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Introduction
Companies in today’s global manufac-
turing environment compete strongly 
to produce high-quality products at a 
low cost.  Helping manufacturers meet 
these goals has been a trend toward 
increasingly automated manufacturing 
using modern technology.  For ex-
ample, automated computer numerical 
control (CNC) cells can lower labor 
costs and increase production by al-
lowing a single operator to run several 
cells at once (Mills Manufacturing 
Technology, 2003).  However, the lack 
of continuous operator monitoring can 
lead to defects.  This limitation must 
be addressed to optimize automated 
machining processes. 

A typical turning operation produces 
precision parts with critical features that 
may require a specified surface rough-
ness.  Such applications include bearing 
surfaces on axles, bearings, and races; 
ultra-clean surfaces in contaminant-sensi-
tive components; and sealing surfaces 
on bores and pistons.  Producing these 
products with modern CNC turning 
equipment can potentially lead to numer-
ous defects due to the lack of continuous 
operator monitoring.  Considering that a 
typical minimally manned CNC cell is 
used for very high-volume production, a 
problem affecting surface roughness may 
go unnoticed for some time during the 
operation.  Defects may therefore con-
tinue to be generated until either a setup 
person or a quality inspector notices the 
increase in surface roughness.  

One major issue affecting surface 
roughness is tool wear: a worn tool can 
go unnoticed until the operator hears 
chatter or sees the condition of the 
tool—often too late to prevent defects.  
Tool condition can be predicted using 
statistical process control (SPC), other 
mathematical techniques, or it may be 
monitored directly or indirectly. All 
of these methods are in various stages 
of development and implementation 
(Dimla, 2002).  

However, other factors also affect 
surface roughness, including tool varia-
tions (in addition to wear), work piece 
variations, and setup variations (Vernon 
& Özel, 2003).  Therefore, it would be 
more effective to monitor the actual 
surface roughness rather than individual 
factors that affect surface roughness.  
This can be achieved either through 
intensive post-process inspection, an 
in-process surface roughness measur-
ing device, or an in-process surface 
roughness prediction system.  While 
post-process inspection is the easiest to 
implement at the current time, it adds 
additional labor and cannot prevent 
the parts from being processed before 
a defective batch is discovered.  These 
problems may be avoided by measuring 
surface roughness in process.  Mea-
suring surface roughness in process 
is a novel idea with high potential; 
unfortunately, it requires that sensi-
tive components be added to a hostile 
environment, and is therefore still in a 
nascent stage of its development.  An 
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this type of technology, as well as the 
unique nature of an experimental setup 
in terms of vibration characteristics, it 
is sensible to continue studies of this 
nature, using different types of lathes 
and setup parameters.

Recently published research on surface 
roughness prediction, such as that by 
Huang and Chen (2001) and Risbood, 
Dixit, and Sahasrabudhe (2002), has 
found considerable positive results in 
predicting roughness using vibration in 
a single direction, as well as the main 
cutting parameters (feed rate, depth 
of cut, and spindle speed).  However, 
it has been shown that vibrations in a 
cutting process occur in all directions 
and vibration in any direction can af-
fect the cutting conditions (Armarego 
& Brown, 1969).  Additionally, these 
studies did not explore the idea of sub-
stituting vibration data for some cutting 
parameters in order to minimize the 
size of the prediction model.

The purpose of this study is to develop an 
in-process surface roughness prediction 
system, using an accelerometer and mul-

in-process surface roughness predic-
tion system, however, is an approach 
that can be used to indirectly determine 
the surface roughness of a work piece 
without the concern of components 
being negatively affected by the cutting 
process itself.  

Effective surface roughness predic-
tion systems, while having been under 
considerable research and development 
since the 1980s, have not yet reached 
their full potential in practical appli-
cations (Ulsoy & Koren, 1993).  The 
focus of this type of research in recent 
years has taken numerous directions, 
due mainly to the difficulties encoun-
tered with the wide range of process 
variables in real-world applications 
(Liasi & North, 2003).  In-process 
surface roughness prediction systems, 
unlike inspections, can be used to 
either alert the operator of a problem 
or to be incorporated into an adap-
tive control system.  Therefore, such 
a system would offer the possibility 
of a zero-defect work cell without the 
addition of labor, which would be a 
major advantage.  This type of system 
therefore encompasses not only Philip 
Crosby’s ideals of eliminating possibili-
ties for defects, but also Joseph Juran 
and Edward Deming’s insistence on de-
signing manufacturing systems (rather 
than training workers) to avoid defects 
(Evans & Lindsay, 1996).

Workpiece-tool vibrations have been 
shown to correlate well with surface 
roughness (Beauchamp, Youssef, & 
Masounave, 1995). Surface roughness 
prediction systems, such as the one 
described in this study, can utilize this 
technique; however, deciding how to 
utilize it can be difficult because there 
are so many combinations of individual 
lathe designs and setups, all with dif-
ferent parameters and vibration fea-
tures.  Features of vibration data such 
as direction relative to the cutting axes, 
frequencies, and time are good exam-
ples of this, as each of them has been 
investigated to discover its correlation 
to parameters of various machining 
setups (Dimla, 2002).  Additionally, 
few studies have mentioned the use 
of slant-bed lathes.  Therefore, given 
the relative lack of development of 

tiple regression techniques, for a CNC 
slant-bed turning operation.  This study 
will address the following questions:
1. How do various parameters and vi-

bration features relate to the surface 
roughness of the work piece being 
turned?

2. What are the minimum turning and 
vibration parameters that can pro-
duce a valid prediction model?

3. Based on the first two questions, 
what is the best prediction model and 
can it be repeated in a confirmation 
run?

The methodology of this research has 
been created with the specific intent 
of determining the most significant 
vibration data for use in an accelerom-
eter-based surface roughness prediction 
and adaptive control system in turning 
operations.  An experimental design has 
been employed to address the research 
questions described in the introduc-
tion, including an experimental setup 
for producing and collecting data, as 
well as the data collection and analy-
sis procedures.  This data analysis is 
conducted with the intent of answering 

Figure 1.  Hardware Setup.
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the research questions and leading to 
conclusions and recommendations.

Experimental Design and 
Setup
This experiment involves a basic 
factorial design, which includes three 
controlled factors and three response 
variables.  The response variables for 
this design include surface roughness, 
measured in micro inches (µin.) R

a
, and 

the vibration signals in the X (radial), Y 
(tangential) and Z (feed) axes, mea-
sured in volts.  The controlled factors 
include the three main parameters con-
trolled in a turning operation (spindle 
speed, feed rate, and depth of cut), as 
seen in Table 1.

As shown in Table 1, the spindle speed 
(SP) has three levels (2500, 3000, and 
3500 rpm); the depth of cut (DC) has 
two levels (0.010 and 0.020 in.); and 
the feed rate (FR) has six levels (0.002, 
0.003, 0.004, 0.005, 0.006, and 0.007 
ipr).  This results in a total of 36 runs to 
be conducted to test all combinations 
of parameter levels.  The values for the 
levels of each parameter were deter-
mined based on a review of machinist’s 
literature; recommendations from the 
cutting tool manufacturer (Green, 1996; 
Harig, 1978; VNE Corp., 1999); limits 
of the CNC lathe described previously; 
and previous experimentation performed 
on this lathe.  These ranges of values 
will serve to produce a range of fin-
ish-cut surfaces using typical finish-cut 
parameters within the limits of the lathe.

The experimental setup for this 
methodology is intended to gener-
ate samples and collect all data based 
on the individual experimental runs.  
This setup includes all hardware and 
software needed to generate turned sur-
faces, measure their surface roughness, 
collect all necessary data, and analyze 
this data.  The hardware used in this 
experimental setup includes a CNC 
Lathe, sample work pieces, a vibration 
data collection system, and a surface 
roughness measurement setup.

This study was performed using a 
Clausing/Colchester Storm CNC A50 
Slant Bed CNC Lathe.  This is a two-

axis lathe with both CNC and manual 
control of the cutting process.  This 
lathe design incorporates a 60º slant-
bed setup and other features that help 
diminish and distribute cutting forces.  
The cutting process for this lathe was a 
standard turning process, with the work 
piece held in a turning chuck.  This ex-
periment required the use of dry cutting 
(without the use of coolant) in order 
to maintain more constant cutting and 
vibration conditions.  The following 
are the parameter ranges for this lathe, 
which apply to this experiment (Claus-
ing/Colchester Co., 1999):
• Spindle speed range:  1000 rpm 

minimum for full motor power, 4000 
rpm maximum.

• Feed rate range:  0.000001-4.000000 
inch per revolution (ipr).

• Least input movement increment:  X 
0.00005 inch, Z 0.0001 inch.

The selected parameter values were set 
using the NC program, stored in the 
lathe’s Fanuc controller.  The cutting 
process was performed using a new 
VNE Versa-Turn 80º diamond-shaped 
carbide tool insert with a nose radius of 
.016 inch.

The work pieces selected for this exper-
iment were cut from 1.5-inch diameter 
6061-T6511 Aluminum Alloy rod, per 
ASTM B221.  Standardized material 
was selected to ensure consistency 
of the alloy, which was a common 
wrought alloy used in industry (Aval-

lone & Baumeister, 1996).  To more 
closely replicate typical finish turning 
processes and to avoid excessive vibra-
tions due to work piece dimensional 
inaccuracies and defects, each work 
piece was rough-cut just prior to the 
measured finish cut.  

The vibration data collection system 
was comprised of an accelerometer 
from which signals are amplified, 
converted to digital data, and processed 
using Windows-based software.  Figure 
1 depicts the hardware setup for turn-
ing and the schematic for vibration 
data collection.  The accelerometer 
sensor used was a PCB Piezotronics 
#356B08 triaxial accelerometer, which 
was mounted on the shank of the tool 
holder, directly below the cutting tool.  
The axes of the accelerometer were 
aligned with the axes of the lathe (X, Y, 
and Z), using the applicable surfaces on 
the tool turret as references.  The signal 
was amplified using three PCB Piezo-
tronics model 480 ICP Sensor Power 
Units.  These are externally-powered 
DC amplifiers, which amplify each 
vibration signal from the accelerom-
eter.  The power was supplied using an 
Elenco Precision variable power supply, 
model XP-656, set at 20 volts.  The am-
plified signals were converted to digital 
signals with an Omega Engineering Inc. 
DAQBOOK analog-to-digital converter, 
which was connected to the parallel 
port of a standard Windows PC, which 
housed the software used to record and 

SP        2500           3000           3500

FR          DC          0.010           0.020        0.010        0.020        0.010        0.020

0.002

0.003

0.004

0.005

0.006

0.007

Table 1.  Design of Experiment
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analyze the digitized signal data.  The 
data collection software, which record-
ed the digital vibration signal data, was 
Omega Engineering, Inc.’s DaqView, 
which is a Windows-based applica-
tion used to process signals it obtains 
through the A/D converter.  

The surface roughness of the finish-
turned work pieces was measured using 
a Federal Pocket Surf stylus profilome-
ter, set up to measure R

a
 in µ-inch, with 

a travel length of 0.1 inch.  This device, 
which is certified to ANSI-B46.1, has a 
resolution of 1 µin. R

a
 and is calibrated 

to ±4 µin. R
a
.  Measurements were ob-

tained with the profilometer and work 
piece firmly supported, with the stylus 
motion in the Z-axis (lay) direction.

Data processing and analysis were per-
formed using Microsoft Windows ver-
sions of Microsoft Excel, SAS Institute 
JMP statistical software, and SPSS Inc. 
SPSS for Windows statistical software. 

Experimental and Data  
Collection Procedures
All data used for this experimental de-
sign were generated and collected using 
the previously described experimental 
setup.  A randomized schedule of runs 
was created using the design of experi-
ment shown in Table 1.  Work pieces 
from the sample bar were randomly se-
lected and turned using the schedule of 
parameters.  These runs were performed 
under closely supervised conditions 
to ensure that no anomalous problems 
with the cutting tool or turning process 
occurred.  During the finish cut of each 
run, the vibration signals were collected 
and stored on the computer for later 
analysis.  After all runs were completed, 
the surface roughness of the turned work 
pieces was measured and recorded.  
Each work piece was measured four 
times, in approximately 90º increments 
around the circumference.  At this point, 
all recorded response variable data were 
ready to be analyzed.

Data Analysis
The vibration signals were analyzed 
by transforming them into absolute 
values of amplitude.  The mean of 
vibration data over an equivalent range 

of 30 spindle revolutions was then 
determined for use in the model.  The 
parameters and the results of the exper-
imental runs, including surface rough-
ness measurements and mean vibration 
amplitudes, are shown in Table 2.  

The data in Table 2 were then used 
to create a prediction model based 
on multiple regression.  In order to 
minimize the model, both informal and 
statistical analyses were performed on 
these data to determine the minimum 
and most significant turning parameters 
and vibration components.  Minimizing 
the model and using the simplest terms 

would therefore begin with attempting 
to use the basic parameters and vibra-
tion components—feed rate, spindle 
speed, depth of cut, and the three 
vibration signals.  An initial analysis 
was performed using SPSS to deter-
mine the Pearson correlations between 
the factors and response.  As seen in 
Table 3, all of the factors except spindle 
speed and depth of cut were found to 
have significant correlation coefficients.  
Therefore, it is likely that spindle speed 
and depth of cut do not have a signifi-
cant effect on surface roughness and are 
probably not necessary for a regression 
model.

Table 2.  Factors and Response Data for Experimental Runs

Run
#

SP
(rpm)

FR
(ipr)

DC
(in.)

Ra
(µin.)

Mean Vibration
Signal Amplitudes
V

x
V

y
V

z

1 3000 0.003 0.020 21.00 0.0793 0.1603 0.0592
2 3000 0.005 0.010 42.75 0.0844 0.1567 0.0594
3 3000 0.006 0.020 55.75 0.1078 0.2136 0.0826
4 3500 0.004 0.020 28.75 0.1019 0.1893 0.0702
5 2500 0.007 0.010 66.25 0.0762 0.1490 0.0585
6 3500 0.002 0.010 15.25 0.0626 0.1119 0.0430
7 2500 0.004 0.010 30.50 0.0631 0.1201 0.0457
8 2500 0.004 0.020 32.25 0.0705 0.1476 0.0512
9 3500 0.005 0.010 41.50 0.0843 0.1569 0.0587
10 2500 0.005 0.020 43.75 0.0823 0.1671 0.0594
11 3500 0.005 0.020 45.25 0.1094 0.2126 0.0758
12 2500 0.002 0.020 21.25 0.0618 0.1154 0.0441
13 3000 0.007 0.010 63.00 0.0899 0.1693 0.0634
14 3500 0.004 0.010 30.00 0.0717 0.1421 0.0549
15 2500 0.003 0.010 22.00 0.0485 0.0941 0.0370
16 3000 0.007 0.020 66.75 0.1146 0.2391 0.0822
17 3500 0.003 0.010 23.50 0.0716 0.1391 0.0520
18 3500 0.002 0.020 16.50 0.0821 0.1402 0.0559
19 3000 0.005 0.020 43.00 0.0980 0.2103 0.0701
20 3500 0.006 0.010 52.00 0.0884 0.1691 0.0636
21 2500 0.006 0.020 53.25 0.0900 0.1914 0.0677
22 3500 0.007 0.010 69.25 0.1034 0.2004 0.0716
23 3000 0.002 0.010 18.25 0.0486 0.0941 0.0372
24 3000 0.004 0.010 28.25 0.0720 0.1337 0.0496
25 2500 0.003 0.020 21.50 0.0666 0.1337 0.0460
26 3000 0.004 0.020 27.25 0.0885 0.1870 0.0629
27 3000 0.002 0.020 14.00 0.0693 0.1300 0.0489
28 2500 0.007 0.020 69.75 0.0938 0.2219 0.0721
29 3500 0.006 0.020 53.00 0.1260 0.2848 0.0903
30 3000 0.006 0.010 53.75 0.0890 0.1944 0.0652
31 3500 0.003 0.020 19.00 0.0844 0.1731 0.0628
32 2500 0.005 0.010 37.75 0.0661 0.1402 0.0479
33 3000 0.003 0.010 19.25 0.0650 0.1223 0.0470
34 2500 0.002 0.010 19.25 0.0445 0.0867 0.0345
35 2500 0.006 0.010 56.75 0.0697 0.1531 0.0529
36 3500 0.007 0.020 63.75 0.1206 0.2793 0.0956
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An informal analysis of the trends in 
the data indicated that vibration in all 
three directions is affected by depth 
of cut and spindle speed.  Both appear 
to have a positive effect: as depth of 
cut or spindle speed increases, vibra-
tion magnitudes appear to increase.  
An analysis of variance (ANOVA) 
was therefore performed using JMP to 
explore this observation, the results of 
which are shown in Tables 4 through 6, 
respectively.

As seen in Tables 4 through 6, spindle 
speed, feed rate, and depth of cut all ap-
pear to significantly affect the level of 
vibration.  Therefore, it is possible that 
each of these parameters could be sub-
stituted by vibration in the three axes 
for a regression model.  However, since 
the feed rate has such a high correlation 
as seen in Table 3, this will be included 
to create a more robust model.  There-
fore, a regression model with four fac-
tors (feed rate and vibration in all three 
axes) was created using JMP software.  
This model has a coefficient of deter-
mination (r2) of 0.96, which indicates a 
strong relationship between the factors 
and response.  Additionally, as shown 
in Table 7, an ANOVA performed with 
JMP indicates a very low p-value, in-
dicating a statistically significant effect 
on the response among the factors.

Prediction Model
The coefficients calculated with the 
regression analysis result in the follow-
ing predictive equation:

a
 = -7.0674 + 10264.6460FR - 

151.1208V
x 
- 23.4800V

y 
+ 262.1885V

z
  

(1)

where

a
 = the predicted surface roughness

FR = feed rate
V

x
, V

y
, & V

z
 = vibration measured in 3 

axes

This equation could be used to test the 
accuracy of the prediction model using 
both the experimental data results and 
a validation run.  Initially, accuracy 
was tested using the experimental data.  
This involved applying equation 1 to 
the factors and data for the individual 

Table 3.  Pearson correlation of cutting and vibration parameters to the response

Variable Pearson Correlation Coefficient*
SP -0.032
FR 0.981**
DC 0.010
V

x
0.668**

V
y

0.703**
V

z 0.707**

*Response = R
a

**Significantly different from 0, with α = 0.01.

Table 4.  ANOVA for effect of spindle speed and depth of cut on V
x

Source DF SS MS F Ratio Prob >F
SP 2 0.003192 0.001596 79.8805 <0.0001
FR 5 0.006714 0.001343 67.2100 <0.0001
DC 1 0.003367 0.003367 168.5438 <0.0001
Error 27 0.000539 0.000020
C. Total 35 0.013812

Table 5.  ANOVA for effect of spindle speed and depth of cut on V
y

Source DF SS MS F Ratio Prob >F
SP 2 0.009679 0.0048395 21.2228 <0.0001
FR 5 0.042038 0.0084076 36.8717 <0.0001
DC 1 0.020706 0.0207060 90.8068 <0.0001
Error 27 0.006157 0.0002280
C. Total 35 0.078579

Table 6.  ANOVA for effect of spindle speed and depth of cut on V
z

Source DF SS MS F Ratio Prob >F
SP 2 0.001339 0.0006695 54.7158 <0.0001
FR 5 0.003992 0.0007984 65.2353 <0.0001
DC 1 0.001804 0.001804 147.4013 <0.0001
Error 27 0.000330 0.000012
C. Total 35 0.007466

Table 7.  ANOVA for prediction model

Source DF SS MS F Ratio Prob >F
Model 4 10947.928 2736.82 200.4291 <0.0001
Error 31 423.300 13.65
C. Total 35 11370.597

runs in Table 2, then calculating the ac-
curacy using the following equation:

(2)

where
δ = the prediction error
n = the total number of measurements
i = the measurement being predicted for 

a specific run
R

a,i
 = the measured surface roughness 

for a specific run

a,i
 = the predicted surface roughness 

for a specific run

The error rate of this model with the 
experimental data is calculated to be 
9.96%.  Considering that the resolution 
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and calibrated accuracy of the profilom-
eter create a possible measurement 
variance of ±5 µin. R

a
, the measurement 

error for the experiment run data could 
be as high as 41.67%.  Therefore, the 
prediction model could be considered 
reasonable and a final determination of 
the model accuracy using a validation 
run was in order.

Prediction Model Accuracy
Using identical hardware and software 
setups for the experimental runs, a 
validation run was then performed. 
The run was performed on the same 
day in order to maintain maximum 
control over the experimental setup.  
Parameters selected for a validation run 
were identical, with a range of cutting 
parameter values within the range used 
for the experimental run.  Work pieces 
from the same batch were turned using 
the selected parameters (in random or-
der) and the resulting surface roughness 
was measured with the same device 
and procedure.  The results of these 
measurements, along with the param-
eters and vibration mean amplitudes for 
the validation run, are shown in Table 
8.  Equation 1 was then applied to the 
data from Table 8 in order to calculate 
predicted values of R

a
.  Based on this 

equation and validation run data, an er-
ror rate of 10.77% was calculated using 
Equation 2.

Conclusions and  
Recommendations
The experimental design described 
herein was used to develop a surface 
roughness prediction model for a turn-
ing operation.  A single cutting param-
eter and vibration along three axes were 
used to develop a multiple regression 
model for an in-process surface rough-
ness prediction system.  A strong linear 
relationship among the parameters 
(feed rate and vibration measured in 
three axes) and the response (surface 
roughness) were found using multiple 
regression and ANOVA.  The effective-
ness of this system was demonstrated 
using a validation run of different cut-
ting parameter values. With the experi-
mental design given, predictions were 
made with errors of 9.96% based on 

the experimental run and 10.77% based 
on the validation run.  These results are 
reasonable, given the effective mea-
surement accuracy of the stylus pro-
filometer used.  This also demonstrates 
that spindle speed and depth of cut do 
not necessarily have to be fixed for an 
effective surface roughness prediction 
model.

Given these conclusions, further 
research into the use of multiple-axis 
vibration measurements for surface 
roughness prediction in a turning 
operation is recommended.  This may 
include using various prediction tech-
niques, applying these techniques to 
various experimental setups, exploring 
ways to increase prediction accuracy, 
and using these concepts in an adap-
tive control system.  Further research 
should always consider the need for 
flexibility for variation of parameters 

in a machining operation, which will 
make this type of research more adapt-
able to industry.
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12 3750 0.0045 0.015 40.50 0.0806 0.1517 0.0629
13 2750 0.0065 0.015 76.75 0.0769 0.1610 0.0634
14 3250 0.0045 0.005 48.25 0.0444 0.0837 0.0315
15 3250 0.0055 0.005 56.50 0.0420 0.0773 0.0289
16 3250 0.0035 0.015 28.25 0.0579 0.1144 0.0445
17 3250 0.0065 0.005 69.00 0.0507 0.0973 0.0377
18 3750 0.0035 0.005 30.50 0.0383 0.0733 0.0294
19 3250 0.0055 0.015 56.25 0.0828 0.1699 0.0653
20 3750 0.0035 0.015 30.25 0.0711 0.1351 0.0538
21 3750 0.0065 0.005 70.00 0.0543 0.1039 0.0382
22 3750 0.0055 0.005 51.75 0.0520 0.0958 0.0368
23 3250 0.0045 0.015 39.00 0.0685 0.1417 0.0556
24 3750 0.0045 0.005 42.75 0.0549 0.1127 0.0403
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