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Abstract: Consumer demand for high-quality healthy food is increasing; therefore, meat processors require the means to
assess their products rapidly, accurately, and inexpensively. Traditional methods for quality assessments are time-consum-
ing, expensive, and invasive and have potential to negatively impact the environment. Consequently, emphasis has been put
on finding nondestructive, fast, and accurate technologies for product composition and quality evaluation. Research in this
area is advancing rapidly through recent developments in the areas of portability, accuracy, and machine learning.
Therefore, the present review critically evaluates and summarizes developments of popular noninvasive technologies
(i.e., from imaging to spectroscopic sensing technologies) for estimating beef, pork, and lamb composition and quality,
which will hopefully assist in the implementation of these technologies for rapid evaluation/real-time grading of livestock
products in the near future.
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Introduction

Consumer demand is one of the most important fac-
tors influencing livestock carcass value. Meat con-
sumption drivers are complex and are influenced by
interrelated factors. Apart from price, eating satisfac-
tion, sensory characteristics, and nutrient content are
key factors influencing purchase decisions for fresh
meat (Grunert et al., 2004). However, many of these
factors are not taken into consideration using current
carcass grading systems, and consumers from
medium to high incomes are becoming increasingly
more discerning and willing to pay for both credence
and measurable quality differences (Meyerding et al.,
2018; Froehlich et al., 2009). Consequently, opportu-
nities for adding value are not being realized, and

producers are not receiving appropriate feedback to
improve feeding and breeding strategies.

Carcass classification and grading systems are
employed to provide a better understanding of livestock
products and markets trends, as well as to guarantee
product quality and homogeneity, thereby ensuring
competitiveness (Polkinghorne and Thompson, 2010).
However, these procedures are still largely performed
by graders using traditional manual evaluation tech-
niques. Since the implementation of the earliest grading
systems, it has been difficult to devise objective carcass
assessments that accurately and precisely predict meat
yield while maintaining packing plant hygiene and line
speed. Within this environment, there would also be no
option to use conventionalmethods to comprehensively
evaluate meat and fat quality at line speed, because
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these methods are expensive, time-consuming, destruc-
tive, and sometimes hazardous to health or the environ-
ment (Prieto et al., 2009;Yancey et al., 2010). As a result,
in order to address current market scenarios and global
environmental challenges, the implementation of real-
time noninvasive technologies that use sensors to predict
carcass composition and meat and fat quality are quickly
evolving to precisely predict detailed product attributes
and are helping to optimize product evaluations.

Several comprehensive reviews have been published
on the application of sensing technologies for quantita-
tively and qualitatively predicting carcass composition
and meat quality (Aalhus et al., 2014; Prieto et al.,
2017, 2018b; Tao and Ngadi, 2018; Kutsanedzie et al.,
2019; López-Campos et al., 2019). Nevertheless, recent
advances in instrumentation (e.g., portable and handheld
devices) together with increased computing power and
more advanced statistical approaches (e.g., machine
learning algorithms) have expanded the use of sensing
technologies for predicting composition and quality.
The current review will thus critically evaluate and sum-
marize the most relevant and recent studies applying
sensing technologies to predict carcass composition
(computed tomography [CT], dual-energy X-ray absorp-
tiometry [DXA], computer vision systems [CVS], ultra-
sound [US], and bioelectrical impedance analysis [BIA])
and meat and fat quality (near infrared spectroscopy
[NIRS], hyperspectral imaging [HSI], and Raman
spectroscopy).

Technologies for Carcass
Composition Evaluation

Computed tomography

X-ray–based technologies for assessing carcass
composition are based on differences in signal attenua-
tion when X-rays pass through different tissues.
Basically, body components with strong absorbance,
such as bones, appear bright and light, and elements that
do not absorb the X-rays appear dark (Narsaiah et al.,
2019). Traditional X-ray radiography is in 2 dimensions
(2D), and 3D scanning was made possible through CT,
wherein either samples rotate on a translation stage or
the equipment rotates around the sample (spiral CT).

The application of CT for measuring lean, fat, and
bone has been largely described and reviewed (Olsen
et al., 2017; López-Campos et al., 2019). Recently, a
number of studies have reported the application of
CT in live animals for the estimation of body tissue
composition. In this context, Pan et al. (2021) used

automated CT segmentation in live pigs together with
deep neural network statistical analysis and reported
accurate predictions for body fat, lean, and bone
weights (coefficients of determination: R2= 0.94,
0.86, and 0.91, respectively). In turn, Geraldo et al.
(2021) found high predictability for body tissue
composition of the Santa Inés breed of sheep (R2 of
prediction: R2

p= 0.90, 0.81, and 0.81 for fat, lean
and bone weights, respectively), using CT scans
together with the Cavalieri method (Gundersen et al.,
1988) of multiple linear regression (MLR) analysis.

Apart from traditional studies on estimation of car-
cass tissue composition, Font-i-Furnols et al. (2021)
used CT technology in both live dairy calves and car-
casses to estimate carcass fat, moisture, and protein
content. These authors found that prediction for carcass
fat content was moderate when scanning live calves
and high when scanning carcasses (R2

p= 0.69 and
0.88, respectively), whereas predictability for moisture
(R2

p= 0.36 and 0.59) and protein content (R2
p= 0.36

and 0.26) was low in both scanning modes. Font-
i-Furnols et al. (2019) used CT in live pigs to estimate
the intramuscular fat (IMF) content in different pig
muscles; however, the predictions were not accurate
(R2 of cross-validation: R2

cv= 0.07 to 0.42).

Dual-energy X-ray absorptiometry

DXA is based on differential absorption of X-rays
of varying energy levels by different tissues. In com-
parison to CT, DXA has some advantages in that it
is less expensive in terms of instrument and installation
costs and requires minimal radiation exposure.

In research abattoirs, recent studies have reported
potential for DXA to be able to predict not only whole
carcass but also primal and retail cut composition,
using conventional manual cut-outs as the reference
method. Using linear regression analysis, Kipper et al.
(2019) reported high DXA predictability in pork for
total side weight (R2= 0.97 to 0.99); total bone
(R2= 0.76 to 0.95), fat (R2= 0.96 to 0.99), and lean
(R2= 0.84 to 0.98) content; and tissue composition
of primal cuts (R2= 0.76 to 0.99), although accuracy
varied depending on factors such as the region of inter-
est selected, carcass weight, and/or the selected predic-
tion equation. These authors suggested that the regions
of interest should be chosen based on the item to be
analyzed in order to decrease the error of analysis. In
beef, López-Campos et al. (2018) scanned steer primals
using DXA and reported a high accuracy for predicting
total lean (R2

p= 0.99), fat (R2
p= 0.98), and bone

(R2
p= 0.94) in whole carcasses using partial least
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squares regression (PLSR), as well as the tissue compo-
sition from 12 out of 15 retail cuts (R2

p= 0.81 to 0.95)
(Figure 1). Similarly, high predictability by DXA in cull
cows was obtained by Segura et al. (2021) for total lean,
fat, and bone content in the whole carcass (R2

p= 0.99,
0.99, and 0.92, respectively) and tissue composition
of most individual cuts (R2

p= 0.74 to 0.99). However,
lower predictability was found for bone estimation in
the flank retail cut (R2

p= 0.31), probably because of
the high variability in both DXA estimations and weight
measurements, as a consequence of the low amount of
bone included in this primal. Additionally, R2

p values
of 0.86 and 0.81 were described for retail cut and lean
meat yield percentages, respectively.

Some of the latest developments in DXA have
focused on its online application. In this context,
Gardner et al. (2018) reported satisfactory prediction
models for total fat, lean, and bone in lamb carcasses
(R2

p = 0.89, 0.69, and 0.68, respectively), using a
unit installed at a commercial abattoir at line
speed. Likewise, using online DXA at commercial
abattoirs, high predictability was reported in lamb
by Connaughton et al. (2020b) for carcass fat, lean,

and bone across varying processing factors (R2
p =

0.81 to 0.95) and by Connaughton et al. (2020a)
for carcass fat and lean content considering a range
of phenotypic and genotypic variables (R2

p = 0.91
and 0.74, respectively). Additionally, Gardner et al.
(2021), also using an online DXA unit installed at
a commercial abattoir, reported accurate predictions
(R2

p = 0.63 to 0.95) for several retail cut weights in
lambs. In beef, Calnan et al. (2021) have recently
developed a prototype of a rapid DXA in a shipping
container and reported high predictability for lean,
fat, and bone of entire carcass sides (R2

p = 0.85,
0.94, and 0.82, respectively) and forequarters (R2

p =
0.83, 0.93, and 0.82, respectively) and moderate
accuracy for hindquarters (R2

p = 0.68, 0.80, and 0.73,
respectively). It is important to note that, in all stud-
ies, CT was used as the standard method for calibra-
tion purposes; however, DXA technology is also
becoming a reference technology for research studies
on growth performance and carcass composition
evaluation (Sousa dos Santos et al., 2021). Commer-
cial application of DXA has now also been ex-
tended to use with robotic arms (Scott Technology

Figure 1. Beef chuck primal cut scanned with an iDXA unit and X-ray image generated (Lopez-Campos et al. 2018). Source: Agriculture and Agri-
Food Canada–Lacombe Research and Development Centre.
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Ltd., Dunedin, New Zealand) for further carcass
processing at high line speeds.

Beyond use to estimate carcass composition, a num-
ber of authors have either suggested the application of or
successfully implemented DXA to allow for precision
nutrition/feeding of ruminants (González et al., 2018),
as a methodology for estimating growth performance
and body protein mass in growing-finishing pigs
(Remus et al., 2020) and to predict aspects of lamb eat-
ing quality using bone DXA values (Anderson et al.,
2021).

Computer vision systems

CVS—also known as machine vision systems,
visual image systems, or just image systems—are
based on sequential image acquisition, image process-
ing (thresholding, binarization, etc.), image analysis
(image segmentation, feature extraction, etc.), and data
analysis (data normalization, model fitting, validation
and tuning, prediction, etc.). The CVS have been
applied in diverse areas to describe different character-
istics through images by interpreting, reconstructing,
and extracting properties (shapes, textures, densities,
distances, etc.).

In livestock and meat science, CVS have mainly
been applied to estimate carcass composition and qual-
ity for carcass classification and grading purposes.
Lohumi et al. (2018) found predictions with moderate
accuracy for lean meat yield (R2

p= 0.77) in commer-
cial pork carcasses using images obtained from a fully
automated VCS2000 camera (eþv® Technology
GmbH, Oranienburg, Germany) installed in a commer-
cial slaughterhouse and MLR analyses. Additionally,
in this study, the lean meat yield predictability was rel-
atively high for main cuts such as ham, belly, and
shoulder (R2

p= 0.80, 0.89, and 0.85, respectively)
and moderate for loin and tenderloin (R2

p= 0.73 and
0.67, respectively). In beef, Segura et al. (2021) dem-
onstrated the feasibility of using the variables from a
combination of VBS2000 (whole-side carcass camera:
eþv® Technology GmbH, Oranienburg, Germany)
and VBG2000 (rib-eye camera: eþv® Technology
GmbH, Oranienburg, Germany) cameras along with
PLSR analysis to accurately predict carcass tissue com-
position (R2

p= 0.84 to 0.93) and tissue composition of
most individual cuts (R2

p= 0.71 to 0.88), as well as
lean meat and retail cut yield (R2

p= 0.90 and 0.86,
respectively) (Figures 2 and 3). Regarding lamb, the
ability of CVS to predict carcass commercial cut
weight and yield of light lambs was evaluated by
Batista et al. (2021). The results of this study confirmed

previous reports on the ability of CVS technology to
estimate the weights of different cuts (R2

cv= 0.96 to
0.99) and their lean meat yields (R2

cv= 0.96 to 0.99),
whereas the accuracy was more limited for predicting
cut weight (R2

cv< 0.43) and lean meat in percentage
(R2

cv< 0.44).
Apart from carcass quality estimations, CVS have

also been used to predict meat quality. In this context,
Araújo et al. (2020) evaluated the relationships between
carcass shape, carcass tissue characterization, and com-
mercial cuts of hair sheep lambs to predict meat quality
(R2

p= 0.82), suggesting the potential of the technology
to establish categories for carcass classification in lambs.
In fact, Stewart et al. (2021) observed accurate predic-
tions for rib-eye area (R2= 0.83), Meat Standards
Australia marbling (R2= 0.76), AUS-MEAT marbling
(R2= 0.70), and chemical IMF (R2= 0.78) using a
prototype vision system on a phenotypically diverse
beef and lamb carcass population.

The industry’s need for automation and robotiza-
tion, coupled with the concept of data objectivity with-
out human intervention, have fostered interest in the
development and use of 3D vision technologies
(Vázquez-Arellano et al., 2016). In this context, Le
Cozler et al. (2019b) demonstrated the potential of using
laser cameras and image analysis to objectively predict
body weight (R2

p= 0.93), total volume (R2
p= 0.99),

and area (R2
p= 0.90) of dairy cows. In a second study,

using the same laser cameras, Le Cozler et al. (2019a)
also tested the feasibility of this technology for assessing
animalmorphology, namely heart girth, chest depth, and
wither height as well as hip, backside, and ischial
widths (R2

p= 0.38 to 0.79). A number of systems
incorporating 3D CVS have been approved in Europe
to estimate meat yield and grading in pork carcasses
(Implementing Decisions of European Commission
[2011] andEuropeanCommission [2019]). For instance,
the Frontmatec company (Kolding, Denmark) has
developed a 360° 3D scanning system—the Beef
Classification Center BCC-3TM—which recreates a
complete beef half-carcass. The system provides data
to estimate conformation and fattening level according
to EUROP standards and has estimated with relatively
high accuracy the weight of beef commercial cuts in a
commercial abattoir (R2

cv= 0.78, 0.85, and 0.81, for
inside, knuckle, and rump, respectively; Esberg et al.,
2019). Following a proof-of-concept using a 3D red,
green, and blue camera, Alempijevic et al. (2021)
reported an R2

cv value of 0.69 to predict lean meat yield
in beef at 2 commercial abattoirs.

In cattle, Miller et al. (2019) predicted live weight,
cold carcass weight, and saleable meat yield with
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moderate to high accuracy (R2
p= 0.70, 0.88, and 0.72,

respectively), using a 3D time-of-flight camera and
machine learning algorithms (artificial neural net-
works) to extract 60 predictor variables from images
of live steers and heifers collected at both commercial
and research farms. In addition, the models predicted
EUROP fat and conformation grades with 54% and
55% accuracy (R2), respectively.

In pig carcasses, Masoumi et al. (2021) developed
amethod of digital imaging from full 3Dmodels of half
carcass sides and reported moderate predictability for
the lean and fat content (R2

p= 0.77 and 0.73, respec-
tively) (Figure 4). However, predictability varied for
the weight of 12 different commercial cuts (R2

p=
0.41 to 0.80). In the case of lambs, the application of
3D-CVS to estimate live weight has also been
described by Samperio et al. (2021), reporting weight
estimates of the animal with an error of less than 6%.

Recently, CVS has been applied to predict meat
quality variables. For instance, Tomasević et al.
(2019) reported that CVS colors were more accurate
and precise in classifying bi-colored and non-uniformly
colored beef and pork products (frequency of similarity

ranged from 92.9% to 100%) and better mirrored their
real color as perceived by panelists than a traditional col-
orimeter. In turn, Uttaro et al. (2021) developed an
image analysis approach for identifying marbling on
intact pork loin and reported a moderate estimation
for IMF content, similar to both RAW (R2= 0.72) and
JPEG (R2= 0.72) images. However, lower IMF predict-
ability was reported at very high marbling levels.

Ultrasound

US is a nondestructive, cost-effective, easy-to-
operate and reliable technology that provides in-depth
measurements useful for evaluating carcass composition
(Xiong et al., 2017). However, US measurements can be
affected by different factors such as repeatability and
reproducibility of the measures as consequences of oper-
ator performance (Vargas et al., 2021), position (trans-
verse vs. longitudinal dorsal) (Cisneros et al., 1996),
and pressure of the probe on live animals (Ripoll et al.,
2009). To minimize these sources of error, many associ-
ations that assess the genetic potential of cattle in North
America have certification policies through the

Figure 2. Carcass side image taken with a whole-side carcass camera (Segura et al., 2021). Source: Agriculture and Agri-Food Canada–Lacombe
Research and Development Centre.
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Ultrasound Guidelines Council (Tait, 2016). There is
extensive literature on the use of US in animal husbandry
and evaluation of carcass composition in different spe-
cies (Pathak et al., 2011; Xiong et al., 2017; López-
Campos et al., 2019). Nevertheless, recent studies have
reported limitations of current commercial US devices,
and new applications of high-intensity US (HIUS) to
livestock end-products have emerged.

Inmany cases, the US devices provide an image that
must be processed to extract useful information such as
marbling (Fukuda et al., 2017) or fat and muscle thick-
ness (Theriault et al., 2009). Nevertheless, owing to soft-
ware advances, current commercial US devices can
directly provide those measurements. Lucas et al.
(2017) found that fat andmuscle thickness obtainedwith
a commercial US Piglog 105 device (Carometec A/S,
Herlev, Denmark) in live pigs were highly and moder-
ately correlated with the reference method (correlation

coefficients: r= 0.97 and 0.65, respectively). Addition-
ally, these authors successfully predicted carcass lean
yield (R2

p = 0.86). Using the same US equipment,
Szyndler-Nędza et al. (2016) estimated with moderate
to high accuracy pig carcass lean yield (R2= 0.51 to
0.84) and lean weight (R2= 0.40 to 0.74) in different
breeds. When all breeds were combined in the analysis,
lower US predictability was reported for carcass lean
yield and weight (r= 0.63 and 0.58, respectively),
although lean yield estimation improved (r= 0.71)
when breed was considered in the model. Using other
automatic US systems installed on the slaughter line,
Font-i-Furnols and Gispert (2009) found moderate pre-
dictions for pig carcass lean yield using 42 and
2 variables from AutoFOM (Frontmatec, Kloding,
Denmark) and Ultrafom (SFK Technology A/S,
Herlev, Denmark) devices in equation models (R2=
0.78 and 0.64, respectively). Higher predictability

Figure 3. Rib-eye image analysis performed with a rib-eye camera system at the 12th-13th rib (Segura et al., 2021). Source: Agriculture and Agri-Food
Canada–Lacombe Research and Development.
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(R2= 0.93, 0.82, 0.81) was observed by Janiszewski
et al. (2019) for loin, ham, and belly lean yield, respec-
tively, using 31 variables from AutoFOM, although
lower US predictability was observed for other major
cuts such as shoulder (R2= 0.68) and neck (R2= 0.42).

AutoFOM has also been used to estimate commer-
cial cut weights. Choi et al. (2018) reported more accu-
rate AutoFOM predictions for larger (R2

cv= 0.77 to
0.86) compared with smaller commercial cut weights
(R2

cv= 0.34 to 0.57), which might be due to the lack
of anatomical reference points and the lack of a strong
correlation between the scanned area of the carcass and
the smaller commercial cut weight. Nevertheless, the
predictability obtained for heavier primal cuts shows
US as an advantageous management tool enabling
slaughterhouses to optimize product sorting prior to
carcasses entering the cold room. Recently, Kress et al.
(2020) estimated primal cut weights in different sex
groups (gilts, boars, immunocastrates, and barrows)
using an AutoFOMUS device, and they concluded that
the ability of the AutoFOM III estimation formulas to
provide precise data for boars and immunocastrates is
unclear. Particularly, boars might be misevaluated
because of an increased proportion of lean meat and

a different carcass composition due to sexual dimor-
phism. Hence, these authors suggested that the
AutoFOM estimation formulas must be further exam-
ined in a detailed dissection trial and validation study in
order to ensure fair pricing conditions for all sex groups
and to avoid market distortions.

As biological tissue characteristics are sensitive to
ultrasonic frequency (Park et al., 1994), HIUS has been
applied recently to modify the physical and chemical
properties of meat, in order to improve meat quality
and safety. According to Jayasooriya et al. (2004),
acoustic parameters such as frequency, intensity, dura-
tion of treatment, and temperature can influence the
result from the ultrasonication. In this context, Diaz-
Almanza et al. (2019) applied HIUS (37 kHz, 90 W
cm−2) at different exposure times (0, 10, 20, and
40 min) in beef longissimus thoracis et lumborum
(LTL) and observed the highest (P< 0.05) tenderness
at 40 min; however, microbial reduction was higher at
10 min. Peña-González et al. (2017) observed that lipid
oxidation increased (P< 0.0089), shear force decreased
(P< 0.0001), and meat was perceived as more tender
and juicy in HIUS-treated beef longissimus dorsi
(40 kHz, 11 W cm−2, 60 min) after 14 d of storage.

Figure 4. Assessment of pig half carcass composition using a novel 3D digital imaging approach (Masoumi et al., 2021). Source: Agriculture and
Agri-Food Canada–Sherbrooke Research and Development Centre.
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Fallavena et al. (2020) appliedHIUS at different temper-
atures (10°C to 35°C) and intensities (22 to 84 W cm−2)
on beef biceps femoris and observed that high temper-
ature and US intensity resulted in less tenderness
whereas intermediate US intensity and low temperatures
improved meat tenderness (P< 0.05). Overall, HIUS
reduced water-holding capacity (WHC) and had a neg-
ative effect on lipid oxidation but did not influence pH
or color.

Bioelectrical impedance analysis

The basic principle of BIA is to introduce an alter-
nating current (1–500 kHz) through a body (fat and
muscle tissues) using 2 transmission electrodes, while
the electrical resistance produced is measured by
2 detector electrodes at the opposite side of the body
(Swantek et al., 1992) (Figure 5). The BIA is a nonde-
structive technology used for characterizing different
biological tissues that has decisive benefits compared
with other characterization methods, because it is more
efficient owing to the relatively reduced time, hard-
ware, and software required (Kanoun, 2018).
Although BIA technology was evaluated several years
ago for estimating lamb carcass composition (Berg and

Marchello, 1994), interest in using and exploring the
potential of this technology is ongoing.

Using BIA measurements collected in vivo from
lambs, Moro et al. (2019) predicted carcass weight
and yield at slaughter with high (R2

cv= 0.96) and mod-
erate (R2

cv= 0.57) accuracy, respectively. Moro et al.
(2020) successfully predicted both lean (R2

cv= 0.98
and 0.99) and fat (kilograms) (R2

cv= 0.92 and 0.91)
content in lamb carcasses using BIA measurements
collected at 50 kHz on hot and cold carcasses, respec-
tively. An et al. (2021) reported high (P< 0.01) corre-
lations between fat percentage obtained with a BIA
device on live pigs and lean meat percentage (r=
−0.97) or backfat thickness (millimeters) (r= 0.93)
measured with US equipment, indicating that BIA
technologymight be useful for predicting body compo-
sitions of live finishing pigs to facilitate swine feed
management.

Beyond the application of BIA to evaluate carcass
composition, BIA measurements have been recently
used to predict meat quality. In this context, Huh et al.
(2021) recently demonstrated that multifrequency
impedance measurements were significantly correlated
with moisture, fat (r=−0.83 and 0.86 at 128 kHz,
respectively), and protein (r=−0.86 at 80 kHz)

Figure 5. Bioelectrical impedance analysis applied to a beef carcass. Source: Agriculture and Agri-Food Canada–Sherbrooke Research and
Development Centre.
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content of beef. However, crude ash content was not
associated with impedance values (r<−0.43).
Afonso et al. (2020) found that BIA predictability
was relatively high for IMF content (R2

cv= 0.79) and
low to moderate for collagen content and shear force
value (R2

cv= 0.51 and 0.60, respectively) in beef
LTL muscle. They also reported low predictions for
cooking loss, pH, and color values (R2

cv≤ 0.36).
BIA spectroscopy is increasingly used for real-time

measurements in portable and embedded solutions
owing to favorable developments in the field of micro-
electronics. Nevertheless, despite the potential of BIA
technology to evaluate the quality of carcasses andmeat,
some studies have emphasized the need to refine the use
of BIA for acceptance and transfer to industrial environ-
ments (slaughterhouses, food processing cutting rooms,
etc.) (Zhao et al., 2017; Afonso et al., 2020).

Technologies for Meat and Fat
Quality Evaluation

Near infrared spectroscopy

In NIRS (12,500 to 4,000 cm−1 or 800 to 2,500
nm), there is a change in dipole moment during vibra-
tional transitions of a molecule, resulting in absorption
of an infrared photon by the molecule. The absorbed
photon has the same amount of energy as the energy
difference between the 2 vibrational states of the mol-
ecule (Agarwal and Atalla, 2010). The vibrations
involve C–H, O–H, and N–H chemical bonds (Prieto
et al., 2017). There are many advantages of NIRS over
conventional methods for meat quality analysis. NIRS
is a sensitive, fast, nondestructive, cost-effective, and
environmentally friendly technology (Dixit et al.,
2017). Additionally, NIRS has a higher penetration
depth than other spectroscopic techniques (Hassoun
et al., 2020). One disadvantage of NIRS, however, is
that meat is composed of approximately 75% water,
which is strongly absorbed in the infrared region and
can influence NIRS predictions (Andueza et al., 2019).

Recently, NIRS has been used to predict the content
of chemical components in intact meat samples. Dixit
et al. (2020b) successfully predicted IMF content of
intact beef LTL at 24 h postmortem using offline and
online a portable visible (VIS)-NIR spectrometer (350
to 2,500 nm) in a commercial pilot plant and PLSR
(R2

p= 0.88 and 0.89, respectively). Patel et al. (2021)
found moderate IMF (R2

p= 0.46, 0.66, and 0.62) and
moisture (R2

p= 0.51, 0.63, and 0.70) content estima-
tions for 7-d aged beef using a portable Vis-NIRS

(350 to 1,830 nm), a portable NIRS (950 to 1,650
nm), and a handheld micro-NIRS (905 to 1,649 nm),
respectively, in a research lab. Unexpectedly, the small-
est instrument (Micro-NIRS) was the most precise for
moisture and—together with portable NIRS—for
IMF. According to Patel et al. (2021), this result could
be due to data redundancy problems of the spectrometers
withwider andmoredefined spectra. In pork,Wang et al.
(2018a) andWang et al. (2020b) found high correlations
between NIR spectra and IMF, protein, and moisture
content (rp≥ 0.86) using portable dual-band Vis-NIR
spectrometers in research labs and PLSR. In contrast,
several studies reported low or unreliable NIRS predict-
ability for IMF content in lambs at 24 to 28 h post-
mortem (R2

cv= 0.52 to 0.55 or R2
p= 0.29 to 0.54;

Knight et al., 2019; Fowler et al., 2021b; Hitchman et al.,
2021a; Lambe et al., 2021) and beef longissimus thora-
cis aged for 2 and 7 d (R2

cv= 0.08 and 0.12, respec-
tively; de Nadai Bonin et al., 2020), using portable
Vis-NIR spectrometers (350 to 2,500 or 400 to 1,395
nm) and PLSR at commercial abattoirs. The lower
NIRS predictability in these studies could be partly
due to the narrower range of wavelengths and/or IMF
content compared with those used in Dixit et al.
(2020b). The latter could be due to differences among
species, as lambs tend to have a narrower range of
IMF than beef (Hoehne et al., 2012; Stewart et al.,
2021; Hitchman et al., 2021b). Low NIRS predictability
was also observed by Patel et al. (2021) for protein con-
tent in beef (coefficient of determination of calibration:
R2

c= 0.61, 0.51, and 0.62; R2
p= 0.46, 0.23, and 0.43)

using a portable VIS-NIR, a portable NIR, and a hand-
held micro-NIR spectrometer, respectively. These
authors attributed the low R2

c to the low variability of
this chemical component in meat samples, whereas
the lowR2

p were due to a greater proportion of farm/date
variance, which was not reflected in the meat spectra.

Regarding NIRS ability to predict fatty acid (FA)
composition, Prieto et al. (2018a) successfully esti-
mated the content of FA groups and iodine value
(R2

p= 0.81 to 0.94), although lower predictability
was reported for individual FA with low variability
such as palmitic, stearic, and oleic FA (R2

p= 0.60 to
0.70) in pork subcutaneous fat, using a portable
NIRS device (350 to 2,500 nm) in a research abattoir
and PLSR (Figure 6). Piao et al. (2018) foundmoderate
NIRS predictability for monounsaturated FA (MUFA),
oleic, and saturated FA (SFA) in beef intermuscular fat
(R2

p= 0.69, 0.64, and 0.67, respectively), using a 700
to 1,050 nm portable NIR spectrometer at meat markets
and PLSR. When spectra were collected on intact lamb
meat samples, accurate NIRS predictions were found
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for SFA and polyunsaturated FA (R2
cv= 0.84 and 0.94,

respectively), and moderately accurate predictions
were found for MUFA content (R2

cv= 0.57), using a
350 to 2,500 nm portable spectrometer in a research
abattoir and PLSR (Juárez et al., 2017). However,
low NIRS predictability for individual and groups of
FA (R2

cv= 0.11 to 0.56) were found in intact lambmeat
samples by Fiorentini et al. (2017), using a 350 to 2,500
nm portable instrument and PLSR. Apart from low
variability, another limiting factor for FA prediction
by NIRS is the similar absorption patterns of different
FA due to similarities in chemical structure and func-
tional groups (Prieto et al., 2017; Tao and Ngadi,
2018). This condition could generate complex relation-
ships between the spectra and the response variables
that are not capable of being predicted under a PLSR
model. In fact, Barragán-Hernández et al. (2020)
considerably improved NIRS predictability of individ-
ual and groups of FA in ground beef samples when sup-
port vector machine-learning (SVM) regression was
applied (R2

p= 0.74 to 0.99) compared with PLSR
(R2

p= 0.06 to 0.58). Therefore, regression based on
SVM could be a novel alternative that manages to iden-
tify several vectors in hyperspace capable of construct-
ing a generalizable prediction model for estimating FA

profiles in beef with higher accuracy than conventional
methods.

Portable and handheld NIR spectrometers have also
been used recently to predict pH of intact meat samples.
Dixit et al. (2020b) and Wang et al. (2018a) reported
high NIRS predictability and correlation for pH in beef
at a commercial pilot plant (R2

p≥ 0.84) and pork at a
research laboratory (rp≥ 0.81), respectively. However,
several studies reported low predictive ability (R2

cv≤
0.29 or R2

p≤ 0.30) in beef, pork, and lamb meat
at research laboratories or commercial abattoirs
(Fiorentini et al., 2017; Andersen et al., 2018; Patel et al.,
2021; Savoia et al., 2021); this is likely due to narrower
ranges in pH values compared with the 2 above-men-
tioned studies.

Furthermore, portable and handheld spectrometers
have been used to predict color values (L*, a*, and b*)
of intact meat samples at laboratories and research or
commercial abattoirs. Savoia et al. (2021) and Juárez
et al. (2017) reported high L* predictability in beef
(R2

p≥ 0.80) and lamb (R2
cv= 0.93), respectively,

whereas Wang et al. (2018a) reported high correlations
between NIR spectra and L* (rp= 0.89 to 0.90),
a* (rp= 0.88 to 0.94), and b* (rp= 0.90 to 0.95) in
pork. In contrast, other studies reported low to

Figure 6. Collection of near-infrared spectra from the inner layer of pig carcass subcutaneous fat using a portable NIRS device (Prieto et al., 2018a).
Source: Agriculture and Agri-Food Canada–Lacombe Research and Development Centre.
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moderate NIRS predictability for beef L* (R2
cv= 0.33

to 0.49 or R2
p= 0.42 to 0.52), a* (R2

cv= 0.07 to 0.32 or
R2

p= 0.52 to 0.71), and b* (R2
cv= 0.19 to 0.39 or

R2
p= 0.35 to 0.63; Sahar et al., 2019; Patel et al., 2021;

Savoia et al., 2021) as well as for pork L* (R2
cv= 0.63),

a* (R2
cv= 0.72), and b* color values (R2

cv= 0.65;
Furtado et al., 2019). These differences among studies
for NIRS predictability of color values could be partly
due to instrument variations.

In the last few years, WHC of intact meat has also
been estimated using portable and handheld NIR spec-
trometers. NIRS poorly predicted purge loss (R2

p≤
0.31; Savoia et al., 2021) and cook loss in beef
(R2

cv≤ 0.45 or R2
p≤ 0.25; Sahar et al., 2019; Patel

et al., 2021; Savoia et al., 2021) and drip loss in pork
(R2

cv≤ 0.12; Andersen et al., 2018; Savoia et al.,
2021). Nevertheless, a relatively high correlation
between NIR spectra and cook loss in pork (rp=
0.77) was found by Wang et al. (2020b), probably
due to a wider variability (higher standard deviation)
in cook loss from this study compared with that from
the above-mentioned studies.

Recently, many studies have tested the prediction
performance of portable and handheld Vis-NIR spec-
trometers at research or commercial abattoirs to predict
Warner-Bratzler shear force (WBSF) values in meat
from different species, as tenderness is a driver of con-
sumer satisfaction. However, low NIRS predictability
for WBSF values has been reported for both beef and
lamb intact meat samples (R2

cv< 0.41 or R2
p< 0.20;

Juárez et al., 2017; Knight et al., 2019; Cafferky et al.,
2020; Savoia et al., 2021). Apart from the moderate to
low repeatability and reproducibility reported for meat
quality physical attributes such as shear force (Patel
et al., 2021), the poor NIRS predictability for WBSF
might be just because tenderness of cooked meat is
not explained by compositional differences or vibra-
tional properties of fresh meat provided by the NIR
spectra. Similarly, Cafferky et al. (2020) reported unre-
liable predictions for taste panel tenderness scores in
beef at 1 and 2 d postmortem using a portable NIR
spectrometer at a commercial chilling room (R2

cv=
0.06) and a laboratory (R2

cv= 0.13), respectively,
and for other sensory attributes such as juiciness, crum-
bliness, and beef flavor (R2

cv= 0.04 to 0.41).
NIRS has also been used recently to estimate pork

belly firmness. Lam et al. (2020) and Soladoye et al.
(2018) successfully predicted belly firmness (subjec-
tive scoring: R2

p= 0.66 to 0.84; belly flop angle:
R2

p= 0.71 to 0.91) when subcutaneous fat at the
shoulder and lean and subcutaneous fat belly layers
were scanned, respectively, using portable VIS-NIR

spectrometers (350 to 2,500 nm) in cold rooms of a
research abattoir and PLSR.

In recent years, NIRS technology along with
machine learning techniques have become popular
tools for authenticating meat products based on spe-
cies, geographic origins, animal diet, and freshness
in research laboratories or abattoirs. Yang et al.
(2018) classified beef, pork, and mutton samples with
100% accuracy using SVM. Weng et al. (2020) used a
portable NIR spectrometer and deep convolutional
neural network (DCNN) to successfully identify beef
adulterated with pork (R2

p= 0.94). Revilla et al.
(2020) correctly classified 84% of dry-cured beef sam-
ples of a Protected Geographic Indication quality label
and 100% of non–Protected Geographic Indication,
using a benchtop NIR spectrometer and artificial neural
network. Barragán et al. (2021) correctly classified
75% to 100% of subcutaneous fat and intact meat sam-
ples from cattle fed barley or corn using a portable Vis-
NIRS instrument and applying linear SVM. These
authors confirmed the successful application of the
SVM technique in studies with relatively small data sets
while allowingan external validation. Finally,Moonet al.
(2020) classified “fresh,” “likely spoiled,” and “spoiled”
sirloin beef samples with 86% to 96% accuracy, using a
portable Vis-NIR spectrometer and a convolutional neu-
ral network–based machine learning algorithm.

Hyperspectral imaging

By integrating spectroscopy and imaging tech-
niques, imaging spectrometry, also known as HSI, is
used to acquire 20 or more equally distributed contigu-
ous spectral bands with ranges throughout both the vis-
ible and near infrared regions, resulting in a highly
informative characterization of reflectance and emit-
tance spectrum (Goetz, 2009). This advantage has
led to the application of HSI to identify components
and characterize their spatial distribution in a product,
substance, tissue, or environment. The use of HSI for
predicting chemical composition, technological attrib-
utes, and adulteration in meat has been previously
reviewed (Xiong et al., 2014; Siche et al., 2016;
Prieto et al., 2018b). Since the latter reviews, multiple
studies using HSI to predict these attributes have
emerged in beef, lamb, and pork.

Recent studies successfully predicted pH values in
red meat using various statistical approaches. Using
moveable benchtop HSI scanners, Craigie et al. (2017)
and Dixit et al. (2020a) reported a relatively high HSI
predictability for pH in lamb (R2

p= 0.71) and in a com-
bination of beef, lamb, and venison (R2

p= 0.75–0.86),
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respectively, using PLSR. Nevertheless, Dixit et al.
(2020a) and Yao et al. (2019) found higher predictability
for pH using DCNN in beef/lamb/venison (R2

p= 0.89)
and support vector regression (SVR) in pork using a port-
able scanner (R2

p= 0.93), respectively. The higher per-
formance observed with SVR compared with PLSR
models agrees with Thissen et al. (2004), who concluded
that, for spectral applications, SVR is more robust and
able to account for nonlinear effects from temperature
changes. In addition, Craigie et al. (2017) included out-
liers in the model in an attempt to replicate industry
application results, which could result in the lower per-
formance compared with the other studies. These authors
suggested continued calibration and validation to
improve the robustness of the model. When comparing
HSI line (550 to 1,700 nm) and snapshot (670 to 950
nm) scan systems using a robotic platform inline in a
meat processing pilot plant to predict muscle pH in beef,
the line scanner showed superior performance (R2

p=
0.89) to theHSI snapshot scanner (R2

p= 0.77;Dixit et al.,
2020b). Although HSI snapshot scanners exhibit faster
image acquisition, HSI line scanning systems are able
to provide better sample representation, explaining this
difference in performance.

Similar to pH studies discussed earlier, DCNN
models performed slightly better (R2

p= 0.89) than
PLSR (R2

p= 0.84 to 0.88) for IMF proportion predic-
tion, when performing a combined analysis of beef,
lamb, and venison using a benchtop HSI scanner with
a moving stage (Dixit et al., 2020a). Likewise, HSI line
scanning (R2

p= 0.90) outperformed snapshot scanning
systems (R2

p= 0.72) when predicting beef IMF content
inline in a meat processing pilot plant (Dixit et al.,
2020b). In pork, several studies revealed high HSI pre-
diction performance for IMF content in loin (R2

p= 0.86
to 0.96), using benchtop and pushbroom lab HSI sys-
tems and several prediction models (step-wise regres-
sion, PLSR, SVM, and back-propagation neural
networks) (Huang et al., 2014; Ma et al., 2018;
Kucha et al., 2021a). Aheto et al. (2020) used a pushb-
room HSI system in the laboratory to estimate IMF
content in pork bellies and reported relatively high pre-
dictability when a median spectral features model
(R2

p= 0.81) and a mean image feature model (R2
p=

0.73) were used. When using HSI to predict IMF pro-
portion in longissimus lumborum from lambs, moder-
ate accuracy (R2

p= 0.67; Craigie et al., 2017) and high
accuracy (R2

p= 0.92) were observed using PLSR and
progressive PLSR (which cumulatively included data
chronologically and recalculated the model) models,
respectively. The latter used a line scanning system
with a moving stage in a lab setting and suggested that,

for inline HSI systems, updating the models over time
(particularly where lighting and environmental condi-
tions cannot be carefully controlled) might be a useful
strategy to improve future predictions. Velásquez et al.
(2017) reported pushbroom lab HSI as a successful
technology to classify beef based on the degree of mar-
bling using the decision tree method (99.92%).

The HSI has also been applied to predict FA con-
centration. Craigie et al. (2017) predicted groups (SFA,
MUFA and polyunsaturated FA) and individual FA
content with moderate (R2

p= 0.53 to 0.70) and low
accuracy (R2

p= 0.00 to 0.48), respectively, in lamb
meat using PLSR. The lowHSI performance was likely
due to the inclusion of outliers in an attempt to replicate
an industry application scenario. In contrast, Wang
et al. (2020a) found high HSI predictability using a
lab benchtop moving stage HSI system for palmitic
(R2

p= 0.91) and oleic FA content (R2
p= 0.88) in lamb

meat, when HSI spectra were combined with texture
data (using gray-level co-occurrence matrix to extract
textural features) and variable combination population
analysis–iteratively retaining informative variables
was applied to an SVM regression (for palmitic acid
prediction) and a PLSR model (for oleic acid predic-
tion). For specific FA in pork, using full wavelength
spectral data and mean spectral features, a recent study
showed prediction performance for myristic, palmitic,
palmitoleic, stearic, oleic, and linoleic FA ranging from
R2

p 0.69 to R2 0.84 (Kucha et al., 2021b).
In addition to fat variables, other meat chemical

components have been estimated using HSI. Water
content was successfully predicted using a lab-based
benchtop HSI and MLR in lambs (R2

p= 0.92; Pu et al.,
2014). Although still relatively high, lower HSI pre-
dictability was reported for protein content in lambs
using MLR or PLSR (R2

p= 0.80 to 0.85; Pu et al.,
2014) and in pork using back-propagation neural net-
works (R2

cv= 0.78 to 0.83; Ma et al., 2019). The over-
all lower performance for predicting protein content
could be due to the low range/variability of this com-
ponent (Prieto et al., 2018b).

Regarding color in red meat, high predictability
with benchtop lab HSI systems was reported for L*,
a*, and b* values in combined beef, lamb, and pork
samples using MLR (R2

p= 0.97, 0.84, and 0.82,
respectively; Kamruzzaman et al., 2016b) and in beef
using PLSR (R2= 0.98, 0.92, and 0.95, respectively;
Yu et al., 2020). Metmyoglobin content is known to in-
fluence meat color stability, and many studies recently
found high HSI predictability for different metmyoglo-
bin content variables in lambs using benchtop lab HSI
systems and different prediction approaches including
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PLSR and least-squares support vector machines
(LSSVM) (R2

p= 0.85 and 0.91, respectively; Cheng
et al., 2020), competitive adaptive reweighted sam-
pling–LSSVM (R2

p= 0.81 to 0.91; Yu et al., 2020),
NIR-HSI data combined with generalized 2D correla-
tion spectroscopy method (R2

p= 0.85; Cheng et al.,
2021), and competitive adaptive reweighted sam-
pling–PLSR (R2

p= 0.77; Yuan et al., 2020). Few
studies have recently applied HSI to predict WHC in
meat. Kamruzzaman et al. (2016a) predicted with high
accuracy drip loss in beef, lamb, and pork together
using a benchtop HSI in a lab environment and PLSR
(R2

p= 0.92) and SVM (R2
p= 0.94).

Regarding the prediction of instrumental tender-
ness (WBSF) using a benchtop HSI system in a lab set-
ting, Balage et al. (2018) reported low predictability in
beef using a specific region of interest (R2

p= 0.06 to
0.27) and PLSR. These authors concluded that HSI
applied to a specific region of the sample does not accu-
rately represent the tenderness of the whole sample.
Nubiato et al. (2018) used a lab-based benchtop HSI
to classify beef samples based on WBSF values and
reported that 89.9% and 84.8% of samples were cor-
rectly classified using partial (928 to 1,413 nm) and full
(928 to 2,524 nm) wavelength, respectively.When HSI
systems were recently used inline in a meat processing
pilot plant, Dixit et al. (2020b) reported a poor predic-
tion performance using an HSI line (R2

p= 0.17 to 0.36)
and a snapshot scanner (R2

p= 0.13 to 0.18) for WBSF
value in beef aged for different aging periods. These
authors suggested that the low performance could
either be due to a lack of direct correlation between
WBSF and spectral features or be due to the fact that
all the muscles were not in rigor at the scanning time.
Considering that the spectroscopic measurements were
taken at 24 h postmortem and WBSF measurements
were performed in aged meat, this might have limited
the prediction performance of WBSF.

The detection of meat adulteration (i.e., with spoiled
meat or other animal meats) has been successful using
HSI. Recent studies have shown highHSI prediction per-
formance of detecting proportions of adulterated meat
(by mixing spoiled meat) in beef (R2

p= 0.94; Zhao et al.,
2019) and mutton (R2

p= 0.93; Zhu et al., 2021) using
benchtop systems in a lab setting andSVM.Minced lamb
meat and beef adulteration with duck meat have been
accurately predicted using a lab HSI systemwithmoving
stage and PLSR and principal component regression
modeling methods (R2

p> 0.95; Jiang et al., 2019;
Zheng et al., 2019). Rady and Adedeji (2020) used a
pushbroom HSI system in a laboratory and PLSR model
to detect adulteration in minced meat for beef and pork,

reporting a classification rate of 75%–100% and 100%
for pure and adulterated samples, respectively.

Raman spectroscopy

Raman spectroscopy is a type of vibrational spec-
troscopy that uses light spectra between 200 and 1,800
nm (50,000 to 5,556 cm−1) and is based on light scatter-
ing. When photons collide with molecules, they some-
times exchange energy, which is referred to as Raman
scattering (Smith and Dent, 2005). Biomolecules such
as amino acids, collagen, elastin, carotenoids, FA, and
cholesterols contribute to Raman scattering in meat
and fish, and Raman spectroscopy is used to obtain infor-
mation regarding the concentration, structure, and inter-
actions among these biomolecules (Damez and Clerjon,
2008;Yang andYing, 2011; Czamara et al., 2015). There
are several advantages of Raman spectroscopy over tra-
ditional techniques that have been used to assess meat
quality traits. Raman spectroscopy is a nondestructive,
low-cost, and highly sensitive technology that requires
a small sample and short analysis time. Additionally,
there is no solvent use or toxic waste involved, and
the spectra of water do not interfere with those of other
meat components (Motoyama, 2017; Pallone et al., 2018;
Chen et al., 2020). However, one disadvantage of Raman
spectroscopy is fluorescent background interference,
especially in lean meats that contain fluorescing com-
pounds, but algorithms have been recently developed
to subtract fluorescent background (Wang et al., 2018b).

Raman spectroscopy has beenwidely used to predict
chemical composition of meat (Yang and Ying, 2011;
Troy et al., 2016). When scanning intact meat using
lab benchtop instruments, Andersen et al. (2018) and
Cama-Moncunill et al. (2020) found moderate predict-
ability for IMF content from 4- to 5-d aged pork
(R2

cv= 0.73) and 2-d aged beef LTL (R2
cv= 0.64),

respectively, using PLSR. The latter indicated that con-
tribution from non–readily identified bands probably not
related to the variation of IMF might explain the modest
spectral variance explained by the model. To date, there
are not many studies applying handheld Raman spec-
trometers to predict chemical composition of intact meat.
In this context, lowRaman predictabilitywas reported by
Fowler et al. (2015a) for IMF and FA group content in
lamb meat at a research laboratory (R2

cv= 0.01 to 0.21).
These authors hypothesized that the process of separating
protein and lipid spectramight have reduced the ability to
predict major FA composition, because removing all
spectra that contained mixed lipid and protein signals
might also have removed information on the phospholi-
pids bound in membranes.
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Furthermore, portable and handheld Raman spec-
trometers have been used in research laboratories to
predict pH and color values of meat. Moderate predic-
tions for ultimate pH were reported for intact pork
(R2

cv= 0.52 to 0.72; Andersen et al., 2018, 2021)
and lamb meat (R2

cv= 0.59; Fowler et al., 2015b),
but predictions were lower for beef (R2= 0.42;
Fowler et al., 2018). Fowler et al. (2018) indicated that
a high loin purge (7%, probably due to a rapid pH
decline) could have caused less Raman information
present in spectra, resulting in poorer predictions of
pH in meat. Additionally, Yang et al. (2020) reported
high Raman predictability for pH and L* at 0-d aged
beef steaks (R2

cv= 0.99 and 0.78, respectively), but
these values declined steadily over a 21-d aging period,
reaching a minimum R2

cv of 0.04 for both attributes.
Attempts to predict a* and b* were unsuccessful.
Similarly, poor predictions were reported for L* in
lamb at 1 d and 5 d postmortem (R2

cv= 0.32 and
0.22, respectively; Fowler et al., 2015b).

Raman spectroscopy has also been applied to esti-
mateWHC.When scanning intact meat in a laboratory,
moderate Raman predictability was found by Andersen
et al. (2021) for drip loss (R2

cv= 0.56 to 0.75).
However, low predictability was reported for drip loss
in pork (R2

cv= 0.49; Andersen et al., 2018) and drip
loss and cook loss in beef (R2

cv= 0.59 and 0.49, respec-
tively; Cama-Moncunill et al., 2020), using lab bench-
top instruments. Cama-Moncunill et al. (2020)
indicated the contribution from non–readily identified
bands in the predictions that might not be related to the
variation of physicochemical characteristics of the
samples and the experimental design (drip and cook
loss were measured on 2-d aged fresh and 14-d aged
thawed muscle, respectively, whereas Raman spectra
were collected on 2-d aged thawed muscle) as factors
that could have jeopardized the accuracy of the predic-
tions. Fowler et al. (2018) predicted with low accuracy
purge loss in beef (R2= 0.46) using a handheld Raman
spectrometer at the laboratory.

Discrepancies among recent studies have been
found predicting instrumental tenderness by Raman
spectroscopy in intact meat from different species.
Using a lab benchtop spectrometer to predict WBSF
values, Cama-Moncunill et al. (2020) found low accu-
racy in beef (R2

cv= 0.36). These authors suggested that
the low predictability could be a result of including sig-
nals unrelated to physical/chemical changes in their
model because some bands in their plots were uninter-
pretable and only small spectral changes were observed
between tender and tough meat. Chen et al. (2020)
found high predictive ability for shear force in beef,

as measured with a Meullenet–Owens razor shear
probe, using a portable Raman spectrometer in a labo-
ratory (R2

p= 0.81). When handheld Raman spectrom-
eters were used at the laboratory, Fowler et al. (2018)
and Fowler et al. (2014) found unreliable Raman pre-
dictability for WBSF in beef (R2= 0.11) and lamb
(R2

cv= 0.06), respectively. Fowler et al. (2014) attrib-
uted the low performance to Raman measurements
being taken on the thinnest side of the longissimus lum-
borum samples because, owing to the close proximity
of 3 muscle surfaces, diffuse scattering might have
increased, thereby preventing signal discrimination in
deeper areas of the muscle. Additionally, these authors
hypothesized that increasing the integration time from
3 s or increasing the total accumulation by including
repetitions would improve the accuracy of prediction
by reducing the signal to noise ratio. When Raman
spectroscopy was used for classification purposes,
Santos et al. (2018) correctly classified >67% and
>85% of pork samples based on instrumental tender-
ness at 1 d postmortem in a commercial abattoir and
at 15 d postmortem in a laboratory, respectively, using
a portable Raman spectrometer and SVM.

When tenderness was evaluated by untrained con-
sumers, high accuracy predictions were reported using
a handheld Raman spectrometer in intact lamb meat
(R2= 0.99; Fowler et al., 2021a). Additionally, Santos
et al. (2018) correctly classified pork samples based
on tenderness assessed by trained panelists at 1 d post-
mortem in a commercial abattoir (>69%) and at 15 d
postmortem in a laboratory (>93%), using a portable
Raman spectrometer and SVM. Overall, these results
indicate that Raman spectroscopy might be a better pre-
dictor of sensory tenderness than shear force. This is
likely due to sensory tenderness being associated with
more than one biochemical characteristic, whereas the
measurement of shear force does not take into account
the contribution of water and fat content to the sensory
perception of juiciness and the impact this has on the per-
ception of tenderness (Perry et al., 2001).

Recent cases of meat adulteration, such as the report
of horse DNA in 33% of frozen beef burgers (Laurence,
2013), have increased the use of Raman spectroscopy to
discriminate meat based on species, feeding regimes, or
cuts. Robert et al. (2021) discriminated among beef, ven-
ison, and lamb with over 80% accuracy using partial
least square discriminant analysis (PLS-DA) and a
benchtop spectrometer. Additionally, Logan et al.
(2021) correctly classify beef fed long-term grain,
short-term grain, grass, and a supplemented grass diet
(96%, 85%, 83%, and 83%, respectively), using a hand-
held Raman spectrometer directly on the carcass
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subcutaneous fat and PLS-DA. Martin-Gomez et al.
(2021) used a portable Raman spectrometer in a labora-
tory and a K-nearest neighbours algorithm to correctly
classify 83.3% of dry-cured hams based on pork diet
and 77.8% to 100% of dry-cured hams based on breed.
Furthermore, Ostovar Pour et al. (2020) distinguished
beef cuts (rump, Scotch fillet, round, chuck, tenderloin,
and T-bone) with 84.4% accuracy, using a portable
Raman spectrometer in a laboratory and principal com-
ponent discriminant function analysis.

Conclusions

Sensing technologies are powerful tools for nonde-
structive assessment of carcass merit and meat and fat
quality traits in livestock. However, equipment price
and time required to scan or process the vast amount
of information generated by these technologies have lim-
ited their use in industrial applications. Nevertheless,
continuous efforts to evolve and refine instruments to
achieve online prototypes capable of working safely at
line speed have allowed the evolution of sensing technol-
ogies to successfully estimate not only total composition
of the whole carcass but also the primal and retail cuts. In
the last few years, the use of spectroscopic technologies
that use portable and, particularly, handheld devices, in
tandem with advanced machine learning algorithms,
has increased, which has overcome some of the limita-
tions and improved the feasibility of using these technol-
ogies for meat applications. However, most of the studies
in the literature were primarily performed at laboratory
scale or in pilot processing plants, and there was a lack
of studies proving the robustness of models at processing
plants. Therefore, further refinements in the devices,
research on larger independent data sets, and the integra-
tion of machine learning approaches accounting for
sources of variation might increase the commercial
deployment of these sensing technologies in the meat
industry.
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López-Campos, Ó., J. C. Roberts, I. L. Larsen, N. Prieto, M. Juárez,
M. E. R. Dugan, and J. L. Aalhus. 2018. Rapid and non-
destructive determination of lean fat and bone content in beef
using dual energy X-ray absorptiometry. Meat Sci. 146:140–
146. https://doi.org/10.1016/j.meatsci.2018.07.009.

Lucas, D., A. Brun, M. Gispert, A. Carabús, J. Soler, J. Tibau, and
M. Font-i-Furnols. 2017. Relationship between pig carcass
characteristics measured in live pigs or carcasses with
Piglog, Fat-o-Meat’er and computed tomography. Livest.
Sci. 197:88–95. https://doi.org/10.1016/j.livsci.2017.01.010.

Ma, J., H. Pu, and D.-W. Sun. 2018. Predicting intramuscular fat
content variations in boiled pork muscles by hyperspectral im-
aging using a novel spectral pre-processing technique. LWT-
Food Sci. Technol. 94:119–128. https://doi.org/10.1016/j.lwt.
2018.04.030.

Ma, J., D. Sun, H. Pu, Q. Wei, and X. Wang. 2019. Protein content
evaluation of processed porkmeats based on a novel single shot
(snapshot) hyperspectral imaging sensor. J. Food Eng.
240:207–213. https://doi.org/10.1016/j.jfoodeng.2018.07.032.

Martin-Gomez, A., N. Arroyo-Manzanares, M. Garcia-Nicolas, A.
I. Lopez-Lorente, S. Cardenas, I. Lopez-Garcia, P. Vinas, M.
Hernandez-Cordoba, and L. Arce. 2021. Portable Raman
spectrometer as a screening tool for characterization of
Iberian dry-cured ham. Foods. 10:1177. https://doi.org/10.
3390/foods10061177.

Masoumi, M., M. Marcoux, L. Maignel, and C. Pomar. 2021.
Weight prediction of pork cuts and tissue composition using
spectral graph wavelet. J. Food Eng. 299:110501. https://doi.
org/10.1016/j.jfoodeng.2021.110501.

Meyerding, S. G. H., M. Gentz, B. Altmann, and L. Meier-Dinkel.
2018. Beef quality labels: a combination of sensory accep-
tance test, stated willingness to pay, and choice-based conjoint
analysis. Appetite. 127:324–333. https://doi.org/10.1016/j.
appet.2018.05.008.

Miller, G. A., J. J. Hyslop, D. Barclay, A. Edwards, W. Thomson,
and C.-A. Duthie. 2019. Using 3D imaging and machine
learning to predict liveweight and carcass characteristics of
live finishing beef cattle. Front. Sustain. Food Syst. 3.
https://doi.org/10.3389/fsufs.2019.00030.

Moon, E. J., Y. Kim, Y. Xu, Y. Na, A. J. Giaccia, and J. H. Lee.
2020. Evaluation of salmon, tuna, and beef freshness using
a portable spectrometer. Sensors. 20:4299. https://doi.org/
10.3390/s20154299.

Moro, A. B., D. B. Galvani, Y. R. Montanholi, P. Bertemes-Filho,
R. S. Venturini, A. A. Martins, L. P. da Silva, and C. C. Pires.
2020. Assessing the composition of the soft tissue in lamb car-
casses with bioimpedance and accessory measures. Meat Sci.
169:108192. https://doi.org/10.1016/j.meatsci.2020.108192.

Moro, A. B., C. C. Pires, L. P. da Silva, A. M. Menegon, R. S.
Venturini, A. A. Martins, R. O. Mello, and D. B. Galvani.
2019. Prediction of physical characteristics of the lamb carcass
using in vivo bioimpedance analysis. Animal. 13:1744–1749.
https://doi.org/10.1017/S1751731118003178.

Motoyama,M. 2017. Raman spectroscopy formeat quality and safety
assessment. In: A. Bekhit, editor, Advances in meat processing
technology. CRC Press, Boca Raton, FL. p. 269–298.

Narsaiah, K., A. K. Biswas, and P. K. Mandal. 2019.
Nondestructive methods for carcass and meat quality evalu-
ation. In: A. K. Biswas, and P. K. Mandal, editors, Meat qual-
ity analysis: Advanced evaluation methods, techniques, and
technologies. Elsevier, Amsterdam. p. 37–49.

Nubiato, K. E. Z., M. R. Mazon, D. S. Antonelo, C. R. Calkins, G.
K. Naganathan, J. Subbiah, and S. da Luz e Silva. 2018. A
bench-top hyperspectral imaging system to classify beef from
Nellore cattle based on tenderness. Infrared Phys. Techn.
89:247–254. https://doi.org/10.1016/j.infrared.2018.01.005.

Olsen, E. V., L. B. Christensen, and D. B. Nielsen. 2017. A review
of computed tomography and manual dissection for calibra-
tion of devices for pig carcass classification—Evaluation of
uncertainty. Meat Sci. 123:35–44. https://doi.org/10.1016/j.
meatsci.2016.08.013.

Ostovar Pour, S., S. M. Fowler, D. L. Hopkins, P. Torley, H. Gill,
and E. W. Blanch. 2020. Differentiating various beef cuts
using spatially offset Raman spectroscopy. J. Raman
Spectrosc. 51:711–716. https://doi.org/10.1002/jrs.5830.

Pallone, J. A. L., E. T. d. S. Caramês, and P. D. Alamar. 2018.
Green analytical chemistry applied in food analysis:
Alternative techniques. Curr. Opin. Food Sci. 22:115–121.
https://doi.org/10.1016/j.cofs.2018.01.009.

Pan, X., J. Zhu, W. Tai, and Y. Fu. 2021. An automated method to
quantify the composition of live pigs based on computed
tomography segmentation using deep neural networks.
Comput. Electron. Agr. 183:105987. https://doi.org/10.
1016/j.compag.2021.105987.

Park, B., A. D. Whittaker, R. K. Miller, and D. E. Bray. 1994.
Measuring intramuscular fat in beef with ultrasonic frequency
analysis. J. Anim. Sci. 72:117–125. https://doi.org/10.2527/
1994.721117x.

Patel, N., H. Toledo-Alvarado, andG.Bittante. 2021. Performance of
different portable and hand-held near-infrared spectrometers for
predicting beef composition and quality characteristics in the
abattoir without meat sampling. Meat Sci. 178:108518.
https://doi.org/10.1016/j.meatsci.2021.108518.

Pathak, V., V. P. Singh, and Y. Sanjay. 2011. Ultrasound as a
modern tool for carcass evaluation and meat processing: A
review. International Journal of Meat Science. 1:83–92.
https://doi.org/10.3923/ijmeat.2011.83.92.

Peña-González, E. M., A. D. Alarcón-Rojo, A. Rentería, I.
García, E. Santellano, A. Quintero, and L. Luna. 2017.
Quality and sensory profile of ultrasound-treated beef.
Ital. J. Food Sci. 29:463–475. https://doi.org/10.14674/
1120-1770/ijfs.v604.

Perry, D., J. M. Thompson, I. H. Hwang, A. Butchers, and A. F.
Egan. 2001. Relationship between objective measurements
and taste panel assessment of beef quality. Aust. J. Exp.
Agr. 41:981–989. https://doi.org/10.1071/EA00023.

Piao, S., T. Okura, and M. Irie. 2018. On-site evaluation of Wagyu
beef carcasses based on the monounsaturated, oleic, and satu-
rated fatty acid composition using a handheld fiber-optic near-
infrared spectrometer.Meat Sci. 137:258–264. https://doi.org/
10.1016/j.meatsci.2017.11.032.

Meat and Muscle Biology 2021, 5(3): 12951, 1–21 Leighton et al. Sensing technology for carcass, meat, and fat

American Meat Science Association. 19 www.meatandmusclebiology.com

https://doi.org/10.5851/kosfa.2018.e44
https://doi.org/10.5851/kosfa.2018.e44
https://doi.org/10.1079/pavsnnr201914018
https://doi.org/10.1079/pavsnnr201914018
https://doi.org/10.1016/j.meatsci.2018.07.009
https://doi.org/10.1016/j.livsci.2017.01.010
https://doi.org/10.1016/j.lwt.2018.04.030
https://doi.org/10.1016/j.lwt.2018.04.030
https://doi.org/10.1016/j.jfoodeng.2018.07.032
https://doi.org/10.3390/foods10061177
https://doi.org/10.3390/foods10061177
https://doi.org/10.1016/j.jfoodeng.2021.110501
https://doi.org/10.1016/j.jfoodeng.2021.110501
https://doi.org/10.1016/j.appet.2018.05.008
https://doi.org/10.1016/j.appet.2018.05.008
https://doi.org/10.3389/fsufs.2019.00030
https://doi.org/10.3390/s20154299
https://doi.org/10.3390/s20154299
https://doi.org/10.1016/j.meatsci.2020.108192
https://doi.org/10.1017/S1751731118003178
https://doi.org/10.1016/j.infrared.2018.01.005
https://doi.org/10.1016/j.meatsci.2016.08.013
https://doi.org/10.1016/j.meatsci.2016.08.013
https://doi.org/10.1002/jrs.5830
https://doi.org/10.1016/j.cofs.2018.01.009
https://doi.org/10.1016/j.compag.2021.105987
https://doi.org/10.1016/j.compag.2021.105987
https://doi.org/10.2527/1994.721117x
https://doi.org/10.2527/1994.721117x
https://doi.org/10.1016/j.meatsci.2021.108518
https://doi.org/10.3923/ijmeat.2011.83.92
https://doi.org/10.14674/1120-1770/ijfs.v604
https://doi.org/10.14674/1120-1770/ijfs.v604
https://doi.org/10.1071/EA00023
https://doi.org/10.1016/j.meatsci.2017.11.032
https://doi.org/10.1016/j.meatsci.2017.11.032
www.meatandmusclebiology.com


Polkinghorne, R. J., and J.M. Thompson. 2010.Meat standards and
grading: Aworld view.Meat Sci. 86:227–235. https://doi.org/
10.1016/j.meatsci.2010.05.010.

Prieto, N., M. E. R. Dugan, M. Juárez, Ó. López-Campos, R. T.
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