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Abstract
In planning a 2k-p fractional

factorial experiment, prior knowledge
may enable an experimenter to pinpoint
interactions which should be estimated
free of the main effects and any other
desired interactions. Taguchi (1987)
gave a graph-aided method known as
linear graphs associated with orthogo-
nal arrays to facilitate the planning of
such experiments. Since then the graph-
aided method has been enhanced by
various authors such as Li et al  (1991),
Wu and Chen (1992), Robinson (1993),
and Wu and Hamada (2000). In this
paper, we propose an algorithm for
developing all possible non-isomorphic
interaction graphs for combined arrays.

Introduction
Industrial Technologists (IT’s) are

frequently required to use designed
experiments as problem solving and
process improvement tools in their roles
as “…technical and/or management
oriented professionals…in business,
industry, education, and government.”
(The National Association of Industrial
Technology, 1997, [Online]).  In fact, it
is common practice for IT’s to work
with other communities of technical and
managerial professionals as experiment-
ers in the application of designed
experiments in discrete part manufactur-
ing, assembly, and process industries.
Of primary importance to these experi-
menters is working with design,
production, and quality personnel to
identify and understand the many
variables or factors associated with any
type of industrial operation.  It is
particularly interesting to these experi-
menters to pinpoint those variables that
most significantly influence or impact
their industrial operations as well as any

interactions among those variables.  To
pinpoint these most significant variables
and their interactions, the IT’s, engi-
neers, and management team members
who serve in the role of experimenters
rely on the Design of Experiments
(DOE) as the primary tool of their trade.

Within the branch of DOE known
as classical methods, it is possible for
experimenters to make use of their
technical skills and in-depth knowledge
of their particular industrial operations
to design more effective, less expensive
experiments using non-isomorphic
interaction graphs.  Accordingly, in this
paper the authors will provide for
readers a context for the application of
non-isomorphic interaction graphs,
formally define and describe these
graphs as valuable tools, provide an
algorithm for developing all possible
graphs for combined arrays, provide for
readers a detailed example developing
and using these graphs, explain how to
read and interpret the graphs, and pose
the argument that IT’s and other
interested professionals can use non-
isomorphic interaction graphs to do their
jobs more effectively and efficiently.

Background
      In planning a 2k-p fractional facto-
rial experiment, prior knowledge may
enable experimenters to pinpoint
interactions which should be estimated
free of main effects and any other
desired interactions. While working on
applications of classical DOE methods,
Taguchi (1987) introduced a graph-
aided technique known as linear graphs
associated with orthogonal arrays to
facilitate the planning of such experi-
ments, and as such, Taguchi’s graph
aided technique is not to be confused
with what is commonly known as
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Taguchi Methods. Linear graphs are
graphical representations of the
allocation of main effects and desired
two-factor interactions to the columns
of orthogonal arrays. Linear graphs
facilitate the selection of an aliasing
pattern that in turn enables experiment-
ers to estimate all main effects and
desired two-factor interactions.  And it
should be noted it is important for
experimenters to be able to quantify the
existence and magnitude of these main
effects and interactions to support fact-
based decision making regarding the
experiment design and application.
       Since 1987, researchers such as Li,
Washio, Iida and Tanimoto (1991) have
extended Taguchi’s work on classical
DOE applications of linear graphs by
developing non-isomorphic linear
graphs for an experiment involving
eight (8) factors.  In this scenario, a 2k

experiment design was crafted wherein
no main effect was confounded with
any other main effect or with any two-
factor interactions, while two-factor
interactions were confounded with
each other.  This type of experiment is
commonly referred to as a resolution
IV design and, in this case, the re-
searchers used orthogonal arrays based
on 16 experimental runs as the basis for
the experiment and application of
linear graphs. Wu and Chen (1992)
then developed interaction graphs
using the criterion of minimum aberra-
tion. Robinson (1993) followed by
suggesting other modifications of
Taguchi’s linear graphs. The remainder
of work related to interaction graphs
available in the literature to date
pertains to orthogonal arrays corre-
sponding to a single set of factors.
Taguchi, however, divided the factors
into two categories, that is control
factors and noise factors.

Relating Taguchi’s Work To Non-
Isomorphic Interaction Graphs

Taguchi introduced the technique
of robust parameter design to reduce
performance variation in products and
processes by selecting the setting of
control factors or design parameters so
that performance is insensitive to noise
factors such as environmental condi-

tions, properties of raw materials and
any other factors that are hard-to-
control. Taguchi’s technique, also
known as Taguchi methods, uses an
experimental design consisting of a
cross product of two arrays, an inner
array containing the control factors and
an outer array containing the noise
factors. The cross product of the inner
and outer array often leads to a large
number of observations that are
generally very expensive to complete.

In an attempt to reduce the number
of observations needed to support an
experiment, and thus reduce costs,
Welch et al (1990), Shoemaker et al
(1991), Montgomery (1991), and
Borkowski and Lucas (1997) suggested
independently an alternative design to
study both the control and noise factors
by using a single array, called a
combined array.  A combined array
structure enables experimenters to
estimate both control-to-control and
control-to-noise interactions with fewer
observations.  Miller et al (1993) used
a combined array in an automobile
experiment and demonstrated similar
results could be obtained using the
combined array approach and a much
smaller number of runs as by using the
cross product array.  Since the noise
factors are not usually controllable,
main effects and two factor interactions
of noise factors are less important than
control-to-noise interactions, Chen et al
(1993). More recently, Borror et al
(2002) studied statistical designs for
experiments involving noise factors

In practice, both control-to-control
and control-to-noise interactions are
normally important.  Control-to-control
interactions play an important role in
product design and production pro-
cesses while control-to-noise interac-
tions play their role in product perfor-
mance and are associated with varia-
tion.  The structure of these interactions
determines the nature of non-homoge-
neity of process variance that charac-
terizes product design problems.
Accordingly, a “good” product design
is one where all desired control-to-
control and control-to-noise interac-
tions can be estimated by using a
minimum number of runs.  This can be

achieved by using interaction graphs
for two-level combined arrays.

In this paper, we give an algorithm
for developing all possible non-
isomorphic interaction graphs for a
combined array of various two level
fractional factorial designs.  We do this
in the context of classical DOE appli-
cations even though the topic could be
applied to Taguchi Methods.  These
interaction graphs enable one to
allocate the factors to the columns of
orthogonal arrays, along with the
estimation of main effects and desired
control-to-control, control-to-noise
interactions assuming all other interac-
tions to be negligible.

“Non-Isomorphic” Defined
Having introduced the concept of

linear interaction graphs in the preced-
ing paragraphs, it is time to explain the
nature and meaning of the concepts of
isomorphic and non-isomorphic as they
relate to interaction graphs.  Figure 1
below is provided to help readers
visualize the explanation.

As can be seen in Figure 1 (page 4),
graph “A” depicts interactions among
factorsV

1-5
, graph “B” depicts interac-

tions among factors U
1-5

, and graph “C”
depicts interactions among factors W

1-5.
Each graph displays a certain set of
characteristics that describe relation-
ships, or interactions, among the factors.

It is common practice during the
design of an experiment for experi-
menters to assign factors so as to
exhibit interactions if they are known
to exist and are of interest.  It is also
common during the design of an
experiment for experimenters to
rename selected factors so as to exhibit
different interactions within the same
fractional factorial experiment in order
to get more information from fewer
experimental runs.

When experimenters rename the
factors to observe different interactions
within a fractional factorial experiment,
and the renaming does not change any
of the graph characteristics, the
interaction graphs are considered to be
isomorphic.  Graph “A” and “B” of
Figure 1 are thus isomorphic as the
characteristics depicted before and
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after renaming of the factors are
conceptually the same.

When experimenters rename the
factors to observe different interactions
within a fractional factorial experiment,
and the renaming does change one or
more of the graph characteristics, the
interactions are considered to be non-
isomorphic.  Comparing either of graph
“A” or “B” (i.e., the isomorphic
interaction graphs) to graph “C”
reveals the change of several character-
istics and thus graphs “A” and “B” are
non-isomorphic to graph “C.”

An Algorithm For Developing
A Non-Isomorphic Alias Struc-
ture For A Different Number
Of Control And Noise Factors
      In order to define a non-isomorphic
alias structure for a given relation the
following two criterion must be met
within the alias structure where C = a
control factor and N = a noise factor:

a) Count the number of clear CxC,
CxN & NxN interactions.

b) Count the number of alias CxC
with CxC; CxC with CxN &
CxN with CxN interactions
(aliasing of any two factor
interaction NxN interaction is
assumed to be clear two factor
interaction).

For a given defined relation, we first
construct an alias structure with a pre-
defined number of control and noise
factors. Next we rename the control and
noise factors and observe the change in
the alias structure on the basis of the
criterion discussed above. It has been
observed that the alias pattern changes
with the renaming of factors and for
different numbers of control and noise
factors. This method gives us all possible
non-isomorphic alias structure for
different numbers of control and noise
factors for a given defining relation.

Example
      Consider a 26-2 fractional factorial
experiment with defining relation
I=ABCE=BCDF. Suppose there are
four (4) control factors and two (2)
noise factors. This gives two non-
isomorphic defining relations of same
word length pattern, but of different

alias structure. These defining relations
are as follows:

a) I=ABCE=BCdf

AE AB AC Bd Bf Ad Af
BC CE BE Cf Cd Ef dE

b) I=ABCe=BCDf

Ae AB AC BD Bf AD Af
BC Ce Be Cf CD - De
Df

An Algorithm For Developing
Interaction Graphs For A
Combined Array

The following steps are required
for developing non-isomorphic interac-
tion graphs. The method for developing
the algorithm is based on the technique
given by Li, Washio, Iida and Tanimoto
(1991) and Wu and Chen (1992).

STEP 1: Consider a defining relation
with specified number of
control and noise factors.

STEP 2: Based on the defining
relation allocate both control
and noise factors to the
columns of orthogonal arrays
and developed alias structure.

STEP 3: Form a set of two-factor
interactions by selecting one
two-factor interaction from
each aliased two-factor

interactions along with all
clear two-factor interactions.

STEP 4: Calculate interaction matrix
for finding total number of
non-isomorphic interaction
graphs, see Li, Washio, Iida
and Tanimoto (1991). The
two columns and rows of the
interaction matrix are headed
alphabetically (representing
the control and the noise
factors). Then the ijth entry in
the interaction matrix is 1 if
the interaction between ith

row and jth column belongs to
the set formed in Step 3 and
0 otherwise.

STEP 5: Calculate the column total of
the interaction matrix which
are called patterns. These
patterns represent the number
of interactions associated with
each factor, i.e., the number
of lines (edges) starting from
each factor (node).

STEP 6: Calculate extended patterns
which are defined as D

i
= Σ

d
ij
, where d

ij
’s the pattern of

all factors adjacent to ith

factor.
STEP 7: Arrange in descending order

the patterns and extended
patterns.  Since there are two
types of factors, divide the
pattern in two groups, one
corresponding to the control

Figure 1. Isomorphic vs. Non-Isomorphic Interaction Graphs
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factors and the other corre-
sponding to the noise factors.

STEP 8: Repeat the steps 4 to 7 for all
combinations. Different
combinations will give rise to
non-isomorphic graphs if the
patterns or the extended
patterns are distinct.

STEP 9: Corresponding to each
distinct combination, develop
an interaction graph.

The clear interaction between
control-to-control factors and control-
to-noise factors are represented by
solid lines and the eligible, but not
clear interaction between factors are
represented by broken lines.
      We explain in greater detail the
algorithm steps for developing non-
isomorphic graphs with the help of an
example as was discussed in Keats and
Montgomery (1991).

Example
      In casting aircraft and jet turbine
engine parts, a preliminary goal is to
determine an appropriate alloy chemis-
try for the material. The intent is to
achieve certain physical properties,
such as high ultimate tensile strength,
which is achieved by varying the alloy
elements of materials. In this experi-
ment, Keats and Montgomery (1991)
considered seven factors (each at 2
levels) of which four are control factors
namely (1) aluminum (2) tritanium (3)
chromium and (4) silicon and the rest
are noise factors, i.e. (5) heat treatment
(6) temperature and (7) oxygen level.
Now we consider a 27-2 design with 32
runs, having WLP (word length
pattern) as (000455), see Chen et al
(1993). This will give a resolution IV
design. It can be seen there are four
non-isomorphic defining relations of
WLP (000455) which are as follows:

(1) I=BCdeF=ACdeg=ABFg
(2) I=BCdeF=AcdeG=ABFG
(3) I=BCDef=ACDeg=ABfg
(4) I=bCDEf=ACDEg=Abfg

Now consider the first defining relation
i.e., I=BCdeF=ACdeg=ABFg. The
alias structure for the given defining
relation is as shown in Table 1.

There are eight (8) possible
combinations of eligible, but not clear
two-factor interactions. Consider one
of the combinations annexing the clear
two-factor interactions as:

AC    Ad    Ae    BC    Bd    Be    Cd
Ce    CF    Cg    dF    eF    Fg    Bg
BF

The interaction matrix, pattern and
extended pattern for the above combi-
nation is shown in Table 2.

The sorted pattern and extended
pattern are [3 5 5 6 3 4 4 ] and [14 22
22 24 16 19 19 ] respectively.
      Proceeding in this manner, we get
three distinct patterns and extended
patterns that are listed in Table 3 (page
6). These patterns and extended patterns
give rise to three non-isomorphic
interaction graphs that are shown in
Figure 2 (page 7) as solid lines indicating
clear interactions between factors and as
dotted lines indicating possible, but not
clear, interactions between other factors.

Similarly, we get two non-isomor-
phic interaction graphs corresponding
to the defining relation

I=BcdeF=AcdeG, two non-isomorphic
interaction graphs corresponding to the
defining relation I=BCDef=ACDeg and
one non-isomorphic interaction graph
for I=bCDEf=ACDEg.  The list of
patterns and extended patterns are
given in Table 4 (page 6).
      A detailed list showing the number
of non-isomorphic interaction graphs
for various two level fractional factorial
designs composed of a different
number of control factors and noise
factors is given in the Appendix.  A
complete catalogue of interaction
graphs is available with the authors.

Use And Interpretation Of
Non-Isomorphic Interaction
Graphs

Designing an experiment using only
few non-isomorphic interaction graphs
is very simple and efficient.  This
technique allows us at a glance to decide
how to allocate different control as well
as noise factors to different columns of
the treatment matrix such that the
desired interaction can be estimated
with as few experimental runs as
possible.  For instance, in the above

Table 1. Alias Structure

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
A B AB C AC BC d Ad Bd Cd eF

Fg

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
e Ae Be Ce dF Cg CF BF g F AF

Ag Bg

Table 2. Interaction Matrix

A B C F d e g
A 0 0 1 0 1 1 0
B 0 0 1 1 1 1 1
C 1 1 0 1 1 1 1
F 0 1 1 0 1 1 1
d 1 1 1 1 0 0 0
e 1 1 1 1 0 0 0
g 0 1 1 1 0 0 0
Pattern 3 5 6 5 4 4 3
Extended 14 22 24 22 19 19 16
Pattern
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example, if we are interested in estimat-
ing the interaction between aluminum
and tritanium, then we can easily see
from the graphs in Figure 2 that we
must assign aluminum and tritanium to
columns (A,C), (B, C), or (C, F).

By extension, as experimenters
design fractional factorial experi-
ments, as opposed to more costly and
time consuming experiments such as
full factorial designs, non-isomorphic
interaction graphs become the primary
means for identifying the interactions
of interest, and we visualize those
interactions of interest as the solid
lines in the interaction graphs.  And
since we can readily identify the
existence or non-existence of a desired
interaction, as experimenters, IT’s can
readily focus their attention on
renaming factors as needed to obtain
the interactions of interest to study
these interactions with as few experi-
mental runs as possible – saving time
and money, getting better information
for use in the problem solving or
process improvement process, and
reducing the chance of experimental
error or information overload.

Conclusions
It is important to note that IT’s are

members of technical as well as
managerial communities.  As members
of these communities, IT’s have as
their primary responsibilities, in many
cases, completing the complex analyses
needed to better understand industrial
operations in the context of problem
solving and process improvement or
making informed decisions based on
the results of experimental-based
analysis.  In order to do their jobs more
efficiently and effectively IT’s need at
least a familiarization with high-level
quantitative tools such as discussed in
this paper to facilitate the analysis
activity.  Non-isomorphic interaction
graphs represent an enhancement to the
IT’s tool box enabling IT’s to design
experiments that produce valuable data
and information from as few experi-
mental runs as possible – certainly with
fewer runs than would be possible
without using the graphs.

Table 3. List Of Distinct Patterns And Extended Patterns
For 27-2 Designs With I=BCdeF=ACdeg

Table 4. List Of Distinct Patterns And Extended Patterns

Since the financial implications of
completing such quantitative analyses
with fewer rather than more experi-
mental runs can be substantial, IT’s
should, at the very least, be aware of
the tools and their application to
industrial operations.  Further, knowing
the mechanics of how to actually apply
these tools can only help IT’s contrib-
ute to the long-term competitiveness
and survivability of their academic or
industrial employers.
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24-1 I=ABCd 3 1  3

24-1 I=Abcd 2 2  2

25-1 I=ABCe 4 1  3

25-1 I=ABce 3 2  3

26-2 I=ABCE=BCDf 5 1 27

26-2 I=ABCE=BCdf 4 2 14

26-2 I=ABCe=BCDf 4 2 26

26-2 I=ABce=BcDf 3 3   4

26-2 I=ABCe=BCdf 3 3 12

27-2 I=BCDeF=ACDeG 6 1   2

27-2 I=BCDEF=ACDEg 6 1   3

27-2 I=BcdeF=AcdeG 5 2   2

27-2 I=BCDeF=ACDeg 5 2   3

27-2 I=BCDEf=ACDEg 5 2   2

27-2 I=BCdeF=ACdeg 4 3   3

27-2 I=BcdeF=AcdeG 4 3   2

27-2 I=BCDef=ACDeg 4 3   2

27-2 I=BcDEf=AcDEg 4 3   1

27-3 I=ABCE=BCDF=ACDg 6 1   1

27-3 I=ABCE=BCDf=ACDg 5 2   1

27-3 I=ABCe=BCDf=ACDg 4 3 84

27-3 I=ABCE=BCdf=ACdg 4 3 28

28-3 I=BCDEF=ACDEG=ABDEh 7 1 27

28-3 I=BCDeF=ACDeG=ABDeH 7 1   7

28-3 I=BCDEF=ACDEg=ABDEh 6 2 26

28-3 I=BcDEF=AcDEG=ABDEh 6 2 14

28-3 I=BCDeF=ACDeG=ABDeh 6 2 30

28-3 I=BCdeF=ACdeG=ABdeH 6 2   7

28-3 I=BCDEf=ACDEg=ABDEh 5 3   3

28-3 I=BcDEF=AcDEg=ABDEh 5 3 12

28-3 I=BCDeF=ACDeg=ABDeh 5 3 26

28-3 I=BcDeF=AcDeG=ABDeh 5 3 14

28-3 I=BCdeF=ACdeG=Abdeh 5 3 30

28-3 I=bcDEF=AcDEg=AbDEh 4 4   4

28-3 I=BcDEf=AcDEg=ABDEh 4 4  2

28-3 I=BCDef=ACDeg=ABDeh 4 4  4

Appendix

Table 1. Number Of Non-Isomorphic Interaction Graphs For Various 2 Level Fractional Factorial Designs With
Different Number Of Control Factors And Noise Factors.

Design Defining Relation No. of No. of No. of
Control Factors Noise Factors Non-Isomorphic

Interaction Graphs
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28-3 I=BcDeF=AcDeg=ABDeh 4 4 12

28-3 I=BCdeF=ACdeg=ABdeh 4 4 26

28-3 I=BcdeF=AcdeG=ABdeh 4 4 14

28-4 I=ABCE=BCDF=ACDG=ABDh 7 1     125

28-4 I=ABCE=BCDF=ACDg=ABDh 6 2     241

28-4 I=ABCE=BCDf=ACDg=ABDh 5 3     253

28-4 I=ABCE=BCdf=ACdg=ABdh 4 4       38

28-4 I=ABCe=BCDf=ACDg=ABDh 4 4     125

29-3 I=ABCDg=ACEFH=CDEFJ 8 1         6

29-3 I=ABCDG=ACEFH=CDEFj 8 1         8

29-3 I=ABCDg=ACEfH=CDEfJ 7 2         6

29-3 I=ABCDg=ACEFH=CDEFj 7 2         8

29-3 I=ABCDG=ACEFh=CDEFj 7 2         3

29-3 I=ABCDg=ACefH=CDefJ 6 3         2

29-3 I=ABCDg=ACEfH=CDEfj 6 3         4

29-3 I=ABCDg=ACEFh=CDEFj 6 3         2

29-3 I=ABCdG=ACEFh=CdEFj 6 3         1

29-3 I=ABcDg=AcefH=cDefJ 5 4         2

29-3 I=ABCDg=ACefH=CDefj 5 4         4

29-3 I=ABCDg=ACEfh=CDEfj 5 4         4

29-3 I=ABCdg=ACEFh=CdEFj 5 4         1

29-3 I=aBCdG=aCEFh=CdEFj 5 4         1

29-4 I=BCDEF=ACDEG=ABDEH=ABCEj 8 1     395

29-4 I=BCDeF=ACDeG=ABDeH=ABCeJ 8 1  66

29-4 I=BCDEF=ACDEG=ABDEh=ABCEj 7 2 971

29-4 I=BcdEF=ACdEG=ABdEH=ABCEj 7 2 310

29-4 I=BCDeF=ACDeG=ABDeH=ABCej 7 2 442

29-4 I=BCDEF=ACDEg=ABDEh=ABCEj 6 3 184

29-4 I=BcdEF=ACdEG=ABdEh=ABCEj 6 3   55

29-4 I=BCDeF=ACDeG=ABDeh=ABCej 6 3 593

29-4 I=BcdeF=ACdeG=ABdeH=ABCej 6 3 190

29-4 I=BcdEf=ACdEg=AbdEh=ABCEJ 5 4   12

29-4 I=BcdEF=ACdEg=AbdEh=ABCEj 5 4   74

29-4 I=BCDeF=ACDeg=ABDeh=ABCej 5 4 186

29-4 I=BcdEF=AcdEG=ABdEh=ABcEj 5 4   70

29-4 I=BcdeF=ACdeG=ABdeh=ABCej 5 4 197

210-4 I=ABCDG=ACEFH=CDEFJ=ABCEk 9 1   32

210-4 I=ABCDG=ACEFH=CDEFj=ABCEK 9 1 107

210-4 I=ABcDG=AcEFH=cDEFJ=ABcEK 9 1   90

210-4 I=ABCDg=ACEFH=CDEFj=ABCEK 8 2 150
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210-4 I=ABCDg=ACeFH=CdeFJ=ABCeK 8 2   39

210-4 I=ABcDG=AcEFH=cDEFj=ABcEK 8 2 110

210-4 I=ABCDG=ACEFh=CDEFJ=ABCEk 8 2   51

210-4 I=ABCDG=ACEFH=CDEFj=ABCEk 8 2 132

210-4 I=ABCDG=ACEFh=CDEFj=ABCEK 8 2 102

210-4 I=ABCDG=ACEFh=CDEFj=ABCEk 7 3   55

210-4 I=ABCDg=ACEFH=CDEFj=ABCEk 7 3 148

210-4 I=ABCDg=ACEfH=CDEfj=ABCEK 7 3   88

210-4 I=ABCDG=ACEfh=CDEfJ=ABCEk 7 3   17

210-4 I=ABCDG=ACEfh=CDEfj=ABCEK 7 3   34

210-4 I=ABCDg=ACeFH=CDeFj=ABCeK 7 3    99

210-4 I=ABcDg=AcEFH=cDEFj=ABcEK 7 3 150

210-4 I=ABCDg=ACeFH=CDeFJ=ABCek 7 3   20

210-4 I=ABcDg=AceFH=cDeFJ=ABceK 7 3   39

210-4 I=ABCdG=ACEFh=CdEFJ=ABCEk 7 3    7

210-4 I=ABCDg=ACEFh=CDEFj=ABCEk 6 4   19

210-4 I=ABCDg=ACEfH=CDEFj=ABCEK 6 4   52

210-4 I=ABCdG=ACEFh=CdEFj=ABCEk 6 4    5

210-4 I=ABCDg=ACeFH=CDeFj=ABCek 6 4   19

210-4 I=ABCDG=ACEFh=CDEfj=ABCEk 6 4   15

210-4 I=ABcDg=AcEfH=cDEfj=ABCEK 6 4   96

210-4 I=ABCDg=ACeFH=CDeFj=ABCek 6 4   19

210-4 I=ABcDg=AcEfh=cDEfJ=ABcEK 6 4   18

210-4 I=ABcDg=AceFH=cDeFj=ABceK 6 4    99

210-4 I=ABCDg=ACefH=CDefJ=ABCek 6 4     9

210-4 I=ABcDg=AceFH=cDeFJ=ACcek 6 4    20

210-4 I=ABCdg=ACeFH=CdeFJ=ABCEk 6 4    19

210-4 I=ABCDg=ACefh=CDefj=ABCeK 5 5    89

210-4 I=ABcDg=AcEfH=cDEfj=ABcEk 5 5  165

210-4 I=ABCDg=ACEfh=CDEfj=ABCEk 5 5   225

210-4 I=ABcDg=AcefH=cDefj=ABceK 5 5   211

210-4 I=ABCDg=ACEfH=CDefj=ABCek 5 5   285

210-4 I=ABCdg=ACEFh=CdEFj=ABCEk 5 5   209

210-4 I=ABcDg=AceFH=cDeFj=ABcek 5 5   128

210-4 I=ABCDg=ACefh=CDefJ=ABCek 5 5 4

210-4 I=ABCdg=ACeFh=CdeFJ=ABCek 5 5 5

210-4 I=ABcDg=AcefH=cDefJ=ABcek 5 5  9

210-4 I=ABCdg=ACeFH=CdeFj=ABCek 5 5 15

210-4 I=ABcdg=AceFH=cdeFJ=ABcek 5 5 19

210-4 I=AbCDg=ACefH=CDefJ=AbCek 5 5  2
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