic approach can be readily applied to
more complex problems with murkier solutions. In the next section
we’ll consider a more challenging and engaging example that can be
worked out with a similar strategy.

5.3.1 Example: Mercury in fish

The RAFT program9 (Regional Ambient Fish Tissue) is an EPA effort9 Find more information about the EPA
RAFT program by searching EPA raft
on the web.

to monitor concentrations of several harmful toxic substances in fish
in the state of Iowa. This problem concerns the (slightly idealized
and modified) values of mercury (chemical symbol Hg) detected in
smallmounth bass sampled from two locations in Iowa. Samples of
fish tissue were obtained as "plugs", taken from live fish in a manner
similar to a biopsy. Typical plug samples weigh 50 mg. The criteria
for issuing fish consumption advisories are shown in the table below.

Hg concentration advisory
< 0.3 ppm no restrictions
> 0.3 to < 1.0 ppm 1 meal/week
≥ 1.0 ppm do not eat Plugs from smallmouth bass in Lake Wapello, IA contained on aver-

age 0.06 µg of Hg, while plugs from smallies in the Maquoketa River
contained 0.01 µg Hg. Should there be consumption advisories for
either waterbody?

A simple solution method

A useful first step is to identify the desired result. We’d like to find
a Hg concentration in each fish in the same units that the advisory
guidelines use: parts per million or ppm. This is a normalized and
dimensionless, derived quantity. A second helpful step is therefore
to express the key data in uniform units so that we can normalize
them in dimensionless form. Our Hg measurements are in µg, whichHeuristic:

Convert to uniform system of units is 10−6 g, while our plug mass is in mg, which is 10−3 g. It doesn’t
really matter whether we convert everything to grams or something
else, but grams is straightforward. So now me construct the ratio
that expresses how much mercury there is, by mass, in our fish tissue
sample (using Lake Wapello values as an example):

0.06× 10−6

50× 10−3
g
g

(5.8)

Simplify this by cancelling units and expressing each quantity in
proper scientific notation:

6.0× 10−8

5.0× 10−2 (5.9)

Using rules for division in exponents with a common base, we can
simplify this:

6.0
5.0
× 10(−8)−(−2) (5.10)

http://www.iowadnr.gov/Environment/WaterQuality/WaterMonitoring/MonitoringPrograms/FishTissueMonitoring.aspx
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The exponent therefore becomes −6, which you recall is the base for
a “parts per million” ratio. We can simplify the fraction 6/5 either
directly on a calculator, in our heads10, or by multiplying both nu- 10 One great benefit of using scientific

notation is that computations can be
approximated easily by hand!

merator and denominator by two (= 12/10) and dividing by 10 to
get 1.2:

6/5× 10−6 = 1.2 ppm (5.11)

So the result for Wapello is 1.2 ppm, which exceeds safe limits for
consumption. For the Maquoketa River, the Hg concentraion is only
0.2, so it is safe to eat and no advisory need be issued.

5.3.2 Example: forest fire losses (Problem 3.5)

Let’s use some of the above techniques and strategies to make some
ballpark estimates about the value of timber that could potentially be
lost in a forest fire, following the teaser problem in Section 3.5. This
could give us at least a starting point for imagining where the curve
NVC starts from on the left-hand side of Figure 3.2. Since no specific
information is given about the size of the property, we need to make
and explicitly state an assumption. Let’s suppose for now that the Heuristic: Not enough information

given? Make and state explicitly a
reasonable and potentially-scalable
assumption. If appropriate, choose
values that can easily be scaled, like 1

or 10.

property has an area of 1000 hectares, since that number is both
reasonable for a single-ownership land parcel (this would be a bit less
than 4 square miles) and is easily scaled. Let’s also assume that this
forest in the absence of any fuel reduction effort is overstocked, with
perhaps 30 m2 ha−1 of basal area11. Using timber cruising charts, this 11 basal area, usually given in ft2 ac−1

(square feet per acre) or m2 ha−1

(square meters per hectare), provides
a quick glimpse of the amount of
standing timber on an area of land.

basal area would yield about 30,000 board feet per hectare12.

12 One board-foot is equal to about
0.00236 m3 of wood.

To get a ballpark estimate of the value of this timber then, we need
to find the going price per board-foot of our timber and then scale
this up with the timber volume and property area. A reasonable
guess for the price for softwood saw-logs would be 0.20 US dollars
(USD) per board foot13. So our computation becomes 13 A web search for “sawlog prices” can

give you some idea of how this varies
by place and time.NVC(0) = 1000 ha× 30000 BF/ha× 0.20 USD/BF.

We can do this computation relatively quickly in a calculator, but
there is a risk of typing in the wrong number of zeros and making an
important error. However, if we convert these quantities to scientific
notation and rewrite the equation we can do the math in our heads.
The parcel area is 1× 103 hectares, the wood volume is 3× 104 board
feet per hectare, and the value is 2× 10−1 USD per board foot. So we
may re-write the computation as

NVC(0) = 1× 103 ha× 3× 104 BF/ha× 2× 10−1 USD/BF.

Since all these quantities are multiplied together, we can rearrange
(by the commutative principle for multiplication) and group the man-
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tissas together, put the powers together, and put the units together.

NVC(0) = 1× 3× 2× 103 × 104 × 10−1 ha BF/ha USD/BF.

Multiplying the mantissas through we get 6, and using the rules for
manipulating exponents (see the next section!) the exponents are
added together (3 + 4 +−1) = 6. Canceling units, we see that USD is
the only remaining unit. So our ballpark solution is that the value of
the standing timber in this 1000 ha parcel is 6× 106 USD, or about $6

million.

Exercises

1. The Hg concentrations measured in the RAFT program problem
were taken from “keeper” size smallmouth bass, roughly 35 cm
long. A few scattered measurements from larger and smaller bass
indicated that there was some systematic relationship between Hg
concentrations and fish size at each site, but not across sites. What
systematic relationships would you predict to be present in fish of
different sizes? What quantities might be relevant to this problem?
Formulate a testable hypothesis for expected systematic variation
in smallmouth bass tissue Hg concentration as a function of fish
size.

2. 14 Leucism is partial albinism, manifested in penguins as a lack14 Based on the article ”Prevalence of
leucism in Pygocelid penguins of the
Antarctic Peninsula” by Forrest and
Naveen, Waterbirds 23(2): 283-285, 2000.

of (or substantial reduction in) pigment in plumage. A study of
three species of penguin (Adélie, Gentoo and Chinstrap) in the
Antarcic peninsula sought to identify the prevalence of leucism
in these different species. The paper cited in the margin provides
the following information derived from detailed counts of penguin
breeding colonies made during the years 1994-1997:

species prevalence count
Adélie 1:114,000 1,144,000

Chinstrap 1:146,000 293,800

Gentoo 1:20,000 41,550 Perform the following manipulations of the prevalence data for
each species:

(a) Express the prevalence as a fraction (a ratio of whole num-
bers).

(b) Convert the prevalence to a decimal number.

(c) Convert the decimal number to scientific notation.

(d) Express the prevalence as a percentage of the population.

(e) Express the prevalence in parts per million (ppm).

(f) Determine the number of leucistic penguins in each count.



quantitative problem solving in natural resources 57

3. From our discussion of standing timber values (Section 5.3.2), how
would the result be different if we learned that the land parcel was
385 hectares instead of 1000?




