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Simultaneous Equation Techniques 1 

The preceding chapter dealt with multiple correlation analysis. 
The results of this kind of analysis can be expressed in graphic form 
in a series of charts, one for each independent variable, showing the 
net influence of each variable on the dependent variable. Or they 
can be shown in the form of a mathematical equation, with the de
pendent variable represented by a term on the left side of the equal
ity sign, and a constant on the right hand side, followed by a series 
of terms, one for each independent variable, showing the net influ
ence of each variable on the dependent variable in numerical form. 

As we have seen, agricultural price patterns evolve through 
mutual adjustment among a profusion of conditions and economic 
impulses. Any single relationship or equation is just one strand 
drawn from the whole tissue of economic interaction. When other 
closely related processes are assumed to be fixed and frozen, the one 
hypothetical relation under study may seriously misrepresent the 
joint processes of which it is only one part. This is, unfortunately, 
true even if the relationship taken by itself is sensible and verifiable, 
and even though the single equation contains many variables. 
Furthermore, if there occurs some basic "structural" change in these 
closely related processes, the estimates based on past observations 
may be grossly in error when applied to the new, changed situation.2 

1 This chapter owes a great deal to K. A. Fox, Econometric Analysis and 
Public Policy, Iowa State Univ. Press, 1958, especially Chaps. 1, 2, 3, and 7; 
and to M. Ezekiel and K. A. Fox, Methods of Correlation and Regression Anal
ysis, Wiley, 1959, Chap. 24, which gives a useful summary. 

• The classic statement of this last point is in J. Marschak, "Economic Mea
surement for Policy and Prediction," Chap. 1, pp. 1-26 in Studies in Econo
metric Method, W. C. Hood and T. C. Koopmans, editors, Wiley, 1953. 
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That is to say, the methods worked out in the previous chapters 
make it possible to estimate relationships between one dependent 
variable and one or more independent variables. If, however, there 
are two or more jointly dependent variables to be explained by other 
independent variables, this "jointness" or simultaneity in the world 
may need to be expressed by several simultaneous equations, each 
of which expresses one of the interrelated processes. 

This single equation method is appropriate where the line of 
causation is clear, and one variable (the dependent variable) is uni
laterally determined by the others (the independent variables). 
This condition is met in many agricultural price analyses-for ex
ample, in the simple analysis of the effects of corn production and 
disposable income on the price of corn from December to May. It is 
clear here that the price of corn is determined by the size of the 
corn crop harvested in the preceding November, not vice versa; and 
it is also clear that the price of corn is determined by disposable in
come, not vice versa. It is obvious which of the variables is depen
dent and which ones are independent. The single equation approach 
is appropriate here, although the results of the study need interpre
tation if changes in demand and supply are correlated, as shown in 
the preceding chapter. 

WHY SIMULTANEOUS EQUATIONS MAY BE NEEDED 

In many cases, the line of causation is not unilateral; it does not 
go only one way. For example, the price considered may be the 
price of eggs during the production season. In that case, the price 
may affect the production, as well as the production affect the price. 
If the production is affected by the price, but not vice versa, a 
scatter diagram would yield a supply curve. If the price is affected 
by the production, but not vice versa, this would yield a demand 
curve. But if the two variables are jointly determined - if the pro
duction is affected by the price, and the price is also affected by the 
production - a scatter diagram yields neither a supply curve nor a 
demand curve, but a mixture of both. 

It is, in fact, impossible to get a demand curve and a supply 
curve out of a single equation. When two or more variables are 
jointly determined, it is impossible to get even one curve-supply 
curve or demand curve - out of a single equation. It is possible, 
however, to get both curves out of two equations solved simultan
eously. 

We can see what is involved here if we begin with elementary 



SIMULTANEOUS EQUATION TECHNIQUES 161 

SECTION A 
p 

• • 
• • • 

• • • • • • • 

Q 

SECTION B 

p 

Q 

Fig. 10.1 - Hypothetical price and production data plotted in scatter dia
grams. Demand and supply both unstable. 

concepts and proceed to show when and why simultaneous equation 
techniques are needed.3 

Figures 10.1, 10.2, and 10.3 bring together in summary form the 
elementary concepts developed in the preceding chapter. The raw 
price and production data for a typical farm product, plotted in a 
scatter diagram, may look something like Section A of Figure 10.1. 

3 The rest of this section draws on parts of a paper by R. J. Foote, "A Com
parison of Single and Simultaneous Equation Techniques," Journal of Farm 
Economics, Vol. 37, No. 5, Dec., 1955, p. 975. 
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Fig. 10.2 - Hypothetical price and production data plotted in scatter dia
grams. Section C shows unstable demand and stable supply. Section D shows 
stable demand and unstable supply. Section E shows unstable demand and 
supply, negatively correlated. 
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Each dot may be thought of as the intersection of a demand and a 
supply curve, as in Section B; but the elasticities of the curves 
shown are purely hypothetical, for without further information, 
neither curve can be determined from the data. 

The demand may be unstable, so that the demand curve shifts 
back and forth over a wide range, while the supply curve remains 
relatively stable. This is shown in Section C of Figure 10.2. In that 
case, if the movements of the supply and demand curves are un
correlated, the dots trace out a supply curve. Conversely, if the 
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Fig. l 0.3 - Hypothetical price and production data plotted in scatter dia
grams. Section F shows demand and supply both unstable, but demand ad
justed to remove instability, and supply completely inelastic. Section G shows 
an intersection point of a demand curve and a supply curve when their elas
ticities are both unknown. 
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supply curve is unstable but the demand curve is relatively stable, 
as in Section D of Figure 10.2, the dots trace out a demand curve. 

If the movements of the supply and demand curves are corre
lated, as in Section E, Figure 10.2, the dots trace out what may look 
like a demand or supply curve, but the slope will be too flat or too 
steep. 

In many analyses of the demand for agricultural products, the 
factors that cause the demand curve to shift over time are included 
as separate variables in a multiple regression equation. In effect, 
we are then able to derive from our estimating equation an average 
demand curve. This is indicated in a rough way in Figure 10.3, Sec
tion F. In some analyses, we can assume that the quantity supplied 
1s essentially unaffected by current price; in agriculture, a time lag 
is usually needed before price can affect production. When price is 
plotted on the vertical scale, the supply curve in such cases is a 
vertical line, and year-to-year shifts in the supply curve trace out a 
demand curve, just as they did in Section D of Figure 10.2. Under 
these circumstances, we may be able to obtain valid estimates of 
the elasticity of demand by use of a least squares multiple regression 
analysis for which price is the dependent variable, and supply and 
some demand shifters are used as independent variables. 

For many agricultural products, this set of circumstances per
mits us to estimate elasticities of demand with respect to price by 
use of single equation methods. Two points, however, should be 
kept in mind: (1) price must be used as the dependent variable in 
order to obtain elasticity estimates that are statistically consistent, 
since, to use the least squares technique, the supply curve must be a 
vertical line; and (2) an algebraic transformation must be made 
after the equation has been fitted to derive the appropriate coeffi
cient of elasticity, since the definition of elasticity is in terms of the 
percentage change in quantity associated with a given percentage 
change in price, not the other way around as shown in Section F of 
Figure 10.3. 

What happens if we have a supply curve that is not a vertical 
line? If we consider any single point, as in Figure 10.3, Section G, 
we have no way of knowing on which demand and supply curve of 
a whole family of curves it lies. The basic problem of indeterminate
ness is similar to that in which correlated shifts in the demand and 
supply curves take place. What is needed is some hypothesis, ade
quately tested and proven to be sound, as to the nature of the joint 
relationships between supply and demand. We should then be able 
to untangle the two and to obtain a reliable estimate of the slope of 
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each curve. This is essentially what is done by the simultaneous 
equations approach. 

''Simultaneous" refers to the method of algebraically solving or 
transforming the equations into other equations which can be 
fitted to the data. It does not mean that each equation need not re
flect a definite causal relationship; on the contrary, each equation 
must be "identified," and this usually requires that causal relations 
be more explicitly and boldly stated in simultaneous equations than 
in multiple regression equations. 

Suppose, for example, that X's are dependent variables and Y's 
are independent variables. The former (single equation) situation 
may be shown by: 

X1 = f (Y1, Y2, ... Yn (1) 

and the resulting regression equation might be: 

X1 =a+ bY1 + cY2 + zYn + u .... (2) 

The latter (simultaneous) situation is shown by: 

(X1, X2 ..... Xm) = f (Yi, Y2, ..... Yn). (3) 

The resulting simultaneous regression equations might then appear 
as: 

X1 =a+ bX2 + cY1 + u 
X2 = a' + b' Y 1 + c' Y 2 + u' 
Xm =a+ ~Yn + u2 • 

(4) 

The most familiar case of this involves price and quantity as the 
joint outcome of a supply and demand equilibrium. A separate equa
tion stands for each curve, and in equilibrium the P and X values 
are identical for both equations; this corresponds to solving the 
equations simultaneously for the values of P and X. 

In some respects this method can best be seen as an extension 
of the methods of the previous chapter, although it does involve 
some additional algebraic skills and some new terms. More basically, 
it stresses the need to set forth clear, logical, and theoretically sound 
relationships to be tested. This is in contrast to the ever-present 
temptation with multiple correlation to shop around for variables 
to explain the dependent one, no matter what the result may mean 
in theoretical terms. Certain disadvantages may accompany this 
technique, both in computing effort and in possible error, and its 
usefulness will depend on the nature of the particular case. 

There is no distinct consensus yet on (1) exactly which problems 
need to be formulated in terms of simultaneous equations, or (2) 
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which of several methods of fitting the equations, once they are 
formulated, should be used. Since each research project has its own 
aims and requirements, no general verdict would be sensible. In
stead the best choice or combination of techniques needs to be 
worked out for each case. Before summarizing current discussions 
on these questions, the general method with a simple supply and 
demand example will be illustrated. 

An Illustration 

Suppose that we wish to estimate both a supply and a demand 
curve for a particular commodity using data on its past prices and 
quantities. These data look like Figure 10.1 when made into a scat
ter diagram. 

Apparently each point shows the equilibrium of supply and de
mand for one period, and both curves have been shifting randomly, 
in response to other influences, in about the same degree. If only 
one curve had been shifting, the other could easily be estimated, 
but this has not happened. Suppose that shifts in each curve have 
been independent of shifts in the other. 

At each of these equilibrium points, price and quantity are 
mutually determined; there is no single direction of cause and effect 
between them which can be logically identified, one way or the 
other. Since P and X are, in fact, jointly dependent variables, which 
can be jointly "explained" by other variables, a model using simul
taneous equations may be best for estimating either the supply or 
the demand curve, or both together. 

A logical form for the supply and demand curves might be: 

Demand curve: X = a1 + b1P + u 

Supply curve: X = a2 + b2P + u 

(5) 

(6) 

That is, the amount demanded depends on the price, in a way des
cribed by a straight line (on numerical or log graph paper) which 
cuts the quantity axis at some level of X = a1 and which has a slope 
of b1 (which may be negative). This line (or curve) shifts in the 
short run about its long-run position in response to numerous 
random ( or "stochastic") disturbances, which are lumped into the 
term u. Whatever factors u reflects, they are not correlated with 
levels or changes of P. 

The supply equation has an exactly similar meaning, though 
its slope (b2) will presumably be positive. These are "structural 
equations," relating price and quantity in ways which are sensible 
and defensible in theory. The coefficients a1 and a2 and b1 and b2 
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are called structural parameters; it is the values of these which we 
wish to estimate. A single equation, multiple regression approach 
does not give us estimates of these structural parameters, but it 
requires less rigid and less hazardous assertions about cause-and
effect than do simultaneous equations. 

Though equations (5) and (6) may be logically correct, one 
can see intuitively that they cannot be fitted to the roundish scatter 
of P : X dots in a scatter diagram to give a good estimate of either 
b1 or b2 separately. We cannot identify whether the supply curve 
alone determines price and quantity, or if the demand curve does 
so. To put it in statistical terms, we cannot fit either equation using 
available data to give unique estimates of the structural parameters 
b1 or b2 •4 But, if two changes are made in the equations, it may be 
possible to estimate both equations together. 

First add to each equation a ''predetermined" variable. These 
correspond to "independent variables" in multiple regression. Such 
a variable may be either truly exogenous to ( or "outside") the 
model; that is, it may represent any physical, social, or economic 
factor which unilaterally influences demand or supply, but is not in 
turn influenced by them -weather, for example, or GNP. Or it 
may be simply the level of one of the already-present variables (in 
this case P or X) at an earlier period; that is, a "lagged endogenous 
variable" such as P t-i, X t-2, etc. A logical choice for the demand 
equation might be consumer income; although for a corn demand 
equation, one might use number of beef cattle. For the supply 
equation some earlier supply measure, such as previous plantings 
or number of hogs six months previously (i.e., lagged by six 
months), might be chosen. If such lagged endogenous variables are 
used, one must be sure that they influence P and X but not the other 
way around. To be precise, they must be recursive. 

In selecting the predetermined variables ( exogenous or lagged 
endogenous), we are drawing, out of the grab-bag random u and 
v terms, the most likely explanatory variables. Just as we add, one 

• If for example price at time one determines quantity at time two, this 
unilateral causation satisfies identification requirements, and 

X,= a+ bP1+ u 
can be uniquely estimated for b. This one-way causal relationship between 
time periods, with no reverse influence from period two on period one, is 
called a recursive relationship. Recursiveness may be required in structural 
equations as well as in single equation methods; for example, factor Zin equa
tion (8) will probably be recursively related to both X and P. On recursive
ness see H. Wold and L. Jureen, Demand Analysis, Wiley, 1953, especially pp. 
48-71, 202-04. On identification, see T. C. Koopmans, "Identification Problems 
in Economic Model Construction," Chap. 2 in Hood and Koopmans, op. cit.; and 
Fox, op. cit., pp. 26-29. 
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by one, only the most reasonable independent variables to multiple 
regression equations, in this instance too we will select only the 
most logical variables. Suppose that an income variable Y is chosen 
for the demand equation and that some factor Z based on weather, 
or previous plantings, or previous prices, is added to the supply 
equation. The result of this first step is the two structural equa
tions: 

Demand equation: X = a1 + b1P + C1 Y + u' (7) 
Supply equation: X = a2 + b2P + c2Z + v' (8) 

Since the stochastic terms u and v no longer include Y and Z, they 
are given as u' and v'. The equations are in fact logical hypotheses 
about demand and supply. 

The second step uses algebra to transform or solve these equa
tions for P and X, taking P and X as dependent upon the prede
termined variables Y and Z and on the shift factors or disturbances 
u' and v'. This gives the following two equations which are called 
reduced-form equations: 5 

P = A1 + B1 Y + C1Z + d1 
X = A2 + B2 Y + C2Z + d2. 

(9) 

(10) 

These equations differ in form from the structural equations, and 
they sometimes have no inherent logical significance of their own 
as they stand. But, like the structural equations, they have para
meters or coefficients (A, B, C) and these reduced-form parameters 
can be transformed back algebraically to derive the structural para
meters. For instance, in this example d1 and d2 include the disturb
ances u' and v' and the structural parameters b1 and b2 • 

And 
b1 = C2/C1; b2 = B2/B1; C1 = B1 [ - (b1 - b2 ] ; 

C2 = C1 (b1 - b2). 

' Note that the system of structural equations is complete, as well as that 
each separate equation is identified. This is because the number of endogenous 
variables equals the number of equations. This allows us to solve to get these 
two reduced-form equations in which each endogenous variable is expressed as 
a function of (i.e., is dependent on) all the predetermined variables in the 
system. If the system were incomplete - with more endogenous variables than 
equations - such reduced-form equations could not be derived for each en
dogenous variable. If, on the other hand, the system of equations included 
more equations than endogenous variables (this is usually called an over
identified system), the system could not be uniquely estimated. More than one 
version of some of the reduced forms would be possible, leading to indeter
minacy of the estimates of both the reduced forms and the structural para
meters. This is the case with equations (5) and (6) above. 

Both completeness of the system and identifiability of each single equation 
are necessary conditions for solving for reduced forms and estimating the 
structural parameters. For more detailed discussion on this point see Fox, op. 
cit., Chap. 1. Solution of simultaneous equations above follows customary alge
braic methods. A step-by-step solution of these two equations can be found 
in Ezekiel and Fox, op. cit., Chap. 24. 
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And so on. If we can estimate statistically the reduced-form param
eters, then we can work out estimates of the structural param
eters, including a1, a2 , b1 and b2• These parameters define the de
mand and supply curves themselves. 

It is possible to fit the reduced-form equations statistically, since 
each has one "dependent" variable, plus "independent" variables, 
in the manner of familiar least-squares regression equations. The 
further statistical requirement that d1 and d2 , the random residuals 
of the regression, be independent of Y and Z is also met. If there is 
any doubt of this, it can be checked after the estimation is done by 
seeing if the residuals seem to have any systematic pattern. Each 
equation may now be fitted by itself, using the methods in the prev
ious chapter; that is, by either graphic or, more usually, least
squares estimation, or possibly using the maximum-likelihood 
methods discussed later in this chapter. Note, however, that a single 
value estimate of each parameter (A, B, and C) is required, so 
straight lines only can be fitted; though, of course, logs could be 
used to provide for some curvilinearity. 

If the resulting correlation for each reduced-form equation is 
satisfactory (in terms of R 2 standard error, and confidence levels; 
or by a visual check of the scatter) then the algebraic transforma
tion of the reduced-form parameters to the structural parameters 
will be worth doing. Since this transformation is mathematically 
precise, it faithfully transmits back into the structural estimates 
both the accuracy and the errors present in the reduced-form esti
mates. Similarly the degree of goodness of fit for the structural para
meters (in terms of standard errors) can be derived, and the resi
duals of the structural equations can be analysed for auto-correla
tion, using ratios of derived values of u 1 and v1. 

Whatever their significance as theoretical propositions, the re
duced-form equations may be extremely useful for making predic
tions or determining policy. This is because they imply a "cause 
and effect" relation and, when properly fitted, enable one to esti
mate the degree of change in the dependent variable associated 
with changes in the independent variables. Since the latter are by 
definition preknown or preset (possibly under direct policy control) 
this knowledge may have great practical use. 

In partial contrast, structural equations often have a more schol
arly role, estimation of their parameters being more generally de
voted to hypothesis testing and measuring. Reduced-form esti
mation might be used in predicting output or prices in the future, 
and in "predicting'' the effects on output or price (in the future or 
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in the past) of given policy changes. To estimate demand or supply 
elasticities, structural equations are necessary. 

This distinction between reduced-form and structural equations 
is blurred because structural parameters are often crucial for policy, 
and are, in any event, implicit in the reduced-form parameters. 
Moreover, the usefulness of the reduced-form parameters for pre
diction purposes depends on the constancy of the structural para
meters which are implied in them. If there are structural changes 
in the relationships involved - in this case if the demand or supply 
curves permanently shift (involving a change in an a or a b, or 
both) - it is clear that the prediction coefficients must be revised. 
So an understanding of the past and likely future behavior of the 
structural parameters should underlie any use of the reduced-form 
equations for prediction. 

CHOOSING EQUATIONS AND METHODS 

After two decades or more, our knowledge about the relative 
merits of multiple correlation and structural equation techniques, 
and of alternative methods of estimating them, is at present still in 
the formative stage. Although certain types of problems have been 
explored, some of them at great length, there is general agreement 
that much more testing is needed, and that no general choice be
tween them is either possible or desirable. 

The initial elegance and mystique of the simultaneous equations 
approach has been somewhat dimmed in the face of evidence on 
several points that it does not solve all problems, nor does it always 
do the best job even on those for which it is best suited. Despite 
this, interest in this approach has encouraged a substantial advance 
in sophistication and care in framing hypotheses and stating ques
tions, and more recently additional practical arguments favoring 
simultaneous systems have been advanced. Nonetheless, the single 
equation multiple regression method has turned out to be difficult 
to defeat, and it may continue to be satisfactory or at least useful 
for many, if not most, research projects in agricultural price 
analyses. 

Single or Simultaneous Equations? 

Karl Fox has concluded on the basis of a number of empirical 
demand studies that many agricultural situations lend themselves 
to single equations least-squares estimations as well as or better 
than to formulation into two or more simultaneous structural equa-
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tions.6 For these situations a "uni-equational complete model" gives 
satisfactory estimates and is economical of computing effort. 

Fox cites the recursiveness of many production and marketing 
processes as one explanation for the fact that in many previous 
studies both methods have given virtually identical estimates of 
structural parameters. In these cases, which have included both 
just-identified and over-identified systems, no departure from the 
simpler single equation least-squares method seems to be called for. 
Fox also concluded that structural changes in demand for agricul
tural products have been more gradual since prewar years than 
some analysts have thought. Therefore, the need to recognize explic
itly the possible changes in these parameters would have been less 
than has been argued by some. 

Fox and others conclude that generally the importance of the 
bias of least-squares methods, which may stem from their neglect 
of simultaneity in real world processes, will be less than has been 
feared. This is partly because simultaneity may not in fact be so 
prevalent; partly because other problems such as auto-correlation 
and limited dependent variables may also deserve care; and partly 
because other feasible methods may not on balance be much super
ior to the single-equation multiple-regression method. 

Methods of Estimation: Least-Squares or What? 

On a more technical level, there has been extended discussion 
and some testing of alternative statistical methods of estimating re
duced-form and structural parameters, once they have been decided 
upon; on this there is "no verdict yet." 7 Several alternatives to 
ordinary least-squares are current, all of them involving simul
taneity; namely, "two-stage least-squares;" "limited-information 
maximum-likelihood;" and "full-information maximum-likelihood" 
methods. These methods, some aspects of which are still being de
veloped, differ in complexity and ease of use, and an explanation of 
them would go well beyond this discussion. 

There are three ways to evaluate which methods are best for 
given situations: mathematical theorems, real world studies, and 
controlled artificial experiments. The first has not been fruitful 
because it can deal only with infinite samples, and it is precisely 
for small samples (from say 20 to 60) that comparisons are needed. 
Real world studies have tended to show similarity among the re-

• See Fox, op. cit., Part I, pp. 1-150. 
1 "A Symposium on Simultaneous Equations Estimation," Econometrica, 

Vol. 28, No. 4, Oct., 1960, pp. 835-71. 
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sults given by different methods, with somewhat better results from 
least-squares than had eariler been expected. 

Controlled experiments (so-called Monte Carlo tests) whereby 
true values are derived for an artificial model programmed in a 
computer, and then several small-sample estimates are made using 
alternative techniques, has tended to strengthen confidence in the 
simultaneous methods, especially for over-identified systems. How
ever, most of the testing models used so far are not of the sort relev
ant to agricultural price analysis. 

Klein has argued recently that even though the alternative statis
tical methods may give nearly identical estimates of structural para
meters, these slight differences may be seriously magnified in the 
transformation to reduced-form parameters.8 For example a .06 
difference in estimating the marginal propensity to consume may 
become a .68 difference in the income multiplier which is related 
to it. So even if least-squares estimates of structural parameters are 
only slightly biased from the true values, an estimation or prediction 
using the reduced-form equations may contain substantial error. 

The degree of this magnification depends wholly on the nature 
of the structural and reduced-form systems; bias may be enhanced, 
left unchanged, or even diminished by the transformation. In agri
cultural price analysis instances of increased error in the reduced
forms parameters may be unlikely. Also, if estimation of structural 
parameters is the main object of the study, then the problem of 
magnified reduced-form error naturally fades. 

The present situation for equations and statistical methods may 
be summed up briefly, in somewhat more rigorous terms. Single 
equation least-squares is, in general, likely to give biased estimates, 
because it ignores possible simultaneity. On the other hand, for 
small sample estimation it is generally most suitable, since the other 
methods are known to be unbiased only asymptotically; that is, for 
very large samples. Simultaneity may also be a mixed blessing, for 
if some structural equations are incorrectly specified, or if their 
variables are correct by displaying great variance, simultaneous 
methods may spread error into estimates for the other equations. 

This suggests first that it may not be possible with structural 
equations simply to set them up on a priori grounds and then run 
the test; some shopping around and exchanging of variables and 
equation forms may be necessary to get "correct" structural equa-

'L. R. Klein, "The Efficiency of Estimation in Econometric Models," Cowles 
Foundation Paper No. 157; also in Essays in Economics and Econometrics, 
Chapel Hill, 1960, pp. 216-32. 
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tions. Second, as for statistical techniques, using least-squares is 
the best safeguard against using an "incorrect" model, but if you 
are sure of the model, then such methods as limited-information 
maximum-likelihood may be be somewhat better. The latter will 
usually have somewhat larger variance; that is, their estimates will 
be more accurate (centered on the "true" value) but less reliable 
(more widely spread). If the predetermined variables are correlated 
among themselves ("multicollinearity") or are auto-correlated (i.e. 
a variable with regular waves may correlate highly and spuriously 
with itself), the least-squares results will be liable to error, but 
less so generally than the other methods. In such situations other 
precautions will be needed in any case. 

For under-identified structural systems, none of the methods 
satisfactorily estimates the structural parameters, although the 
reduced forms may be handled best by least-squares. For just
identified systems the methods will be about equally good, both for 
structural equations and reduced forms, since they are all basically 
equivalent. For over-identified systems, simultaneous methods are 
superior though lengthy for estimating structural parameters; from 
them the reduced forms can be derived without the risk of magnified 
error which Klein warns against. The advantage of working only 
with just-identified systems is evident; in this way one in effect fore
stalls the question of methods. Klein also rightly notes that greater 
access to electronic computers sharply reduces the advantages of 
single equation least-squares in the way of computational ease. 

CRITERIA FOR CHOICE 

The decision to use structural equations and the writing of the 
model, if the decision to use one has been made, depends on an 
intimate understanding of the real-world processes to be estimated 
and the variables which may be used. It is important that the equa
tions adopted reflect reasonable, appropriate, and useful hypotheses 
about the world, as well as that they satisfy certain technical re
quirements of identifiability, consistency, and ease of fitting. 

In addition to these theoretical and statistical standards, the 
analyst will often need to make special allowance for the eventual 
uses of the results, for policy and other purposes. This bears on 
the choice of statistical techniques for fitting simultaneous equations 
as discussed above. In some cases bias in the estimates would be 
especially harmful; in other cases possible bias may matter little 
compared to other possible weaknesses, such as variance. In gen-
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eral, structural equations techniques, like any other approach, may 
need careful adjustment to the needs and dangers of the particular 
case. 

Several steps or rules are customary in posing and estimating a 
structural system, such as a supply-demand estimation: 

1. All the variables which may be relevant are listed. These may 
include such "economic" variables as prices, quantity, incomes, costs, 
acreage and other inputs, imports, and the like; and such others as 
perhaps rainfall and temperature. The scope of the variables may 
vary (i.e. state, regional, national, or by sectors); they may include 
composite index variables or first differences; and lags of various 
durations may be specified. All of the variables must then be class
ified as either (a) endogenous or (b) predetermined (exogeneous or 
lagged endogeneous) . 

2. The structural equations (i.e. a "model") are worked out, each 
one representing as accurately as possible some theoretical or factual 
relationship. Equations may represent (a) hypothesized economic 
behavior (including most theoretical relationships); (b) institu
tional rules; (c) technological laws of transformation (such as pro
duction functions); or ( d) definitions (in the form of identities). 

3. Logical and defensible analysis must govern both the classi
fication of variables and the writing of structural equations. Vari
ables should not be reclassified, or equations rewritten, or extra 
equations added, to make the system identifiable or easier to esti
mate. 

4. One or more equations should contain at least two endo
genous (jointly dependent) variables. This of course reflects the 
assumed simultaneity. 

5. The number of structural equations (of all sorts) will equal 
the number of endogenous variables, to provide completeness of 
the model. Then any equations containing only one endogenous vari
able can be fitted straightaway by least-squares. If a logical and 
identifiable system cannot be written, this may simply reflect actual 
under-identification in the real-world process. In such cases - of 
which price determination under oligopoly and duopoly conditions 
may be an example - any estimation would have to be forced, and 
might yield misleading results. 

6. As in any analysis, Occam's razor should be used to keep the 
model within reasonable bounds, especially if data are unreliable 
and the area of research is a new one. Access to an electronic com
puter will, of course, increase the extent and complexity of systems 
that may be tried. 
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7. Solving the structural equations for the endogenous variables 
provides the reduced-forms, which can then be estimated by least
squares or some other method. In many, if not most cases, least
squares (or even linear graphic analysis) will suffice, but special 
care should be taken if the reduced-forms are to be used for pre
dictive purposes. Extensive treatment of computational problems 
is given in Friedman and Foote's 1955 handbook.9 

The elasticities of demand for various nondurable consumer 
goods, including foods, have been computed in about 200 different 
studies by the use of simple equations and simultaneous equations, 
some over-identified and some just-identified. The results of these 
studies are brought together in one large 13-page table in "Price 
Elasticities of Demand for Nondurable Goods, With Emphasis on 
Food" by Richard J. Foote (USDA, March, 1956). See also G. E. 
Brandow, "Interrelations among Demands for Farm Products and 
Implications for Control of Market Supply," Bui. 680, Aug., 1961, 
Pennsylvania State University, Agr. Exp. Sta., University Park, 
Pennsylvania. 

An excellent discussion and appraisal of simultaneous equations 
is given in M. J. B. Ezekiel and K. A. Fox, Methods of Correlation 
and Regression Analysis, Wiley, 3rd ed., 1959, Chap. 24. See also R. 
J. Foote, ''Analytical Tools for Studying Demand and Price Struc
tures," Agr. Handbook No. 146, USDA, Aug., 1958. 

• J. Friedman and R. Foote, "Computational Procedures for Handling Sys
tems of Simultaneous Equations," USDA, 1955. 

A useful summary of the results of numerous price analyses for the chief 
farm products in the United States is given in a 131-page mimeographed report 
by H. E. Buchholz, G. G. Judge, and V. I. West, "A Summary of Selected Esti
mated Behavior Relationships for Agricultural Products in the United States," 
USDA Res. Rept. AERR-57, Oct., 1962. 
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