@article{mmb 9063, author = {Nikki E. Neethling, Gunnar O. Sigge, Louwrens C. Hoffman, Surendranath P. Suman}, title = {Color Stability of Fallow Deer (Dama dama) Infraspinatus, Longissimus Thoracis et Lumborum, and Biceps Femoris Muscles During Refrigerated Storage}, volume = {2}, year = {2018}, url = {https://www.iastatedigitalpress.com/mmb/article/id/9063/}, issue = {1}, doi = {10.22175/mmb2017.09.0043}, abstract = {Fallow deer (Dama dama) meat comprises a relatively small proportion of the game meat market in South Africa, despite having huge potential. To exploit its market potential, the quality attributes of fresh meat from fallow deer need to be characterized. Limited studies have been undertaken on the color stability of economically important muscles in game species. Therefore, the objective of the present study was to examine the color stability of 3 major muscles, i.e., infraspinatus (IS), longissimus thoracis et lumborum (LTL), and biceps femoris (BF), from fallow deer. The IS, LTL, and BF muscles were removed from both sides of 12 (6 male and 6 female) fallow deer carcasses. The muscles were fabricated into 2.5-cm steaks. The steaks were aerobically over-wrapped and stored at 2°C for 8 d. Meat pH, instrumental color, surface myoglobin redox forms, and metmyoglobin reducing activity were evaluated at specific intervals. Data were analyzed using mixed model repeated measures ANOVA, with gender, muscle, and time as fixed effects. The IS muscle exhibited greater (P < 0.05) pH, surface redness, color stability, oxymyoglobin content, and metmyoglobin reducing activity than the LTL and BF counterparts. In addition, surface metmyoglobin and total iron contents were lower in IS than in LTL and BF. While the IS demonstrated stable redness throughout the storage, the LTL and BF remained color stable only for 1 to 2 d. These findings suggested that fallow deer IS muscle is more color stable than the LTL and BF during refrigerated storage.}, month = {6}, keywords = {fallow deer,myoglobin,color stability,game meat,muscles}, issn = {2575-985X}, publisher={Iowa State University Digital Press}, journal = {Meat and Muscle Biology} }