
The Official Electronic Publication of the National Association of Industrial Technology • www.nait.org
© 2007

The Use of PIC Microcontrollers in
Multiple DC Motors Control Applications

By Dr. Steve C. Hsiung

Volume 23, Number 3 - July 2007 through September 2007

Peer-Refereed Article

Computer Programming
Electricity

Electronics
Research

KEYWORD SEARCH

2

Journal of Industrial Technology • Volume 23, Number 3 • July 2007 through September 2007 • www.nait.org

The Use of PIC
Microcontrollers in
Multiple DC Motors Control
Applications
By Dr. Steve C. Hsiung

Abstract
This article is an applied engineering
example of using microprocessor/mi-
crocontroller in various controls of the
senior project designs in Electricity,
Electronics, and Computer Technol-
ogy (EECT) concentration in Industrial
Technology curricula, but also of inter-
est in industry applications. This proj-
ect reflects the Industrial Technology
curricula as a combination of hands-on
and minds-on approach on real-world
applications. The design of a micro-
processor/ microcontroller control
system involves the process of design-
ing application programs starts from
the individual module development
through extensive testing, verifica-
tion, and modification. Applying these
developed modules in a useful manner
requires the links and integrations that
lead to the practical project implemen-
tation. Frequently, in students’ senior
project designs and faculty’s research
plans, the microprocessor/microcon-
troller resources become scarce or
cause conflicts during the modules’
integration stage.

This development demonstrates the
accommodation of the shortfall of the
resources and resolves any conflict that
may force the designers to: (1) revise
the module design, (2) rework most of
the design, or (3) add additional circuit
to the module otherwise. This use of
multiple PICs presents a tested research
concept that implements simple serial
communication protocols in a multi-
processor environment, which aims to
keep the pre-developed modules intact
with the least possible modification
during project implementation.

Introduction
The focus of this project is how to
expand the role of existing small scale
PIC microcontrollers into a multiple-
microcontrollers system to resolve lim-
ited resource issues in meeting complex
project needs.

A project was implemented under a
contract between a private company
and Old Dominion University, Technol-
ogy Applications Center in 2004; this
project, designed to develop a teaching
robot, was used in the boxing training
exercises. Its original design relied
on a single CPU Motorola 68HC11)
to control 8 DC motors, 8 position
sensors, and some other peripheral and
safety features.

After the prototyping and examination
of the mechanical functions, it was
determined that the control circuits had
to be revised. The requirements for this
68HC11 had grown to 9 DC motors
and 18 position sensors with the same
safety features. Due to the limitation of
the 8 bit 68HC11 CPU, the processor’s
resources were exhausted (Motorola,
1991). The mechanical designers de-
sired to have a total of 20 or more posi-
tion sensors to gain adequate controls
of the training model, but this list was
forced to cut down to accommodate the
CPU.

The 68HC11 is a microcontroller that
has been in the market since 1980
(Cady, 1997) and Motorola has discon-
tinued the manufacture of this product.
It became difficult to find the supplier
for this chip and its price is higher
than expected. After a study of the
specifications and potential applica-
tions on SPI (Serial UART Tutorial,

Dr. Steve Hsiung is an associate professor of electrical
engineering technology at Old Dominion University.
Prior to his current position, Dr. Hsiung had worked for
Maxim Integrated Products, Inc., Seagate Technology,
Inc., and Lam Research Corp., all in Silicon Valley, CA.
Dr. Hsiung also taught at Utah State University and
California University of Pennsylvania. He earned his
BS degree from National Kauhsiung Normal University
in 1980, MS degrees from University of North Dakota
in 1986 and Kansas State University in 1988, and PhD
degree from Iowa State University in 1992. Steve can
be reached at shsiung@odu.edu.

3

Journal of Industrial Technology • Volume 23, Number 3 • July 2007 through September 2007 • www.nait.org

1996), I2C (Philips, 1997) and SMBus
(SMBus1.1, 1998; SMBus2.0, 2001),
an idea surfaced to revise the designs
on the electronic hardware and software
to use multiple and cheaper CPUs, such
as Microchip’s 16F84A in a form of
serial communication links (Philips,
1997; Serial UART Tutorial, 1996;
SMBus2.0, 2001). The 16F84A is a
popular 8 bit microcontroller in many
places and the vender suppliers are
plentiful (Bates, 2004). From an eco-
nomic point of view, it is the one of the
best choices of all the available low-end
microcontrollers.

The selected design is to have multiple
slave processors that everyone is in
the same format and uses the 16F84A
as a dedicated CPU to control one
DC motor. A single master 16F84A
CPU controls and links all the slave
CPUs. This design is to modularize
the processor environment that has a
single master which takes the control
commands from a user and passes the
necessary control functions to an ap-
propriate slave to perform the opera-
tions. With this design concept, there
will be virtually no limit on the number
of slaves in the system. The limitations
in the previous design on a single CPU
approach are automatically resolved.

Certainly, this approach requires a well
planned software protocol design, and
the hardware requirement becomes
a fixed module that is less complex
(Philips, 1997; SMBus2.0, 2001), and
thus the following section on hardware,
software designs, and their implemen-
tation as a proof of concept of multiple
processors in multiple DC motors con-
trol applications in an applied research
on the use of multiple PIC 16F84As in
a system design is convinced, low cost,
and efficient.

Software Design
Since there are multiple slaves and a
single master in this control system
design, two kinds of software are needed
for this project. The major proof of con-
cept in this project heavily relies on the
software design. To clarify the design
of this concept, subsequent sections of

this paper will describe the master, slave
protocol, and communication.

Software on Master
The master is the controlling microcon-
troller which handles all the control-
ling sequences, such as the interface
between a user and the system, making
sure the right motors are running in the
specified time and position. The mas-
ter controller oversees major system
components such as the keypad, LCD,
and slave microcontrollers that run the
motors.

In operation, the master starts with the
keypad and LCD display module, han-
dling interactions between the user’s
inputs and system’s response. The
keypad routine is a standard scanning,
debouncing, and decoding of the four
rows and four columns to detect the
user’s input. The LCD routine imple-
ments serial communication between
the master CPU and display module via
a 74164 shift register (TTL, 1998).

A major portion of the software design
in this project is the communication
between the master and the multiple
slaves. All the communications are
initiated by the single master. Once the
master has processed an action selected
by the user input, it determines which
action was chosen and transmits the
information/instructions to the appro-
priate slave using serial synchronous
communication (Serial UART Tutorial,
1996). Both read and write on the mas-
ter side are implemented in the same
subroutine, this routine is in charge of
generating the clocks, and sending and
receiving the bits of information. Since
16F84A does not have any hardware
support for serial communication, the
clock and data bits rely entirely on
software bit banging. The time be-
tween the clock edges is preset at 0.2
ms for the whole system. To control
the multiple slaves, every slave has a
unique address that is embedded in the
master software. There are predefined
five bytes protocols that a master sends
to all the slaves in the system. Two
dedicated I/O (Input/Output) pins on
the master and slaves synchronize the
intended action between the parties.

Every communication sequence
consists of the master broadcasting
five bytes (four information bytes and
one 0XFF byte to read from the slave)
on the shared bus lines (Serial UART
Tutorial, 1996 & SMBus2.0, 2001)
consisting of a clock (CLK), data out
(DOUT), data in (DIN), and framing
I/O bits. The first byte is the slave ad-
dress, the second byte is a master read,
the third byte is the speed of the motor,
the forth byte is the motor direction,
and the last byte is the motor running
time period. Once the master receives
the acknowledgement (ACK) from the
intended slave, it sends the remaining
three bytes. When that is done, it goes
on to the address of the next action line
of bytes that needs to be sent and con-
tinues on until the control sequences
are finished. When all instructions are
sent to the slaves, the master will return
to start and wait for the next control
sequence from the user through the
keypad.

Software on Slave
The slave is in charge of executing what
the master has commanded. It does not
start processing information until the
master is ready to send. However, the
slave has a few tasks of its own before
it is ready to start the communication.
To make the individual motor controller
a fixed modular design, it should have
the same hardware and software but
perform different action. A unique ad-
dress has to assign to each slave to dif-
ferentiate them. This becomes the only
difference between the various slaves in
the system. To start, the slave first pulls
its address from the EEPROM and
stores it into its DRAM (PIC16F84A,
2004). Once this is accomplished, it
waits for the master to signal the start
condition with a framing I/O of “00”
as an initiate of the sending informa-
tion. The first byte is going to be the
address byte. The address byte that is
received is compared to the address of
the particular microcontroller. If they
are different, the microcontroller does
nothing but waits/polls for the next
action address. Once it receives the
correct address, the slave waits/polls
for another framing I/O condition “01”
and sends the ACK. After the ACK, the

4

Journal of Industrial Technology • Volume 23, Number 3 • July 2007 through September 2007 • www.nait.org

slave waits/polls for a different fram-
ing condition of “10” (framing I/O)
to receive three more motor control
bytes information. All the bytes will be
stored in the predefined DRAM loca-
tions (Bates, 2004; PIC16F84A, 2004).
When the slave is finished receiving the
rest of the instructions, it activates the
motor accordingly.

The motor speed byte is used to de-
termine the prescalor to the 16F84A
TMR0 timer interrupt interval that
is used to generate the PWM (Pulse
Width Modulation) signal to regulate
the motor speed (Wilmshurst, 2007;
PIC16F84A, 2004). The motor running
period byte is used in conjunction with
the sensors to determine when to shut
down the gate of the PWM signal that
will eventually stop the motor. When
that is accomplished, the slave is ready
for the next set of information from the
master.

The Protocol Design
There are three basic I/O lines (clock,
data in, and data out) used in this com-
munication. These are all shared as a
serial bus between a master and mul-
tiple slaves (Philips, 1997; SMBus2.0,
2001). In each action of the serial com-
munication bit streams, there are total
of five bytes either transmit or receive
between a master and any particular
slave CPU. The pre-defined bytes
are: (1) address byte, (2) slave ACK
(acknowledge) byte, (3) speed byte, (4)
direction byte, and (5) time period byte.

There are several set of rules for this
communication (Philips, 1997; Se-
rial UART Tutorial, 1996; SMBus2.0,
2001): (1) only one master is allowed
in the system, (2) only the master can
generate the clock, (3) only the master
can start/stop the communications, (4)
only the master is responsible for the
framing I/O bits, (5) there are mul-
tiple slaves allowed in the system, but
each slave shall have a unique address
recognizable by the master, (6) the
slave can only monitor the framing I/O
bit for communication responses, (7)
the slave is required to respond to its
address call by sending an ACK byte,
(8) after the initiation of a start from

the master, every slave has to read the
address that master broadcasts, (9) the
slave is not permitted to respond if its
address is not called, and (10) the only
time that the slave sends a byte is when
it is required to ACK.

To ensure the safety of the system
performance, an alarm condition is
implemented in the event of violation
of the protocol. The alarm condition
is defined as: when the master sends
a legitimate address to the slaves and
does not receive an ACK or the ACK is
not recognized for any reason. As soon
as the master detects this alarm condi-
tion, it will disable the de-multiplexer
that is used by the slaves to activate the
motors.

The Communication
At the beginning of the protocols test-
ing stage, it was difficult to keep the
master and slave synchronized with
each other. Therefore, the protocol
rules mentioned above were introduced
and the framing I/Os were added.
These two additional I/O pins were
developed to frame the states of the
communication bytes to fix the prob-
lem. They are the states that the master
controls and slaves poll during each
action. The framing I/Os are outputs
from a master and inputs to the slaves.
These signals are used to indicate to
the slaves that the master is ready to do

the next set of instruction. There are
four different states (00, 01, 10, 11) the
master sends to the slaves. Since the
slaves don’t perform as much work as
the master, these states let the slaves
recognize where the master is in the
communication sequence. “00” in-
forms the slaves as a start that the mas-
ter is getting ready to send the first byte
(address). Following the first byte, the
master sends a “01” to notify the slaves
it is ready to receive the ACK. When
the I/O pins switch to “10”, the slave
knows that the master has received the
ACK and is about to send the last three
bytes. Finally, the master will send an
“11” through the I/O pins, indicating
it is done with the transmitting action.
The summation of the framing I/O
control is presented in Table 1.

The synchronous serial communica-
tion shares the same clock (Philips,
1997; Serial UART Tutorial, 1996;
SMBus2.0, 2001), and every party
relies on the clock edges to either read
or write the bits. The framing I/O
implementation resolves the timing
issues and differentiation of the start,
end/stop, address, and command bytes.
The presentation of the protocol bytes
and associate framing I/O is presented
in Figure 1.

Hardware Design
Although the hardware design appears

Table 1. Framing I/O Controls

Framing
I/O

Mater Control Slave Response

00 Start Transmission of Ad-
dress

Ready to read the address

01 Start Receiving of ACK Ready to send the ACK

10 Start Transmission Com-
mand Byte of Motor Speed

Ready to read the Motor Speed Control

10 Start Transmission Com-
mand Byte of Motor Direc-
tion

Read the Motor Direction control

10 Start Transmission Com-
mand Byte of Motor Run
Time

Read the Motor Run Time Control

11 Signal End of Transmission Recognize End of Transmission

5

Journal of Industrial Technology • Volume 23, Number 3 • July 2007 through September 2007 • www.nait.org

complex, it has a lot of duplications due
to multiple CPUs in the system. There
are three major parts in this design: (1)
the master that handles the user’s com-
mands and communications via keypad
and LCD module, (2) the multiple
slaves that actual generate the PWM
signals to drive the motors via DC mo-
tor interface board, and (3) the motor
driver board circuit that handles the
high current to activate the DC motors.

Master Control Circuit
The master interface circuit has a
standard 4x4 keypad, a LCD module,
a shift register, and three software
controlled I/Os for the serial interface
buses to the slave CPUs.

The keypad is directly interfaced to the
PORTB RB0-RB7 with eight 10K pull
up resistors (Bates, 2004; PIC16F84A,
2004). RB0 (IO_1) and RB1 (IO_2)
are dually used for the slaves’ serial
communication framing I/O controls.
These two logic lines will generate four
different states that are used as guid-
ance to the slaves when following the
predefined protocols. RB2 (MA_E)
is also used as a control of the slave’s
de-multiplexer enable that serves as
an alarm condition for master to shut
down all the motors when an emergen-
cy condition is encountered.

The LCD module is connected to a 74164
shift register in a parallel format, but its
interface to the CPU is in a serial form.
This is needed because of the limited
number of available I/Os on the master
CPU. RA2 (LCD_E) and RA3 (LCD_
RS) are used for E and RS controls on the
LCD display module (LCD, 2004).

The entire serial interface is accom-
plished through PORTA. RA0 (marked
as CLK) is used to generate the clock,
RA1 (marked as DOUT) is the control
data output from a master to the slaves,
and RA4 (marked as DIN) is a return
data line from the slaves to a master.
RA4 is an open drain I/O. Its required
pull up resistor (10K) connection
makes it the best choice for this type of
interface communication (Bates, 2004;
PIC16F84A, 2004). There are three
serial communication lines that are not
only used in master-slave control, but

also in CPU-LCD interactions. All
the I/O pins on the master circuit are
utilized. Figure 2 presents the master
hardware circuit design.

Slave Control Circuit
The serial communication interface is
implemented on PORTA where RA0
(CLK) is used to accept the clock
signal from the master, RA1 (DOUT)
is used to read the command bytes
from the master, and RA4 (DIN) is
used to send the ACK to the master.
The PWM signal is generated from the
TMR0 timer via interrupt control on
RB0 pin (PIC16F84A, 2004). It is used
to control the de-multiplexer output
that eventually is used to regulate the
energy to the DC motor. The PWM
signal is generated constantly since it is
an interrupt driven event. To gate this
PWM to a proper channel (either for-
ward or reverse control of the motor),
RB3 (marked as SLX_E) is used as
an enable control. Both RB1 (marked
as SLX_RB1) and RB2 (marked as
SLX_RB2) I/O pins are used as chan-
nel select on the 74138 3-to-8 decoder

that is functioned as a de-multiplexer.
The X on SLX stands for the number of
the motor in the circuit.

There are two position sensors on each
slave. The signals are monitored on RB4
(SLX_SENSOR1) and RB5 (SLX_SEN-
SOR2) pins to provide feedbacks on
the motor’s position. The framing logic
states are monitored on RB6 (IO_2/RB1)
and RB7 (IO_1/RB2), which controls
the slave’s communication protocols
sequences. The slave circuit design has
two unused I/O pins: RA2 and RA3. The
multiple slaves are a duplication of the
following slaves’ circuits that have two
slaves as presented in Figure 3.

Motor Control Circuit
The motor driver circuit is a standard
H-bridge design. A +5V logic voltage
source has to be applied before +V

CC
 in

this circuit to make it function properly.
These bridge on-off controls are made
through an IRF530N power MOSFET
that can easily handle 10A DC current
(IRF530N, 2006). The circuit can con-
trol a motor in either forward or reverse

Figure 1. Master & Slave Protocols

Figure 2. The Master Hardware Circuit

6

Journal of Industrial Technology • Volume 23, Number 3 • July 2007 through September 2007 • www.nait.org

direction depending on the PWM signal
that is coming in at its P_F_1 or P_R_1
terminal. The two position sensors
have a RS latch debounce circuit to
produce a clean feedback signal to the
slave CPU. The motor circuit design is
presented in Figure 4.

The Implementation
This multi-processor control application
that uses simple protocols has been proven
functional. The testing of this concept was
carried out in one master and four slaves
to control four different DC motors. The
setup is presented in Picture 1.

The addresses distributions and their
control functions of the 9 slaves are
presented in Table 2. The predefined
command bytes and their associated
functions are found in Table 3. Picture
2 shows the real sample communication
bit streams on clock (CLK), data out
(DOUT), data in (DIN), and framing I/O
(I_O1 & I_O2) lines that were captured
by a logic analyzer. The prototype demo
system that has one master and four
slaves with two DC motors is presented
in Picture 3. The overall operation of
this research demo system is presented
in a block diagram format in Figure 5.

Table 2. Slaves’ Addresses & Functions
Slave
#

Slave
Name

Address Function
Control

1 PIC 1 0X11 Right
Elbow

2 PIC 2 0X22 Right
Shoulder
up/down

3 PIC 3 0X33 Left El-
bow

4 PIC 4 0X44 Left
Shoulder
up/down

5 PIC 5 0X55 Pivot
Torso

6 PIC 6 0X66 Back/
Forth
Torso

7 PIC 7 0X77 Right/Left
Torso

8 PIC 8 0X88 Right
Shoulder
Left/Right

9 PIC 9 0X99 Left
Shoulder
Left/Right

Figure 3. Two Slaves Hardware Circuit

Figure 4. The Motor Control Hardware

Picture 1. One Master & Four Slaves Setup

7

Journal of Industrial Technology • Volume 23, Number 3 • July 2007 through September 2007 • www.nait.org

Table 4 represents the estimated cost of
the multi-processors system that uses
PIC16F84As is compared with the orig-
inal design using a single MC68HC11
processor. The cost for both systems
is very similar, but the flexibility that
multi-processor system provides is
beyond this assessment.

Conclusion
The designed serial communica-
tion protocols with only byte address
can have up to 254 slave processors
(normally that exclude 0X00 and
0XFF). This can easily be extended
to any number of slaves by adding
multiple bytes of the address defini-
tions. The three control bytes in the
existing protocols can also be extended
to fit any project needs. The two bits
I/O protocol framing controls from
the master may be eliminated by us-
ing the clock edge sensing interrupt
to synchronize the communications.
Certainly, an upgraded CPU such as the
16F88 (same as 16F84A, a 18 pin pack-
age) or 16F877A (a 40 pin package)
that has a built in SPI hardware block
would relieve the software bit banging
load on the CPUs to improve com-
munication efficiency, but would also
increase the cost of the project design
(PIC16F877A, 2004). An implementa-
tion of the SLEEP (one of the PIC’s in-
structions) along with proper interrupt
wake up strategy in all the CPUs soft-
ware will make the system more energy
efficient (Wilmshurst, 2007). A proper
managed time out period of 20 ms to
40 ms can be added to the existing
protocol designs to increase the system
sensitivity on a miscommunication
situation between a master and multiple
slaves (Philips, 1997; SMBus2.0,
2001). If security is a concern, add-
ing the CRC-8 implementation in the
protocols will be one of the solutions
(CRC8, 1999).

The theory and protocol design (Se-
rial UART Tutorial, 1996; SMBus2.0,
2001) of the synchronous serial
communication in the chip level into
a practical application enhanced the
students’ understanding of the potential
in their EECT centered career. Here is
the summary of what the students have

Table 3. Command Bytes & Functions

Command Byte Control Function

1 0XD4 Fast Speed Motor Control, 80% Duty Cycle (PWM)

2 0XD5 Medium Speed Motor Control, 50% Duty Cycle (PWM)

3 0XD6 Slow Speed Motor Control, 20% Duty Cycle (PWM)

4 0X01 Motor Direction Control: Moving Backward

5 0X02 Motor Direction Control: Moving Forward

6 0X20 Time Delay Between Motors Action: Short = 2.04 Sec-
onds

7 0X33 Time Delay Between Motors Action: Medium = 4.02
Seconds

8 0X65 Time Delay Between Motors Action: Long = 78.965
Seconds

Picture 3. The Multiple-Processor System Setup

Picture 2. The Serial Communication Signals

8

Journal of Industrial Technology • Volume 23, Number 3 • July 2007 through September 2007 • www.nait.org

learned on what their accomplished:
(Tyson & Ransberger, 2004)
1. As the project approached an end,

the students learned how to com-
municate with each other as team
members, which is important when
they move on and start their careers.

2. The students designed the com-
munication protocols with multiple
microcontrollers, and implemented
a project that can be useful in the
environment.

3. The students were able to take their
knowledge in EECT and apply it to
real world application problems.

4. The boxing robot, no matter how
simple it was presented, was a great
way to enhance understanding of
communication, electronics, and
teamwork.

These serial communication protocols
in multiple PICs were actually imple-
mented in the students’ (Tyson McCall
and Corinne Ransberger) senior project
design, and successfully proven to be
suitable in real multiple motors control
applications.

The concept of the serial communica-
tion is simple and has been utilized in
different areas in the real world, such
as automation controls (Roy, 2006)
and PC networking (Zheng, 2002).
Integration of the existing concept in a
custom-made design that brings real-
life applications into classes, has served
one the important missions of the In-
dustrial Technology education: Applied
Engineering. Proof of concept research
provides the students with an interest-
ing application idea and a better under-
standing of the links between hardware
and software along with their potential
applications in the workplaces.

References
Bates, M. (2004). PIC Microcon-

trollers: An Introduction to Micro-
electronic (2nd ed.). Burlington,
Massachusetts: Elsevier: Newnes.

Cady, F. M. (1997). Software and
Hardware Engineering, Motorola
M68HC1. New York: Oxford Univer-
sity Press.

CRC8 (1999). CRC-8 Implementation
White Paper, USAR System Inc. Re-

Figure 5. The Demo System Block Diagram

Table 4. The Estimated Cost Comparison between Two Systems

Single CPU System Cost Multi-CPUs System Cost

MC68HC11 & EVB $80 PIC16F84A*10 $40

Motor Driver PCB &
Accessories

$100 Motor Driver PCB & Accessories $100

Misc. Components $30 Misc. Components $50

Total $210 Total $190

trieved May 15, 2005, from http://
www.semtech.com.

LCD (2004). How to control a
HD44780 based character LCD.
Retrieved May 15, 2005, from

 http://home.iae.nl/users/pouweha/
lcd/lcd0.shtml.

IRF530N (2006). International Recti-
fier. Retrieved April 11, 2006, from
http://www.irf.com.

Motorola (1991). M68HC11 Reference
Manual. Motorola, Inc., Rev 3.

Motorola (1991). M68HC11 E Series
Programming Reference Guide.
Motorola, Inc.

Philips (1997). Philips Semiconductors
I2C Specification. Retrieved January
23, 2005, from http://www-us2.semi-
conductors.philips.com /i2c/news/.

PIC16F84A (2004). PIC16F84A Data
Sheet, Microchip Technology Inc.
Retrieved May8, 2006, from http://
www.microchip.com/.

PIC16F877A(2004). PIC16F877A
Data Sheet, Microchip Technology

Inc. Retrieved May 8, 2006, from
http://www.microchip.com/.

Roy, Niladri (2006) Connecting Indus-
trial Automation Control Networks
Xcell Journal, Xilinx, Inc. Second
Quarter, 30-33

Serial and UART tutorial (1996). Frank
Durda. Retrieved March 21, 2005,
from http://www.freebsd.org/doc/
en_US. iso88591-1/articles/serial_
uart/, Email:uhelm@freebsd.org.

SMBus1.1 (1998). System Manage-
ment Bus Specification, Revision
1.1, Smart Battery System Specifica-
tions. Retrieved April 11, 2006, from
http://www.sbs-forum.org, Email:

 battery@sbs-forum.org.
SMBus2.0 (2001). System Management

Bus Specification, Revision 2.0,
Smart Battery System Specifications.
Retrieved April 11, 2006, from
http://www.sbs-forum.org , Email:
battery@sbsforum.org.

TTL (1998). TTL Logic Data Book.
Dallas, Texas: Texas Instruments.

9

Journal of Industrial Technology • Volume 23, Number 3 • July 2007 through September 2007 • www.nait.org

Tyson, Mc. & Ransberger C. (2004).
Serial Communication: Multiple
Processor Control Environment.
Norfolk, Virginia: ODU Senior
Project Report.

Wilmshurst, T. (2007). Designing Em-
bedded Systems with PIC Micro-
controllers: Principals and Applica-
tions. Burlington, Massachusetts:
Elsevier: Newnes.

Zheng, Y. & Akhtar, S. (2002) Networks
for Computer Scientists and Engi-
neers New York: Oxford University
Press.

