
1

Journal of Industrial Technology • Volume 19, Number 1 • November 2002 to January 2003 • www.nait.org

KEYWORD SEARCH

The Official Electronic Publication of the National Association of Industrial Technology • www.nait.org
© 2002

A Method for Evaluating Expert System
Shells for Classroom Instruction

By Dr. MD Salim, Mr. Alvaro Villavicencio, & Dr. Marc A. Timmerman

Volume 19, Number 1 - November 2002 to January 2003

Refereed Article

Administration
CAM

Computer Science
Information Technology

Management

2

Journal of Industrial Technology • Volume 19, Number 1 • November 2002 to January 2003 • www.nait.org

A Method for Evaluating
Expert System Shells for
Classroom Instruction
By Dr. MD Salim, Mr. Alvaro Villavicencio, & Dr. Marc A. Timmerman

Abstract
Contemporary Industrial Technol-

ogy pedagogy includes the subject of
Artificial Intelligence. Artificial
Intelligence problems are often solved
by students using commercial software
packages called Expert Systems Shells.
This paper describes the use of a
method called Function Point Analysis
for the evaluation of Expert System
Shells for suitability in Industrial
Technology pedagogy. Two types of
Function Point Analysis are described
in this paper; a direct method in which
the Expert System Shell software itself
is evaluated and an indirect method in
which only the specification of the
software is evaluated. The indirect
method does not require the evaluator
to have an actual copy of the software
being evaluated, but it gives less useful
results than the direct method, which
does require that the evaluator have a
copy of the software. Both methods are
simple and straightforward and can be
used successfully by Industrial Tech-
nology educators with no specialized
background in Information Technology
or Software Engineering.

Introduction
An Expert System is a computer

program that can perform tasks using
logic patterns similar to those used by a
human expert. Expert systems can be
constructed “from scratch” using
standard programming languages like
C/C++, Cobol, or other general-
purpose computer languages. This is a
laborious and lengthy process due to
the complexity of the programs
(Jackson, 1999). Expert System Shells
are commercial software packages used
to implement Artificial Intelligence
projects in business, industry, govern-

ment, and in academic programs
training students for such activities.
Using an Expert System Shell signifi-
cantly reduces the time and labor of the
creation of Artificial Intelligence
programs by eliminating the need to
program in a general-purpose program-
ming language. A typical example of
an Expert System program is a Deci-
sion Support System. A Decision
Support System is a program that
makes informed decisions based on
human-like reasoning rules by evaluat-
ing various forms of data. A common
application of Decision Support
System is “fault identification.” This is
a program that helps unskilled workers
to identify (and to fix!) the cause of
equipment malfunctions by prompting
the workers to make certain measure-
ments and observations. The Decision
Support System is programmed with
the “rules” or knowledge of an expert
worker in the maintenance of a particu-
lar type of equipment. The system
helps an unskilled worker to fix a
broken piece of equipment by using
this program equipped with the expert
worker’s knowledge and experience
without actually requiring the expert
worker’s presence. This type of
Artificial Intelligence application
allows a company to make the best
possible use of its personnel resources
and is of great economic interest in
many sectors of business and industry.

Expert System Shell packages vary
greatly in cost and performance, and in
friendliness to the end user. They play an
important role in the $250 million North
American Artificial Intelligence software
market. The National Academy Council
(1999) has reported that over 12,000
Artificial Intelligence systems based on
Expert System Shells are in use.

MD Salim holds a B.S. in Civil Engineering from the
Bangladesh Institute of Technology, an M.S. in Con-
struction Engineering from the University of Leeds
(UK) and a Ph.D. in Civil Engineering from the North
Carolina State University. He has served in numer-
ous industrial positions and on the faculty of the
University of Northern Iowa. His research interests
and publications are in the applications of artificial
intelligence to construction management.

Mr. Alvaro Villavicencio holds a B.S. in Industrial
Engineering with a minor in Computer Sciences from
the Catholic University of Chile, and a M.A.degree
in Industrial Technology from the University of
Northern Iowa. He is a Doctor of Industrial Tech-
nology Candidate at the University of Northern Iowa.
He served as a faculty member at the University of
Tarapacá, Arica-Chile, worked as consultant in Man-
agement Information Systems in different institu-
tions in Chile, and also as a Staff Engineer in an
Electric Distribution company in Chile. His research
interests are in the areas of Artifical Intelligence
Applications in Manufacturing and Construction,
Expert Systems development, system integration,
Robotics, and Automated Manufacturing.

Dr. Marc A. Timmerman holds a B.S.E.E. from the Santa
Clara University, a M.Eng.E.E. from the Rensselaer
Polytechnic Institute, and a Ph.D. from the George W.
Woodruff School of Mechanical Engineering at the
Georgia Institute of Technology. He has served on
the faculties of the University of Tulsa, the Louisiana
State University at Baton Rouge, the University of Ar-
kansas at Little Rock, the University of Northern Iowa,
and the Oregon Institute of Technology. His research
publications are in the area of embedded micropro-
cessors and DSP, Mechatronics, vibrations and mag-
netic bearings, optimization theory and artificial in-
telligence, and supply chain management.

3

Journal of Industrial Technology • Volume 19, Number 1 • November 2002 to January 2003 • www.nait.org

Purpose
An Industrial Technology Educator

always wants to select a commercial
Expert System Shell Package that is
suitable for instruction. The instructor
would like to first qualitatively group
the available shells as to complexity.
Next the instructor would like to
numerically rank the acceptable shells
into a list from most suitable to least
suitable for instructional use. If there are
ties in the ranking or if the best shells
are unavailable due to cost, networking,
hardware, or licensing issues, the
instructor would like to be able to use
combined qualitative and quantitative
data to guide his or her decision.

The indirect method (qualitative
assessment) described in this paper
requires the instructor to obtain a
description or specification of the
software package to be studied. Based
on these data, the instructor enumerates
the software’s features in five catego-
ries. These enumerations result in
numerical values that are tabulated,
multiplied by weights, and further
arithmetically manipulated. The final
results are a set of numerical values
that describe the lines of code, number
of man hours, etc., to write and debug a
computer program in a high level
programming language to implement
the features of the Expert System Shell
being studied. These numbers are an
indirect measure of the relative com-
plexity of the Shell being studied. For
example, if Shell “A” yields a result
that 50,000 lines of code would be
needed to implement Shell “A’s”
function and Shell “B” yields a result
that 20,000 lines of code would be
needed to implement Shell “B’s”
function, then the instructor would
infer that Shell “A” was more complex
than Shell “B.” The instructor can use
these numbers to qualitatively rank the
complexity of the shells being studied.
In general the complexity of the shell
gives an indication of the powerfulness,
number of features, or problem solving
strength of the shell.

The direct method (quantitative
assessment) described in this paper
requires the instructor to obtain a copy
of the software to be evaluated and to

perform a simple benchmark problem
on this software. Based on his or her
experience with the software, the
instructor answers a set of nineteen
questions about the software. The
questions are quantitative and are based
on a 0 (very false) to 5 (very true)
numerical scale. After some arithmetic
manipulation of these numbers, a
single numerical factor results called
the “Satisfaction Level” that ranges
from 0 (least satisfied user) to 5 (most
satisfied user) can be used to rank the
software packages being studied as to
their likelihood to be satisfactory to the
end user, the student.

It should be noted that the direct
and indirect methods could also be
used independently. For example, if a
small number of shells are to be tested
and sample versions of all these shells
are available, then the direct method
can be used immediately. Likewise, if
there are no sample versions available
of the shells to be tested, the indirect
method can be used independently.

Review Of Literature
As noted by Stylianou, Madey, and

Smith (1992), the selection of an
adequate Expert System Shell is often
the difference between a successful and
an unsuccessful industrial application.
This observation is just as applicable to
instructional uses of Expert Systems
Shells as it is to industrial uses of such
software packages.

 Industrial Technology classes in
Computer Integrated Manufacturing,
Construction Management, Industrial
Maintenance and Supervision, Occupa-
tional Health and Safety, and other
areas often include computer labora-
tory exercises or projects based on
implementing Decision Support
Systems or some other type of Artifi-
cial Intelligence applications. These
applications are often implemented on
Expert System Shells. Some examples
of such applications include the works
of Koo and Aw (1992) and Roschke
(1994) that have described applications
of Decision Support Systems to
construction management problems.
El-Najdawi and Stylianou (1993) and
Larsson (1996) have described the use

of Decision Support Systems to
problems in manufacturing and plant
maintenance. Larsson (1996) describes
a Decision Support System that uses an
Expert System Shell to implement
industrial maintenance on sensor
systems in a manufacturing setting. Tait
and Mehta (1997) give a detailed
description of a Decision Support
System called WORKBOOK that
implements a complete chemical
exposure analysis for industrial
workplace chemical safety compliance.
Xenakis (1990) gives a number of
examples of the use of Expert System
Shells to managerial/supervisory tasks.

According to two articles by Van
Name and Catchings (1990), due to the
large number of Expert System Shell
packages on the market—and the lack of
any standardized nomenclature for
describing the features and capabilities of
such products—selecting an appropriate
package for an application can be very
difficult even for experienced users. Head
(1992) gives the sage advice to those
contemplating the selection of an Expert
System Shell to “think big” but to “start
small.” Current product reviews of
Expert System Shells in the software trade
literature are of very limited use as they
assume that the reader is already familiar
with the current version of the shell and
the author or authors only provide details
of changes and improvements to that
shell’s latest version. In order to get
details of the basic structure of the shell it
is often necessary to go to archival sources
like Pallatto (1991), Rasmus (1989),
Coleman (1989), Shepherd (1988), who
respectively describe the basic functions
of first-generation Expert System Shell
packages from IBM, Nexpert, Xi-Plus,
and Texas Instruments.

Unfortunately, other than an
excellent article by Moffitt (1994),
there is not much literature on the
selection of Expert System Shells from
a purely pedagogical perspective.
Nevertheless, Stylianou, Madey, and
Smith (1992) identify a total of eight
(8) categories of criteria for evaluating
Expert System Shells; End User
Interface, Developer Interface, System
Interface, Inference Engine, Knowl-

4

Journal of Industrial Technology • Volume 19, Number 1 • November 2002 to January 2003 • www.nait.org

edge Base, Data Interface, Cost, and
Vendor-Related aspects.

From an industrial and business
user perspective, Plant and Salinas
(1994) and Dudman (1993) have
presented a “bench-mark” based
framework for the evaluation of Expert
System Shell packages. Their general
concept is that a standard” bench-mark”
problem is formulated and run on
various shells and the results are
compared for time to execute, correct-
ness of results, ease of use, and so forth.
Unfortunately, the outcome of this
assessment is very dependent on the
specific “bench-mark” problem chosen
and this method is thus very limited in
its usefulness. Murrell and Plant
(1997) and Antoniou, van Harmelen,
and Plant (1998) have published surveys
of more sophisticated methods for
software assessment that attempt to
avoid this limitation of the “bench-
mark” method. Such methods include
the “constructive cost model” of Boem
(1981) and the method of Putnam and
Meyers (1992). Putnam and Meyers
champion the concept of “excellence”
measures that deal quantitatively with
issues like maintainability and user
friendliness of software packages. Both
of these methods are based on using the
size of the program, the labor involved
in writing the program, and other such
measures of complexity and effort, to
assess the software’s general usability
and overall quality. These methods,
though simple to implement, do not give
a good idea of the suitability of a
software package for a particular use,
but do give a general view of the
software’s overall complexity and
friendliness. Wentworth, Knaus, and
Aougab (1999), and Pressman (1997)
have presented approaches based on
statistical concepts that give good
estimates of the likelihood that a
software package will be powerful and
accurate, i.e., give good answers.
Unfortunately, these methods do not
give much insight as to the difficulty or
friendliness of the steps leading to that
answer. Finally, Banyahia (1996) gives
an excellent summary of these issues in

a format useful to Industrial Technology
education professionals. As can be seen
from these references, the key problem
is finding a single method that assess
both the power/accuracy and the user
friendliness of an Expert System Shell.

Function Point Analysis is a
methodology for assessing a software
package that can measure both the
accuracy and the user friendliness of an
Expert System Shell. The Function
Point Analysis method is based on
evaluating specific features of the
software package on a numerical scale,
multiplying these numbers by weights
that assigns the relative importance of
each feature, and formulating a numeri-
cal figure of merit for the package as a
whole by adding these weight and
evaluation products. A final scaling
factor is often used to bring the answer
into an easy-to-interpret range of 0 to 5
points or 0 to 10 points—with 0
representing poor satisfaction. Accord-
ing to Cheung, Willis, and Milne,
(1999) the Function Point Analysis
method originated with Albrecht in
1979 and has become very popular
among Information Technology
specialists. There is a large literature
on methods to apply Function Point
Analysis to particular types of prob-
lems in software assessment. Such
literature includes work by Robillard
(1996), and Jeffrey and Low (1993). A
paper by Furey (1997) aptly summa-
rizes the benefits of the Function Point
Analysis approach:

Although they are not a perfect
metric, they have proven to be
very useful. Among the desirable
features of function points are
technology independence, con-
sistency and repeatability, data
normalization and estimating
and comparing. (p. 28)

The methodology presented in this
study is based on Function Point
Analysis. The work of Boem (1981)
and Putnam and Meyers (1992) is used
to augment the Function Point Analysis
method with other advanced concepts.

Function point analysis has
become a standard, mature technique
widely used by industrial practitioners.
Biderman (1990) mentions that an
international society dedicated to
function point analysis, the Interna-
tional Function Point User’s Group
(IFPUG), was founded in 1986 and had
enrolled over 200 members. As
function point analysis is a mature
technique, there are relatively few
journal articles about function point
analysis in the current experimental
literature. A recent article by Cheung,
Willis, and Milne (1999) describes
many ongoing industrial applications
of function point analysis. Another
recent article by Orr and Reeves (2000)
describes a pedagogical framework for
teaching function point analysis in a
Business program.

Methodology
Two types of evaluation data can be

generated for an Expert System Shell
package, a direct method and an indirect
method.1 The first type of data is
“Satisfaction Level” which is a direct
measure of the overall user satisfaction
with the shell. For example, if a sample
copy or demo copy of the Expert System
Shell software is available, the evaluator
will run an example problem. Based on
his / her experiences with the software,
the evaluator can calculate a numerical
“Satisfaction Level” based on his / her
experience with the shell. Many vendors
of Expert Systems Shells do provide free
demo or sample limited-use versions of
their products to allow potential buyers to
perform this type of study.

Direct Method Methodology
Table 1 presents the direct method

test instrument. This instrument is
completed by the evaluator as follows:

(1) The evaluator obtains demonstra-
tion or sample copies of the
software packages to be evaluated.

(2) The evaluator selects a bench-
mark problem, for example a text
book example problem, and runs
this problem on each of the
software packages.

1 The methods presented in this study are specific applications of very general methods described in a seminal text by Pressman (1997). Readers
interested in the scientific/statistical bases of these methods are referred to this most excellent general treatment of this subject matter.

5

Journal of Industrial Technology • Volume 19, Number 1 • November 2002 to January 2003 • www.nait.org

(3) After running the bench-mark
problem, the evaluator responds
to the 19 questions in the instru-
ment and estimates a quantitative
answer to each question on a 0 to
5 scale with 5 being very true and
0 being very false.

(4) Each numerical result is multi-
plied by a weighting factor as
given in the weight column.

(5) The weighted values are summed
and then divided by 26 (as for 19
questions, 7 questions have
weight factor of 2 and 12 ques-
tions have weight factor of 1, i.e.,
7x2 + 12x1= 26) to give a result
in the numerical range of 0 to 5.

Three complete numerical ex-
amples of the direct method and a
paradigm for interpreting the direct
method result are presented in the
Findings section.

Indirect Method Methodology
The second method is based on

estimating the resources needed to write
a program using general computer
languages to implement an Expert
System. This type of calculation is based
on finding answers to the following
questions, “If a user wrote a program in
some computer language to solve this
problem instead of using a ready-made
Expert System shell, how long would this
program be, how many person-months
would it take to write this program, how
many errors might this program have,
and how many test cases might the user
need to run to debug the program?”
This question assumes that LISP or
PROLOG, two common languages used
for Artificial Intelligence programs, are
being used for this hypothetical equiva-
lent computer program.

Table 2 presents the indirect
method test instrument.2 This instru-
ment is used as follows:

(1) The evaluator obtains specifica-
tions or other descriptive materi-
als for the software packages to
be evaluated.

(2) The evaluator enumerates the
number of Internal Knowledge
Structures, External Data, Input
Decisions, Decisions Supported at
Output, and User Inquiries sup-
ported in the software packages.

(3) The evaluator then estimates the
complexity level of each of these
features as Low, Medium, or
High, and selects a numerical
weight based on this complexity.

(4) The evaluator multiples the
enumerated values in step 2 by
the weights in step 3 and sums
the weighted value. This number

2 The methodology of this instrument is adapted from Pressman (1997). Pressman’s results are based on statistical analyses of numerous software
projects and “curve fitting” techniques to derive simple algebraic approximations based on these studies. The weighing factors in this instrument
come from these statistical analyses.

Table 1. Direct measurement test instrument.

6

Journal of Industrial Technology • Volume 19, Number 1 • November 2002 to January 2003 • www.nait.org

is referred to as the “Function
Point” (singular).

(5) Finally, by division “/”, multipli-
cation “x”, and exponentia-
tion”^”, of this “Function Point”
(singular) numerical value, the
evaluator calculates other
“Function Points” (plural) that
are the end result of the indirect
method:
(a) Equivalent Lines of Code

Needed to Solve Same
Problem =
(Function Points) x 64

(b) Number of Test Cases Needed
to Debug Equivalent Code =
(Function Points) ^ 1.2

(c) Number of Probable Defects/
Bugs in Equivalent Code =
(Function Points) ^ 1.25

(d) Number of Months to Write
Equivalent Code =
(Function Points) ^ 0.4

(e) Number of Persons Needed
to Write Equivalent Code =
(Function Points)/150

(6) One value requires a further
calculation, the number of
Person-Months needed is the
product of the numerical values
of the number of persons and the
number of months:
Total Person-Months for
Equivalent Code Project =
Number of Months x Number of
Persons

These results of the indirect
method do not have a simple interpreta-
tion. These numbers estimate the scope
of an equivalent LISP / PROLOG
language programming project with the
same functionality as the Expert
System Shell being evaluated. There
is no direct interpretation of these
numbers as an end user’s potential
satisfaction, but these numbers can be
used to rank and compare the potential
complexity of an Expert System Shell
product in the situation where a
version of the product is not available
for evaluation. Typically, the assump-
tion is made that a more complex
package has more features or functions
and is therefore is more powerful. The
Findings section illustrates a possible
approach to interpreting these data.

Some Practical Issues with this
Methodology

If a very large number of software
packages are to be evaluated, the less
labor intensive indirect method can be
used for a preliminary ranking of the
software packages and the more time
intensive direct method can be used to
refine the selection process once a
subset of packages has been identified
for a further and more detailed study.

These methods are based on
standard techniques with which all
Information Technology managers are
familiar. In situations where software
purchases require administrative

approval, studies of this nature can be
very helpful in obtaining administrative
approval from Information Technology
managers for making this type of
software purchase.

A further use of the indirect
method is in estimating the amount of
lecture and lab time needed to cover
the basic functions of the Expert
Systems Shell. In the situation where
the Expert System Shell will be one of
several elements covered in a class,
there may be a strong advantage in
favoring a simpler product over a more
complex product.

Findings
Test Cases Presented

To illustrate the use of this para-
digm, a complete instructional usability
analysis of three common Expert
System Shells products is presented:

(1) MP2 Professional version 5.0
from Datastream Corporation of
Greenville, South Carolina,
USA. Table 3 is a direct analysis,
Table 4 is an indirect analysis.

(2) EXSYS CORVID from Albu-
querque, New Mexico, USA.
Table 5 is a direct analysis, Table
6 is an indirect analysis.

(3) Art * Enterprise from Mindbox
of Greenbrae, California, USA.
Table 7 is a direct analysis, Table
8 is an indirect analysis.

Table 2. Indirect measurement test instrument.

7

Journal of Industrial Technology • Volume 19, Number 1 • November 2002 to January 2003 • www.nait.org

In assessing the Expert System
Shells, it is important to keep in mind that
the complexity of using the shell is
strongly influenced by the complexity of
the problem the shell is being used to
solve. It would not be meaningful to
compare “Shell A” solving a simple
problem to “Shell B” solving a compli-
cated problem. The shells should be
evaluated consistently on a single bench-
mark problem to insure that their features
needed to solve non-trivial, complex
problems are being uniformly evaluated.
In this study, a simple problem of the
scheduling part flow in a machine shop
was used as the benchmark problem.

The direct method presents an
unexpected problem in that the demo
versions of Expert System Shell
packages commonly made available by
vendors are often deeply scaled down
versions that are missing many of the
features of the full commercial version
of the software package. Care must be
taken to carefully research the features
of the full commercial software
package and perform a consistent and
meaningful analysis.

Interpretation of the Data of the
Test Cases

The italic numerals in the Tables 3
through 8 represent values entered by
the person evaluating the shells. Table
9 is a summary of the results of Tables
3 through 8. The values are rounded for
ease of comparison. The direct method
calculations shown in Tables 3, 5, and
7, give an estimation of end-user
Satisfaction Level. The indirect
calculations in tables 4, 6, and 8, give
estimates of the relative complexity of
the packages. Table 9 presents the
direct and indirect results for compari-
son purposes.

The evaluator must use some
thought and insight to interpret the
results. The results seem to group the
shells into two categories. The MP2
shell has a high satisfaction number at
4.54 but also has a high code line count
at 15,616. The EXSYS CORVID and
the Art * enterprise shells seem to lump
together as they both had similar
satisfaction numbers at 4.35 and 4.31
and much lower code line numbers at
6,272 and 9,472. The data would

suggest that there is a trade-off be-
tween the complexity of a program, the
ease of use of a program, and the
power of a program. Figure 1 depicts a
graphical interpretation of these data.
Based on the direct results, all three
packages show the potential to satisfy
the user. However, the MP2 package is
a much more complex software
package than the Art * Enterprise
package or the EXSYS CORVID
package. This would suggest that MP2
is both easy to use and has many
features while Art * Enterprise and
EXSYS CORVID are also easy to use
but have fewer features. Based on this
interpretation of the data, the instructor
might have the following ranking:

(1) Purchase MP2 as the most
desirable package.

(2) Purchase either Art * Enterprise
or EXSYS CORVID as a second
choice. Asboth of these pack-
ages have similar direct and
indirect rankings, the choice of
which package to purchase
should be based on cost.

Table 3. MP2 Results. Direct measurement technique.

8

Journal of Industrial Technology • Volume 19, Number 1 • November 2002 to January 2003 • www.nait.org

Table 4. MP2 Results. Indirect measurement technique.

Table 5. EXSYS CORVID example. Direct measurement technique.

Implications In The Research
Expert System Shell software

assessment studies have appeared in
many computer-related journals and
trade publications. Articles in these
publications tend to focus on one or
more specific packages available at that
time and gives one an overall impres-

sion of the shell, but provide no
definite information on performance
(Stylianou, Madey, and Smith, 1992).
Assessment methods that give a useful
measure of the user complexity and
computational power of such software
packages are also described in great
detail in the literature. There is

unfortunately no single method that
gives a measure of both the power and
the complexity of a software package
as a unified measurement. A further
limitation is that these methods in the
literature do not do a good job of
narrowing this evaluation to a specific

9

Journal of Industrial Technology • Volume 19, Number 1 • November 2002 to January 2003 • www.nait.org

Table 6. EXSYS CORVID example. Indirect measurement technique.

Table 7. Art * Enterprise example. Direct measurement technique.

application (like instructional use) of
these software packages.

The method presented in this paper
is a specialization of the popular
Function Point Method for software
assessment applied to the particular
problem of selecting an Expert System
Shell for Industrial Technology
pedagogical use. The direct form of

this method gives a simple numerical
indication of the likely satisfaction
level of the software’s end users, the
students. Although this method is based
on a subjective evaluation technique,
the results do provide a useful scale for
selecting Expert System Shells based
on a common characteristic. The
indirect form of this method is useful

for estimating the power / complexity
of Expert System Shell packages. This
indirect technique does not require
access to the actual software package
and is less labor intensive than the
direct technique. Together, the direct
and indirect techniques allow for an
estimate of both the power / complexity
and the user satisfaction / friendliness

10

Journal of Industrial Technology • Volume 19, Number 1 • November 2002 to January 2003 • www.nait.org

Table 8. Art * Enterprise example. Indirect measurement technique.

Table 9. Results for all three cases presented.

Figure 1. Interpretation of Direct and Indirect Results.

11

Journal of Industrial Technology • Volume 19, Number 1 • November 2002 to January 2003 • www.nait.org

of Expert System Shells. For an
Expert System Shell package to be
pedagogically useful, it must be both
powerful and friendly.

Debate, discussion, and literature
on this important pedagogical problem
is lacking and it is hoped that this
paradigm, as imperfect as it is, will
spark an interest for study and schol-
arly discourse on this very practical
problem in the Industrial Technology
Community. Artificial Intelligence and
Decision Support Systems are rapidly
entering the mainstream of industrial
practice and as such will continue to be
of interest to those responsible for
planning and implementing the Indus-
trial Technology Curriculum.
References
Albrecht, A. (1979). Measuring

applications development productiv-
ity. Proceedings of the Joint Share/
Guide/IBM Application Develop-
ment Symposium, 83-92.

Antoniou, G., van Harmelen, F., &
Plant, R. T. (1998, Fall). Verification
and validation of knowledge-based
systems: Report on two 1997 events.
AI Magazine, 19(3), 123-126.

Biderman, B. (1990). Using function
Points. Computing Canada, 16(4),
30-32.

Boem, B. (1981). Software Engineer-
ing Economics. New York, NY:
Prentice Hall.

Banyahia, H. (1996, Spring). Costs and
productivity estimation in computer
engineering economics. Engineering
Economist, 41(3), 229-242.

Cheung, Y., Willis, R. & Milne, B.
(1999). Software benchmarks using
function point analysis.
Benchmarking: An International
Journal, 6(3), 269-279.

Coleman, T. (1989, March 29). Ex-
pert-ease. PC User, 94-96.

Furey, S. (1997, March-April). Why we
should use function points. IEEE
Software, 14(2), 28-30.

Dudman, J. (1993, May 13). Measure
of success. Computer Weekly, 40-41.

El-Najdawi, M. K., & Stylianou, A. C.
(1993, December). Expert Support
Systems: Integrating AI technolo-
gies. Communications of the ACM,
36, 54-65.

Head, R. V. (1992, April 13). Plan-
ning an expert system? Think big,
but start small. Government Com-
puter News, 11(8), 23-24.

Koo, T. K., & Aw, Y. B. (1992, May).
Using expert systems to manage
professional survey practices.
Journal of Surveying Engineering
118(2), 43-63.

Jackson, P. (1999). Introduction to
Expert Systems. Harlow, England:
Addison-Wesley.

Jeffery, D. R., & Low, G. C. (1993,
May). A comparison of function
point counting techniques. IEEE
Transactions on Software Engineer-
ing, 19(5), 529-533.

Larsson, J. E. (1996, January). Diag-
nosis based on explicit means-end
models. Artificial Intelligence, 80,
29-93.

Moffitt, K. (1994, May-June). An
analysis of the pedagogical effects
of expert system use in the class-
room. Decision Sciences, 25(3),
445-461.

Murrell, S., & Plant, R. T. (1997,
December). A survey of tools for
the validation and verification of
knowledge-based systems: 1985-
1995. Decision Support Systems,
21, 302-323.

National Academy Council. (1999).
Funding a revolution. Washington
D.C.: National Academy Press.

Orr, G., & Reeves, T. E. (2000). Func-
tion point counting: one programs
experience. The Journal of Systems
and Software, 53, 239-244.

Pallatto, J. (1991, July 29). Expert
tools take the spotlight; IBM,
AICorp stress graphical interfaces,
ease of use. PC Week 8(30), 55-56.

Plant, R. T., & Salinas, J. P. (1994,
August). Expert systems shell
benchmarks: The missing compari-
son factor. Information and Man-
agement, 27, 89-101.

Pressman, R. (1997). Software
Engineering: A Practitioner’s
Approach. New York, NY:
McGraw-Hill.

Putnam, L., & Myers, W. (1992).
Measures for Excellence.
Englewood Cliffs, NJ: Prentice Hall
/ Yourdon Press.

Rasmus, D. (1989, September). The
expert is in. MacUser 5(9), 136-147.

Robillard, P. N. (1996, December).
Function points analysis: An empirical
study of its measurements processes.
IEEE Transactions on Software
Engineering, 22(12), 895-901.

Roschke, P. N. (1994, September-
October). Validation of knowledge-
based system with multiple bridge
rail experts. Journal of Transporta-
tion Engineering, 120, 787-806.

Schmuller, J. (1999). Sams teach
yourself UML in 24 hours. India-
napolis, IN: Sams Publishing.

Shepherd, S. J. (1988, July). Sophis-
ticated expert. PC Tech Journal
July 6(7), 106-117.

Stylianou, A. C., Madey, G. R., & Smith,
R. D. (1992). Selection criteria for
Expert System shells: A socio-
technical framework. Communica-
tions of the ACM, 35 (10), 30-48.

Tait, K., & Mehta, M. (1997, August).
Validation of the workplace expo-
sure assessment expert system
WORKBOOK. American Indus-
trial Hygiene Association Journal,
58, 592-602.

Van Name, M. L., & Catchings, B.
(1990, March 7). Choices abound
in expert-system shells. PC Week,
7(9), 77-79.

Van N, M. L., & Catchings, B. (1990,
March 7). Expert-system shell
users advice forethought. PC Week,
7(9), 78-79.ame

Wentworth, J., Knaus, R., & Aougab,
H. (1999). FHWA Handbook:
Verification, Validation, and
Evaluation of Expert Systems.
McLean, VA: Turner-Fairbank
Highway Research Center.

Xenakis, J. J. (1990, September 3).
Real use of AI: expert systems find
widespread use in mainstream
applications - finally.
InformationWeek, 30-32.

