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Abstract: Fraud detection in meat is a challenging task for researchers, consumers, industries, and regulatory agencies.
Traditional approaches for fraud detection are time-consuming, complicated, laborious, and expensive; they require tech-
nical skills. Therefore, much effort has been devoted in academia and industry to developing rapid and nondestructive
optical techniques for fraud detection in meat. Among them, hyperspectral imaging has gained enormous attention and
curiosity throughout the world. Hyperspectral imaging is an emerging analytical technique that combines spectroscopy
and imaging in one system to acquire spectra and spatial information from an object simultaneously. Hyperspectral imaging
is the only analytical technology that answers commonly asked analytical questions such as what chemical species are in the
samples, how much, and most importantly, where they are located. Therefore, the technology will undoubtedly play indis-
pensable roles in research and industry for fraud detection in the coming days.
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Introduction

Food fraud or adulteration is an age-old problem. It
has existed as long as food has been made and sold.
Since prehistoric times, humans have altered the state
of food to extend its longevity or improve its taste.
Now, it has become a global issue. Major food adul-
teration events seem to occur regularly (Ellis et al.,
2012). Over 1,300 cases of food adulteration have
been documented from 1980 to 2010 (Moore et al.,
2012), whereas 4,098 incidents of food fraud have
been recorded (Figure 1) between 2010 and 2020
(Hellberg et al., 2021). Therefore, food fraud has
increased many times since 2010. Unfortunately,
the authors reported only the major incidents. Thus,
the full scale of adulteration is not well documented
because most incidents go undetected or unreported.
On the other hand, the occurrence of fraud is not easy
to evaluate without using highly sophisticated analyti-
cal tools (Ballin and Lametsch, 2008).

In today’s marketplace, the food supply chain is
now more global and complex than ever. Nowadays,

most food no longer follows a straight line from
producers and distributors to consumers. Therefore,
tracing the source of adulteration, deliberate or
accidental, has become more challenging. Around
50 years ago, the average grocery store stocked about
200 food items, most of which were grown, produced,
or processed within 100 miles of the store. However,
currently, the average supermarket stocks about
39,000 items, which have traveled an average of
1,500miles, making detection harder and adulteration
easier (Kamruzzaman, 2016). Therefore, increasingly
globalized food supply chains and the economicmoti-
vation to provide cheaper food products have contrib-
uted to food adulteration (Kamruzzaman, 2016).

Minced meat is a very popular and versatile meat
product in industrialized countries. It is also a signifi-
cant ingredient in various high-value meat products
such as hamburgers, patties, meatballs, sausages, and
salami. Because of its high prices, mincedmeat and its
different products can be attractive targets for econo-
mic adulteration. Such economic adulteration is prac-
ticed in many ways, such as replacement or partial
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replacement of high-value meat by low-cost meat or
offals (Cozzolino andMurray, 2004). There are 2 staple
reasons why it is challenging to identify adulteration in
minced meat without sophisticated sorting analytical
techniques: (1) mincing removes the morphological
structures of meat muscle, and (2) the adulterated com-
ponents are usually very similar to the authentic prod-
uct. In 2013, the horsemeat scandal in Ireland and the
United Kingdom drew huge attention both locally and
globally to meat adulteration. The meat labeled as beef
was found to contain undeclared horsemeat as well as
meat from pork. This led to the recall of more than
10 million beef burgers and other beef products from
supermarkets throughout Ireland and the UK (Boyacı
et al., 2014). Although there is no significant safety
concern for this type of adulteration, this is commercial
malpractice. Therefore, the determination of authenti-
cation and detection of adulteration are indispensable
for the minced meat industry. A variety of standard
analytical methods (chromatography, electrophoretic
separation of proteins, immunological procedure,
and DNA-based techniques) can be used to identify
and authenticate minced meat (Mousa et al., 2021).

However, these techniques are invasive, time-consum-
ing, laborious, and demand highly skilled personnel,
and thus, they are not suitable for online application
and routine analysis. In general, these purposes need
to be specific, sensitive, rapid, and economical, analyze
various meat products, and provide quantitative results
(Meza-Márquez et al., 2010). Consequently, a cost-
effective, efficient, rapid, and reliable method is
required. Specifically, there is a great interest in devel-
oping optical technologies that canmonitor in real-time
assessment. Recently, hyperspectral imaging techni-
ques have received considerable attention for
authenticity and adulteration detection in minced meat
(Rady and Adedeji, 2020; Jiang et al., 2021). Hyper-
spectral imaging combines the advantages of both
spectroscopy and imaging techniques in one system
to acquire spatial and spectral information from an
object while overcoming the drawbacks of both meth-
ods when used alone. The power of spectroscopy is
used to detect or quantify chemical constituents based
on their spectral signature, and imaging transforms this
information into chemical maps in the form of concen-
tration profiles (Kamruzzaman and Sun, 2016). The
hyperspectral imaging technology has the potential
to apply offline, atline, online, and inline, provided that
accurate calibration models can be constructed using
high-dimensional multivariate data (Kamruzzaman
et al., 2015).

Methodology

Hyperspectral imaging system

The configuration of a typical hyperspectral imag-
ing system is shown in Figure 2. A typical hyperspectral
imaging system comprises a light source that illuminates

Figure 1. Documented records of food fraud between 2010 and 2020
(Hellberg et al., 2021).

Figure 2. (A) Components of a typical hyperspectral imaging system and (B) the conceptual view of a hypercube comprising spatial (x and y) and
spectral (λ) dimensions (Kamruzzaman, 2016).
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the object, a lens to ensure sufficient focus and allocate
the field of view, a spectrograph (wavelength dispersion
unit) to split the light into various spectral wavelengths, a
2-D camera (detector) to capture the spatial-spectral
images, and a computer supported with software to
control the image acquisition process and further
processing, such as digitization, storage, modeling, and
decision-making. All of these components contribute to
the reliability of the hyperspectral imaging system and
image quality. Therefore, an appropriate selection of
system components is essential to ensure the proper
performance of a hyperspectral imaging system and to
acquire reliable, high-quality hyperspectral images.
Both visible near-infrared (VNIR) hyperspectral imag-
ing (400 to 1,000 nm) and near-infrared (NIR) hyper-
spectral imaging (900 to 1,700 nm) systems are
currently used by researchers for different applications.
The 400 to 1,000 nm range is industrially advantageous
because of the wide availability and low cost of charge-
coupled device sensors compared with the region
between 900 and 1,700 nm (Gowen et al., 2009). The
output of the hyperspectral imaging system is the
three-dimensional (3-D) hypercube (x, y, λ). The 3-D
data cube has 2 spatial dimensions (x, y) and 1 spectral
dimension (λ). The hypercube I(x, y, λ) can be viewed
either as a gray level image I(x, y) at each wavelength
λ or as a spectrum I(λ) at each pixel (x, y) as shown in
Figure 2. Images at 2 adjacent bands are very similar
in the hypercube, whereas images at distant bands can
be much less similar and may have independent infor-
mation. In addition, no single wavelength image has suf-
ficient information to describe the object entirely, which
explains why hyperspectral imaging is useful in analyz-
ing an object (Elmasry et al., 2012).

Spectral analysis

Spectral analysis is the cornerstone of hyperspectral
imaging investigation. The spectral bands in hyper-
spectral images are highly correlated. These high-
dimensional data are sometimes redundant, noisy, and
irrelevant or interfering. Appropriate analyses need to
be conducted to extract meaningful information from
such an enormous amount of data. Therefore, multivari-
ate data analysis technique or chemometrics is required to
extract meaningful information from the spectra to cor-
relate with the target attributes to determine and visualize
the distribution within the sample. The spectral data can
be analyzed directly or following pretreatments, includ-
ing baseline corrections, Savitzky–Golay filter for find-
ing derivatives, normalization, and scaling (Cen and He,
2007). Among linear multivariate calibration techniques,

partial least-squares regression (PLSR) has become the
de facto standard in multivariate spectral analysis. It
can handle highly colinear, noisy, and redundant data.
PLSR aims to predict response variable(s) y from a
(large) set of predictor variables X by reducing the set
of predictor variables to a smaller set of uncorrelated
latent variables (LVs). It then performs least-squares
regression on these LVs, which are linear combinations
of the original variables (predictors). That is the reason
for the name “partial least-squares regression.” These
LVs are designed to capture the most information in
X and y, and they have the best prediction power.
Most of the adulteration detection applications using
hyperspectral imaging in minced meat were modeled
using PLSR. Although PLSR is very promising, unsatis-
factory results can be obtained when nonlinearity is
present between the spectral data and target attributes
(Kamruzzaman et al., 2018). Therefore, nonlinear meth-
ods such as artificial neural network and support vector
machine regression can be used to model nonlinearity
(Nicolaï et al., 2007). Finally, an important aspect of
developing calibration models is the correct reporting
of calibration and prediction statistics to interpret the
repeatability and accuracy. Generally, prediction statis-
tics, including standard error of prediction (SEP) or root
mean SEP and coefficient of determination (R2), is more
important.

Image analysis

Each pixel in a hyperspectral image has a spectrum;
therefore, it is possible to calculate the level of adultera-
tion at each pixel in the sample to generate chemical
maps. However, it is practically impossible to measure
the precise concentration of adulteration in every pixel
of a sample. The regression models can be used to inter-
polate pixel-level calculations for all spots of the sample.
This is executed by multiplying the spectrum of each
pixel in the image and the regression coefficients ob-
tained from the calibration model based on spectral data.
The main steps for developing prediction maps are
depicted in the flowchart shown in Figure 3. To speed
up the adulteration map and reduce the time required
for image processing, images at a few optimum wave-
lengths are usually used to create the adulteration map.

Results and discussion

Adulteration detection in minced lamb meat

As a promising nondestructive technology, hyper-
spectral imaging has been explored by Kamruzzaman
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et al. (2012, 2013, 2015a, 2015b, 2016) for adulteration
detection in minced meat. These applications will be
briefly discussed in the following sections. For a
detailed description, the readers are requested to see
the original publications.

NIR hyperspectral imaging (90 to 1,700 nm) was
tested to detect the level of adulteration in minced lamb
meat (Kamruzzaman et al., 2013). To the best of our
knowledge, this is the first reported study to detect
adulteration in minced meat using hyperspectral imag-
ing. Principal component analysis (PCA) was used
to identify the most potential adulterate among pork,

kidney, heart, and lung in minced lamb. Clearly, Fig-
ure 4 suggests that the most potential adulterate was
pork, among others, because lamb and lamb mixed
with pork clustered very closely. In reality, if the mix-
ture of lamb and pork is predictable using this tech-
nique, then the mixture of lamb and offal would be
predicted easily.

To detect the level of pork adulteration in minced
lamb, the lamb samples were adulterated by mixing
pork in the range of 2% to 40% at approximately 2%
increments according to weight. The minced meat
was put in a circular metal can and imaged using the

Figure 3. Flowchart for analyzing hyperspectral images for developing prediction maps (Kamruzzaman et al., 2013).
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hyperspectral system. PLSR was used to detect the
level of pork adulteration in minced lamb with an
R2

cv of 0.99 and root mean standard error of cross-
validation of 1.37%. The rate and extent of postmortem
pH change influences the quality of meat and sub-
sequently the spectral features. Therefore, it is neces-
sary to evaluate the effect of pH on multivariate
calibration for adulteration detection.

To develop a multispectral imaging system, 4 fea-
ture wavelengths centered at 940, 1,067, 1,144, and
1,217 nm were identified using regression coefficients.
In addition, a multiple linear regression was developed
and applied to each pixel in the image to obtain the

distribution of adulteration of the tested samples. Al-
though it was difficult to identify the level of adulter-
ation with the naked eye, as shown in the RGB images
in Figure 5, the prediction map revealed the change in
adulteration from sample to sample. These results
indicated that hyperspectral imaging technology is an
effective and promising technique to detect adultera-
tion in minced meat.

Adulteration detection in minced beef

A hyperspectral imaging system in the spectral
range of 400 to 1,000 nm was used to detect the level
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Figure 4. Principal component analysis scores plot for pure lamb and lambmixed with 20% of different adulterates in the spectral range of 910 to 1,700
nm (Kamruzzaman et al., 2013).

Figure 5. Application of near-infrared hyperspectral imaging for adulteration detection in minced lamb. RGB images (top) and corresponding predic-
tion maps (bottom) of adulteration at different levels from 4% to 40% (left to right) with 4% increments (Kamruzzaman et al., 2013).
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of horsemeat (Kamruzzaman et al., 2015b), pork
(Kamruzzaman et al., 2015a), and chicken
(Kamruzzaman et al., 2016) adulteration in minced
beef. Theminced beef samples were separately adulter-
ated by mixing adulterants (horsemeat, chicken, and
pork) in the range of 2% to 50% (w/w) at approximately
2% increments. Calibration models were developed
using calibration samples and applied to independent
validation samples. The performance of calibration
models for predicting adulteration inminced beef using
hyperspectral imaging is summarized in Table 1. The
PLSR model was very effective in predicting adulter-
ation in unknown samples, as indicated by the SEP
and high value of R2

p. Generally, 2 × SEP is considered
as a 95% confidence interval in spectral analysis (Kelly
et al., 2004). This means that the PLSR model cannot
accurately predict samples below 4.46% (2 × 2.23),
8.88% (2 × 4.44), and 5.24% (2 × 2.62) adulteration
in minced beef with horsemeat, chicken, and pork,
respectively.

Some optimum wavelengths were selected to
develop a simple model for visualization purposes,
and the results are summarized in Table 2. Similar pre-
diction results were obtained compared with the full

spectral range, indicating that wavelength selection
methods were effective for all cases. The optimized
model was then transferred to each pixel of the image
to create prediction maps or distribution maps. Figure 6
shows an example of prediction maps for horsemeat
adulteration in minced beef with their corresponding
RGB images. The results suggested that hyperspectral
imaging could become a good way for rapid and non-
destructive prediction of adulteration in minced meat in
the spectral and spatial domain. However, it is vital to
obtain a robust and precise calibration model for such
prediction maps. Without a good calibration model,
misleading prediction maps might be obtained.

Although all of the adulteration studies mentioned
were performed with the same system using identical
reference and data analysis methods, different feature
wavelengths were selected to detect various adulterants
(i.e., chicken, horse, and pork) in beef. According to
these findings, different combinations of feature wave-
lengths must be used to develop a real-time multispec-
tral imaging system to detect adulteration in minced
beef. This is not a convenient situation for developing
multispectral imaging systems to detect adulteration in
one meat species. Therefore, it is desired to conduct a
comprehensive study to establish a global calibration
model to detect all possible adulterants in minced beef.

Many studies were carried out using spectral
techniques (NIR spectroscopy and hyperspectral imag-
ing) for adulteration detection in fresh minced meat
(Kamruzzaman, 2016); however, only one study
reported the use of NIR spectroscopy to detect adulter-
ation in cooked meat. Alamprese et al. (2016) success-
fully used NIR spectroscopy combined with PLSR to
detect turkey meat adulteration in cooked minced beef.
Various ingredients and different technological treat-
ments are needed to develop processed meat products.
Various technological treatments along with different
ingredients can mask possible interspecies adultera-
tion. Because each pixel in hyperspectral has a spec-
trum, it is expected that hyperspectral imaging will
be more promising than conventional spectroscopy
to detect adulteration in cooked and processed meat.

Table 1. PLSR results for horsemeat, chicken, and
pork adulteration in minced beef using VNIR
hyperspectral imaging in the full spectral range

Calibration Prediction

Application LVs R2
c SEC (%) R2p SEP (%)

Horsemeat adulteration in
minced beef

4 0.99 1.14 0.98 2.23

Chicken adulteration in
minced beef

3 0.98 1.96 0.97 4.44

Pork adulteration in minced
beef

6 0.97 2.54 0.97 2.62

LVs= latent variables; PLSR= partial least-squares regression; R2
c=

coefficient of determination in calibration; R2
p= coefficient of

determination in prediction; SEC= standard error of calibration; SEP=
standard error of prediction; VNIR= visible near-infrared. Higher value
of R2 and lower value of SEC and SEP indicate very good prediction.
It is always expected to obtain R2 as close as 1 with errors (SEC and
SEP) as close as 0.

Table 2. Statistics of different calibrationmodels at selected wavelengths for predicting adulteration inminced beef

Selected
wavelength (nm)

Pure
species

Adulterate
species

Multivariate
analysis Calibration statistics Prediction statistics References

515, 595, 650, 880 Beef Horse PLSR R2= 0.99SEC= 1.21% R2= 0.98SEP= 2.20% Kamruzzaman et al. 2015b

430, 605, 665, 705 Beef Pork MLR R2= 0.99SEC= 1.83% R2= 0.99SEP= 4.17% Kamruzzaman et al. 2015a

610, 665, 900, 980 Beef Chicken PLSR R2= 0.97RMSEC= 2.27% R2= 0.96RMSEP= 2.83% Kamruzzaman et al. 2016

MLR=multiple linear regression; PLSR= partial least-squares regression; R2= coefficient of determination; RMSEC= root mean square error of
calibration; RMSEP= root mean square error of prediction; SEC= standard error of calibration; SEP= standard error of prediction. Higher value of R2

and lower value of SEC and SEP or RMSEC and RMSEP indicate very good prediction.
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Authentication of red meat

Authentication of meat products is important for
both consumers and industries. It is also important
for accurate labeling to help consumers select appropri-
ate types of meat products and for traceability because
there are consumers who do not accept specific meat
types in their diet for religious or ethical reasons
(Rohman et al., 2011). For authentication of different
red meat species, a hyperspectral imaging system
was tested in the spectral range of 900 to 1,700 nm
(Kamruzzaman et al., 2012). Six (957, 1,071, 1,121,
1,144, 1,368, and 1,394 nm) important wavelengths
that give the highest discrimination among tested meat
categories were first selected using the second deriva-
tive. Spectral data were then analyzed by PCA and par-
tial least-squares discriminant analysis (PLS-DA) for

recognition and authentication of the tested meat.
The score plot of PC1 and PC2 (Figure 7) indicated that
the tested meat classes could be easily distinguished
into three separate classes. A PLS-DA model was then
developed using these six wavelengths and achieved an
overall accuracy of 97% in the calibration and more
than 98% in the validation sets. Basically, it is straight-
forward to differentiate between pork, beef, and lamb
muscles simply by visual inspection. On the other
hand, minced meats are tough to authenticate because
mincing visually removes the morphological structures
of muscles. Therefore, the developed classification
algorithms were then applied to both intact and minced
meat in the independent testing set. Classification maps
of the independent testing set and their corresponding
RGB images are shown in Figure 8. RGB images of the

Figure 6. Application of visible near-infrared hyperspectral imaging for adulteration detection in minced beef. RGB images (top) and corresponding
prediction maps (bottom) of horse adulteration in minced beef at different levels (Kamruzzaman et al., 2015b). The number below each sample is the per-
centage of horse meat in minced beef.
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respective samples are shown for comparison and
accentuate the difficulty of identifying each red meat
by simple imaging method or visual inspection. The
study showed that the calibration model developed
with intact samples could be applied to minced meat
to detect and quantify pork, beef, and lamb. This result
indicates the potential of hyperspectral imaging for the
authentication of different red meat species without
referring to any sophisticated techniques.

Challenges and Future Perspectives

Hyperspectral imaging is an attractive option for
authenticity and adulteration detection in meat. It has
shown tremendous growth in the last decades due to
advances in instruments and chemometrics. Despite
many advantages, hyperspectral imaging has many
intrinsic constraints limiting its widespread application
in the industry. First of all, it is an indirect method
based on accurate wet chemistry analysis. It requires
a complex multivariate calibration. Therefore, it is cru-
cial to know what types of multivariate data mining
analyses are helpful for a particular application.

Calibration transfer between instruments is also very
critical for hyperspectral imaging applications. A cali-
bration model developed on one device may not be
useful for prediction on a second instrument. There-
fore, calibration transfer is necessary. Calibration
transfer from one instrument to another with sta-
tistically retained precision and accuracy is challenging
(Cogdill et al., 2005). More effort and research are
needed to transfer lab-based offline calibration into
industrial-scale online settings. In hyperspectral imag-
ing experiments, hundreds of variables can be mea-
sured simultaneously. Not all the variables contain
important information, and these variables are redun-
dant and highly correlated. Uninformative variables
can lead to an unstable model. Therefore, effective var-
iable selection is essential. Indeed, variable selection
plays a vital role in any spectral tool for extracting criti-
cal information. Variable selection can improve the
model interpretability with parsimonious representa-
tion, increase the model prediction ability, and speed
up the prediction (Pu et al., 2015). It is anticipated that
with only a few variables for a particular application
and improved instrument hardware, the development
of more robust and efficient algorithms will facilitate

Figure 8. RGB images and corresponding classification maps of independent testing set containing both intact and minced meat samples
(Kamruzzaman et al., 2012).
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hyperspectral imaging for real-time inspection of
authenticity and adulteration detection.

Conclusions

Whether intentional or accidental, food adultera-
tion is a persistent global problem due to the complex-
ity of fraudulent practices. Accidental adulteration
could happen due to carelessness or lack of proper
hygiene conditions of processing, handling, storing,
transportation, and marketing. In contrast, intentional
adulteration is commercial malpractice for financial
gain, and it poses a significant concern in terms of
health threats, quality, ethics, and religious views.
The nondestructive, reagent-less, and multivariate
characteristics of hyperspectral imaging techniques
provide an exciting platform for adulteration detection
and authenticity. Although very promising, hyperspec-
tral imaging technology is currently suffering from 2
drawbacks: high cost and complexity. Therefore, the
development of low-cost hyperspectral imaging instru-
ments, improved processing speed, and progress in
data analysis techniques will lead this technology to
be a sustainable analytical tool. Commercial hyper-
spectral imaging systems have now started appearing
on the market. The commercialization of hyperspectral
imaging systems will boost the scope of applications in
meat and other agro-food processing industries.
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