
The Official Electronic Publication of The Association of Technology, Management, and Applied Engineering • www.atmae.org
© 2011

A Case Study on Virtual and Physical I/O
Throughputs

By Dr. Timur Mirzoev, Dr. Baijian Yang, Mr. Marcus Davis, & Mr. Travis Williams

Volume 27, Number 3 - July 2011 through September 2011

Peer-Refereed Article
Applied Paper

Computer Technology
Electronics

Information Technology
Research

KEYWORD SEARCH

2

Journal of Industrial Technology • Volume 27, Number 3 • July 2011 through September 2011 • www.atmae.org

Dr. Timur Mirzoev is a profes-
sor of Information Technol-
ogy Department at Georgia
Southern University, College
of Information Technology. Dr.
Mirzoev heads the Interna-
tional VMware IT Academy
Center and EMC Academic
Alliance at Georgia Southern
University. Some of Dr. Mirzo-

ev’s research interests include server and network
storage virtualization, information systems, stor-
age networks and topologies. Currently, Dr. Mir-
zoev is holds the following certifications: VMware
Certified Instructor, VMware Certified Professional
4, EMC Proven Professional, LefthandNetworks
(HP), SAN/iQ, A+. Timur Mirzoev can be contacted
at tmirzoev@georgiasouthern.edu.

Dr. Baijian Yang is currently
an Associate Professor at
the Department of Technol-
ogy, Ball State University. He
has extensive industry and
academic experiences in
mobile computing, distributed
computing, and information
security. His current industry
certifications include MCSE,

CISSP, and Six Sigma Black Belt. Dr. Yang is also
the contributing author of books ‘Professional
Smartphone Programming’, and ‘Windows Phone
7 Programming for Android and iOS Developers’
by Wiley/WROX. Dr. Yang received his Ph.D. in
Computer Science from Michigan State University
in 2002. Baijian Yang can be contacted at byang@
bsu.edu.

Mr. Marcus Davis is a Mas-
ter of Science in Informa-
tion Technology scholar at
Carnegie Mellon University’s
Australian campus. Mr. Davis
serves as the President and
Founder of Kinetic Influence
LLC, an IT consulting firm
based in Atlanta, Ga. His
research interests include

global distributed systems, cloud based infrastruc-
ture virtualization and human computer interaction.
Mr. Davis is the recipient of Carnegie Mellon’s
Scholarship for Emerging Leaders and has been
recognized by the University of Rochester’s Xerox
Award for Innovation in Information Technology.
Marcus Davis can be contacted at mdavis27@
georgiasouthern.edu.

Mr. Travis Williams is currently
a part time student at Georgia
Southern University and full
time employee as a Senior
Solutions Developer for Mor-
ris Technology. Travis is just
finishing up his 3rd year at
Georgia Southern University
as an Information Technology
major. Travis has been on the

President’s and Dean’s list and was recently in-
ducted into the Honor’s Society Upsilon Pi Epsilon.
After graduating from Georgia Southern, Travis
hopes to find a job as a Network Administrator
and put the knowledge he has gained to use.
Travis Williams can be contacted at tw01049@
georgiasouthern.edu.

A Case Study on Virtual and
Physical I/O Throughputs
By Dr. Timur Mirzoev, Dr. Baijian Yang, Mr. Marcus Davis,
& Mr. Travis Williams

ABSTRACT
Input/Output (I/O) performance is
one of the key areas that need to be
carefully examined to better support
IT services. With the rapid develop-
ment and deployment of virtualization
technology, many essential business
applications have been migrated to the
virtualized platform due to reduced
cost and improved agility. However,
the impact of such transition on the I/O
performance is not very well studied.
In this research project, the authors
investigated the disk write request per-
formance on a virtual storage interface
and on a physical storage interface.
Specifically, the study aimed to identify
whether a virtual SCSI disk controller
can process 4KB and 32KB I/O write
requests faster than a standard physical
IDE controller. The experiments of this
study were constructed in a way to best
emulate real world IT configurations.
The results were carefully analyzed.
The results reveal that a virtual SCSI
controller can process smaller write
requests (4KB) faster than the physical
IDE controller but it is outperformed by
its physical counterpart if the sizes of
write request are bigger (32KB). This
manuscript presents the details of this
research along with recommendations
for improving virtual I/O performance.

INTRODUCTION
Five decades of hard drive technology
is now the industry standard for data
storage. One variant of the technol-
ogy known as Small Computer System
Interface (SCSI) has become com-
monplace in enterprise settings. The
separation of commands used to control
the SCSI hard disk and the interconnect
used to carry these commands creates
a generic interface for the hard drive.
Many interconnects have emerged to
span this gap between the physical disk
and the controller (Goldner, 2003).

One of the most well-known Storage
Area Network (SAN) SCSI interfaces
is the Fiber Channel Protocol which
uses fiber optics to connect a SCSI disk
array with host computers. A relatively
new interconnect known as iSCSI uses
an IP network to control a SCSI array
(Thompson, 2002). Since iSCSI can
use existing network infrastructure,
it is scalable and requires less hard-
ware when compared to other SANs
(Cormier, 2008). The iSCSI technol-
ogy transfer SCSI requests using TCP
frames (Shrivastava & Somasundaram,
2009). “The logical link that carries the
commands and data to and from TCP/
IP end-points is called an iSCSI session
(Hufferd, 2003). Some systems such as
Openfiler are open source allowing for
easy adoption (Childers, 2009). These
factors make iSCSI a financially attrac-
tive storage solution for virtualization
applications.

This manuscript examines the perfor-
mance of physical and virtual disks
controllers to compare Input/Output
Operations per second (IOps) for write
requests. Research on virtual disk
controllers has been limited. This
suggests that the novelty factor of this
new technology may contribute to the
absence of research on IOPs for virtual
systems. Several options exist in con-
figurations of virtual storage control-
lers. However, the purpose of this study
was to identify whether virtual SCSI
disk controller processes I/O write re-
quests of 4KB and 32KB in sizes faster
than a standard physical Integrated
Drive Electronics (IDE) controller. The
analyzed 4KB and 32KB writes were
the actual block sizes of the tested file
system. Typically, if a file system is
configured to use a smaller block size,
it will increase the disk utilization but
will negatively impact the disk I/O per-
formance when handling large files.

3

Journal of Industrial Technology • Volume 27, Number 3 • July 2011 through September 2011 • www.atmae.org

Figure 1. Block size allocation differencesREVIEW OF RELATED
LITERATURE
In recent years as hardware virtual-
ization and high availability systems
gained popularity iSCSI has become an
accepted storage solution. Hypervisors
such as VMware’s ESX server natively
support iSCSI (VMware, 2007). These
systems require scalable, fast storage
in order to support a virtual infrastruc-
ture. “I/O is more important than ever
now that multiple virtualized operat-
ing system instances are relying on the
same disk array” (Diskeeper, 2006). I/O
throughput on standalone SCSI disks
can be easily measured using utilities
such as Iometer which was used in this
study to measure write IOPs and write
MB/s (Iometer, 2003).

The diverse uses of iSCSI and virtual-
ized disks present some difficulties
when trying to compare the I/O per-
formance of physical and virtual write
speeds. Write speed may be affected
by the number of virtual machines
running on a SAN. Differences in disk
and bus speed may also affect these
comparisons (Asaro, 2009). To better
understand the differences between
physical storage controllers and virtual
storage controllers, an experiment was
constructed to compare a physical Win-
dows Server 2003 machine with a virtu-
alized Windows Server 2003 machine
located on a test Openfiler iSCSI array.
The array was located in an isolated
network environment to ensure that
network traffic did not interfere with
write requests.

With physical systems, “disk I/O is the
primary performance bottleneck for a
wide range of workloads” (Bhadkam-
kar et al., 2007). When systems are
virtualized, certain configurations and
settings need to be in place in order
to avoid bottlenecks at storage levels.
Self-optimized storage systems, such
as BORG – Block-reORGanization
(Bhadkamkar et al., 2007), attempt to
improve the disk I/O performance by
dynamically adjusting the block size of
a file system.

A file system’s block size is an essential
element that allows storage system op-

timization (Ponniah, 2001). Each block
size contains a header which must be
read before the actual data is read. If
a piece of information is stored in too
many blocks, the file system’s perfor-
mance dramatically decreases, wasting
time to respond to users’ requests. This
is particularly true for database related
applications. If a customer’s record
can fit into one block, then only one
header is read and all of the customer’s
records are fetched (Ponniah, 2001).
To save read/write processing time,
block size may be increased to accom-
modate more records into one block of
data on a storage device. Incorrectly set
block size for storage systems hosting
databases may lead to a significant loss
of time during multiple read/write op-
erations. Many Database Management
Systems (DBMS) allow manual setting
for block sizes that allow a reservation
of a certain space inside a block for
database records to expand in the future
(Ponniah, 2001). Figure 1 depicts the
important differences between various
block size allocations for the same file.

Block size setting is closely related
to a maximum and a minimum file
sizes. For example, if a user requests
to write a 4KB file and the storage’s
block size is only 2KB, then two blocks
will be occupied for the same file and
two headers for each block must be
read for a single file. Administrators
are encouraged to set the block size of

a file system based on the maximum
size of files to be written to storage. In
Oracle databases, the most commonly
used block size is 8KB which is “more
than sufficient for many very large
databases” (Caffrey et al., 2010). In
case when database records are updated
and they do not fit into the original
block on storage system, the entire
updated record is moved to another
block (Ponniah, 2001). With thousands
of records and sometimes even millions
of records, storage system will take a
very long time to update, move, read or
write records if the block size is not fit
for the application.

According to Foot (2004), the per-
formance of a database may improve
once the block size on a file system is
increased. With records of 8KB in size,
16KB or 32KB block sizes are recom-
mended.

Today, many database systems have
been moved to virtual environments
where a database will reside on a vir-
tual server instead of a physical server.
If an administrator decides to convert a
DBMS computer to a virtual machine
(VM), storage settings must be meticu-
lously set. In virtualized environments,
such as our laboratory setup, disk I/O
requests from a virtual machine are
processed by a Linux kernel. It is the
responsibility of the VMKERNEL
(in our setup) to process all reads and

4

Journal of Industrial Technology • Volume 27, Number 3 • July 2011 through September 2011 • www.atmae.org

writes on block storage servers. VM-
KERNEL may also create a so-called
Raw Device Mapping (RDM) where,
VMKERNEL creates a pointer to a raw
Logical Unit Number (LUN, a storage
system partition). In RDM’s case, a
virtual machine processes all reads and
writes on storage, not the VMKERNEL
(VMware iSCSI, 2010). Figure 2 shows
an example of RDM.

For the experiments in this study, RDM
was not used and all the I/O requests
from virtual machines were processed
by VMKERNEL.

RESEARCH OBJECTIVES
AND QUESTIONS
The purpose of this study was to
identify whether virtual SCSI disk
controller processes I/O write requests
of 4KB and 32KB in sizes faster than
a standard physical IDE controller. An
additional goal was to examine the pos-
sible storage configurations for virtual
machines. The substantive research
questions were as follows:

Q
1
: Does a virtual SCSI controller pro-

cess 4KB I/O write requests faster than
an IDE controller?

Q
2
: Does a virtual SCSI controller

process 32KB I/O write requests faster
than an IDE controller?

Q
3
: Does a virtual SCSI controller write

more data than an IDE controller while
processing 4KB I/O?

Q
4
: Does a virtual SCSI controller write

more data than an IDE controller while
processing 32KB I/O?

Hypotheses
In order to find answers to the research
questions, the following hypotheses
were established for this study:

1. H1
0
: µ

4ph
 = µ

4vm

There are no differences in IOps for
write requests of 4KB between physi-
cal and virtual disk while other hard-
ware components and software remain
constant.
H1

a
: µ

4ph
 ≠ µ

4vm

There are differences in IOps for write
requests of 4KB between physical and
virtual disk while other hardware com-
ponents and software remain constant.

2. H2
0
: µ

32ph
 = µ

32vm

There are no differences in IOps for
write requests of 32KB between physi-
cal and virtual disk while other hard-
ware components and software remain
constant.

H2
a
: µ

32ph
 ≠ µ

32vm

There are differences in IOps for write

requests of 32KB between physical and
virtual disk while other hardware com-
ponents and software remain constant.
This study was not concerned with pro-
cessor speed or memory size (although
RAM is set at 2GB for each computer),
the number of hosts actively using the
network, the network layout or any
other general aspect of the network, and
the read write speed of the hard disk
drives. This study was conducted to
determine while in a Windows Server
2003 environment whether a virtual
SCSI disk controller processes I/O
write requests of 4KB and 32KB faster
than a standard physical IDE controller.
During this experiment, iSCSI target

Figure 2. An example of Raw Device Mapping
Adapted from: VMware vSphere 4.1: Install, Configure, Manage course – Revision A

5

Journal of Industrial Technology • Volume 27, Number 3 • July 2011 through September 2011 • www.atmae.org

presented by Openfiler was exclusively
connected to the ESX server with no
other servers having access to the same
iSCSI target on which virtual machine
files resided. Fibre Channel, Content-
Addressable Storage (CAS), Direct-At-
tached Storage (DAS) and other types
of storage networks were not tested
under this study.

METHODS OF
INVESTIGATION

Research Design
In order to compare I/O write request
differences between virtual and physi-
cal disks, two scenarios were created
and they are presented in Table 1.

Each Iometer test ran for 40-50 minutes
(5 seconds * 500 workers = 41.6 min-
utes) and 500 samples were collected
for each size 4KB and 32KB, totaling
2000 write requests for the entire study.

Techniques of Data Gathering
The following resources where used
during this study:
1.	 ESX Server (version 3.5 update

2) based on IBM x336 server with
a Windows Server 2003 virtual
machine (VM),

2.	 iSCSI target presented by Openfiler
NAS/SAN appliance (version 2.3),

3.	 Dell Optiplex GX260 with the
following specifications:
•	 2 GHz Intel Processor
•	 2 Gigabytes DDR Memory
•	 80 GB Hitachi DeskStar

7200RPMs with 133MB/s IDE
controller,

4.	 Iometer as the single IOps
measuring software were used and
then the results were compared,

5.	 Microsoft Excel and Minitab
15.0 were used to collect data and
perform statistical calculations.

Iometer was used to perform all the
necessary write requests on both
systems. The setups for the tests were
the same on each system, physical and
virtual:

•	 Disk Target: C Drive
•	 Network Target: Not used
•	 Access Specifications: One set of

500 workers running 4K, 100%
Write, 100% Sequential, and 100%
Access Specification and a second
set of 500 workers running 32K,
100% Write, 100% Sequential, and
100% Access specifications. Refers
to Figure 3.

•	 Cycle Workers- Step Workers one
at a time to all targets.

•	 Each test ran for 5 seconds
•	 Once each system’s Iometer was

setup to run under the appropriate
specifications the tests were
started and each test ran for 40-50
minutes (5 seconds * 500 workers
= 41.6 minutes). Two tests were
conducted for each machine: with
4KB and 32KB packet sizes.

Openfiler setup
Openfiler NAS/SAN appliance was
used to provide iSCSI target to the
ESX server. ESX server connected to
Logical Unit Number (LUN) 0 on OF2
(openfiler2), and that is where the virtual
machine files resided, including the
virtual disk of the tested virtual machine.

It is important to understand the rel-
evance of this discussion about Open-
filer system since it processes all write
requests for the virtual machines’ disks.
For the iSCSI target setup default values
for iSCSI target under Openfiler NAS/
SAN appliance were used, as shown in
Table 2.

VMware states that the following
switches need to be specified for all
iSCSI targets accessed by ESX – no_
root_squash, sw, sync (VMware, 2007).
In this study the specifications of the
recommended switches for Openfiler
were not required since the NAS/SAN
appliance presented targets correctly.

I/O throughput for the virtual disk of
tested VM is highly dependent on the
type of network that is used. Since
iSCSI technology allows transmission
of SCSI commands over TCP, network
speed is an essential factor for iSCSI
communications (Shrivastava & Soma-
sundaram, 2009). In this study, 1000
MB/s Netgear Ethernet switch was

Table 1. Configuration scenarios for write requests

Configuration Block size, KB

1
Physical IDE 4KB 32KB

2
Virtual SCSI 4KB 32KB

Figure 3. Iometer Setup

6

Journal of Industrial Technology • Volume 27, Number 3 • July 2011 through September 2011 • www.atmae.org

used to connect the ESX server and the
Openfiler appliance. The ESX server
software iSCSI initiator was used to
interconnect with the Openfiler iSCSI
target. Figure 4 presents the laboratory
setup.

Data Analysis Method
The following tools were utilized for
the analyses of the research questions:
1.	 In this study a 2-Sample t-test was

used to perform a hypothesis test
and compute a confidence interval
of the difference between two
population means of the physical
and virtual PCs.

2.	 Minitab version 15.0 software
package was used for statistical
calculations.

3.	 Microsoft Excel software package
was used for the creation of the
population sample.

FINDINGS
Findings and Analysis of Write I/O
requests
During the simulation testing, 500
groups of data were collected. Basic
descriptive statistics are then computed
using Minitab software version 15.0
and results are shown in Table 3. Nu-
meric results describe on average how
many IOPs were performed on both
Physical and Virtual interface for 4KB
block, and 32KB block, respectively.

Histograms with normal curve for
each tested configuration are shown in
Figure 5 and 6.

From statistics point of view, the data
collected can be characterized as an
independent two-sample t test. Let

Table 2 Openfiler default settings for iSCSI target

HeaderDigest None MaxBurstLength 262144 MaxRecvDataSegmentLength 131072

DataDigest None FirstBurstLength 262144 MaxXmitDataSegmentLength 131072

InitialR2T Yes DefaultTime2Wait 2 MaxOutstandingR2T 8

ImmediateData No DefaultTime2Retain 20 DataPDUInOrder Yes

MaxConnections 1 Wthreads 16 DataSequenceInOrder Yes

QueuedCommands 32 ErrorRecoveryLevel 0

Figure 4. Laboratory setup.

Figure 5. Histogram for Physical Machine size

5.a. 32KB 5.b. 4KB

Table 3. Descriptive statistics for 1 and 2 configurations

Size
(KB)

Mean
(IOPs)

SE
Mean

St.
Dev Variance Median

(IOPs)
Range
(IOPs)

1
Physical

4 875.65 0.82 18.34 336.25 873.8 125.18

32 881.03 0.871 19.47 379 883.08 122.58

2
Virtual

4 1059.7 1.44 32.1 1032.9 1061.1 362.6

32 297.13 0.289 6.46 41.68 297.62 87.31

7

Journal of Industrial Technology • Volume 27, Number 3 • July 2011 through September 2011 • www.atmae.org

x
4k1

	 = the mean of sample write
IOPs of 4K block on the
physical IDE interface

x
4k2

	 = the mean of sample write
IOPs of 4K block on the virtual
iSCSI interface

s
4k1

	 = the standard deviation of
sample IOPs of 4K block on
the physical IDE interface

s
4k2

	 = the standard deviation of
sample IOPs of 4K block on
the virtual iSCSI interface

n
4k1

	 = the sample size of IOPs of 4K block on the physical
IDE interface

n
4k2

	 = the sample size of IOPs of 4K block on the virtual
iSCSI interface

From Table 3, it is clear that:

x
4k1

= 875.65 s
4k1

=18.34 n
4k1

= 500

x
4k2

= 1059.7 s
4k2

=32.1 n
4k2

=500

Pooled variance is preferred over the non-pooled variance
because it has more degrees of freedom and will produce
more convincing results. But pooled variance should be ap-
plied only when the standard deviations of the two groups are
about the same. The following formula is used to determine
if the standard deviations of the two populations are equal by
comparing the ratio:

Since the ratio is less than 2, it is reasonable to assume that
the standard deviations are equal and the pooled confidence
interval procedure can be used to further analyze the data.
The value of the estimated pooled standard deviation is

Thus,

The number of degrees of freedom for pooled standard devia-
tion is:

df = n
4k1

+ n
4k2

– 2 = 500 + 500 – 2 = 998

If the confidence level is set to 99%, then area in each tail
is 0.01/2 = 0.005. The t value corresponding to a tail area of
0.005 and df = 998 is 2.581. Therefore, at 99% confidence
level, the difference of two IOPs is:

Because both the lower limit and upper limit of the intervals
are negative, it suggests that for the 4KB write request, at
99% confidence level the mean IOPS of the physical IDE
controller is about 179.784 to 188.316 less than that of the
virtual iSCSI controller.

Similarly for the 32K block size, let

x
32k1	

= the mean of sample write IOPs of 32K block on the
physical IDE interface

x
32k2	

= the mean of sample write IOPs of 32K block on the
virtual iSCSI interface

s
32k1

	 = the standard deviation of sample IOPs of 32K block
on the physical IDE interface

s
32k2

	 = the standard deviation of sample IOPs of 32K block
on the virtual iSCSI interface

n
32k1

	 = the sample size of IOPs of 32K block on the physi-
cal IDE interface

n
32k2

	 = the sample size of IOPs of 32K block on the virtual
iSCSI interface

From table 2, we know that:

x
32k1

= 881.03 s
32k1

= 19.47 n
32k1

= 500

x
32k2

= 297.13 s
32k2

= 6.46 n
32k1

=500

Figure 6. Histogram for Virtual Machine

6.a. 32KB 6.b. 4KB

8

Journal of Industrial Technology • Volume 27, Number 3 • July 2011 through September 2011 • www.atmae.org

The ratio of the standard deviations is as follows:

Because the ratio is greater than two, it is not reasonable to
assume that the standard deviations are equal. Therefore it is
necessary to follow the procedure of non-pooled confidence
interval.

The point of estimate is given by

(x
32k1

– x
32k2

) = 881.03 – 297.13 = 583.9

The degrees of freedom can be approximated by
df = min (n

32k1
– 1, n

32k2
– 1) = 499.

If confidence level is still set at 99%, then the area in each tail
is 0.005. From t distribution, when df=499, the t value cor-
responding to a tail area of 0.005 is 2.586.
Then the difference of the two 32KB write IOPS is:

Since both upper limit and lower limit are positive, it means
that for the 32KB write request, at 99% confidence level,
the IOPs of physical IDE controller is between 581.528 and
586.27 more than that of virtual iSCSI controller.
When considering the results for Mega Byte Process Speed
(MBPS), a 2 x 2 analysis of variance (ANOVA) model were
used to evaluate if MBPS differed across two levels of disk
controller type and data block sizes. Test of simple main ef-
fects was also performed to locate specific group differences.
The level of significance was adjusted using the Bonferroni
correction procedure and was accepted a priori at P < 0.025.

A significant disk controller by data block interaction was
also observed (F

1,998
 = 18787.04, P < 0.0001). Simple main

effects testing revealed that MBPS was significantly larger
for the Physical Disk controller (27.4±0.6) compared to the
Virtual Disk controller (4.1±0.12) for the 4KB data block size
(P < 0.0001). For the 32 KB block size, MBPS was also sig-
nificantly larger for the Physical Disk controller (27.5±0.61)
compared to the Virtual Disk controller (9.29±0.20; P <
0.0001). When assessing MBPS across Data Block Size
for the Virtual Disk controller, MBPS was significantly
larger for the 32 KB (9.29±0.20) compared to the 4 KB size
(4.14±0.13; P < 0.0001); similarly, for the Physical Disk con-
troller MBPS values were also significantly larger for the 32
KB size (27.5±0.61) compared to the 4 KB size (27.4±0.57; P
< 0.0001).

Based on the test results and analyses, the following is con-
cluded:

1. H1
0
: µ

4ph
 = µ

4vm
 is rejected in favor of the alternative H1

a
:

µ
4ph

 ≠ µ
4vm

: there are differences in IOps for write requests of
4KB between physical and virtual disk while other hardware
components and software remain constant.

2. H2
0
: µ

32ph
 = µ

32vm
 is rejected in favor of the alternative H2

a
:

µ
32ph

 ≠ µ
32vm

: there are differences in IOps for write requests
of 32KB between physical and virtual disk while other hard-
ware components and software remain constant.
This study’s research questions were answered in the follow-
ing manner:

Q
1
: Does virtual SCSI controller processes 4KB I/O write

requests faster than IDE controller?
Yes, virtual SCSI controller processes 4KB I/O write
requests faster than IDE controller.

Q
2
: Does virtual SCSI controller processes 32KB I/O write

requests faster than IDE controller?
No, virtual SCSI controller does not process 32KB I/O
write requests faster than IDE controller.

Q
3
: Does virtual SCSI controller write more data than IDE

controller while processing 4KB I/O?
No, virtual SCSI controller does not write more data than
IDE controller while processing 4KB I/O.

Q
4
: Does virtual SCSI controller write more data than IDE

controller while processing 32KB I/O?
No, virtual SCSI controller does not write more data than
IDE controller while processing 32KB I/O.

LIMITATIONS OF THE STUDY AND
FUTURE CONSIDERATIONS
Due to budget and time restrictions, the data collected in this
study is not comprehensive. The testing environment was set
up to resemble typical storage systems in real life scenarios.
However, the results of write performance may vary signifi-
cantly if different hardware systems or software systems are
applied. So changes in the instrument (hardware), bench-
marking software, write block sizes, and the duration of the
tests may jeopardize internal validity of this study.

In particular, following important factors that were not ex-
amined under this research could alter the performance of a
virtual SCSI controller. Further investigations are needed in
future works.

1.	 Type of virtual disk being created – independent
persistent or non-persistent disk (VMware, 2007).

2.	 Type of network interface cards (NIC) for the hypervisor
(ESX server in this study) that provide the connectivity
to iSCSI targets. For example it is possible that a 10 GB/s
NIC will process write/read requests faster than 1000
MB/s NIC that was used in this study.

3.	 Use of hardware SCSI host bus adapter (HBA) for the
hypervisor may allow for processing write/read requests

9

Journal of Industrial Technology • Volume 27, Number 3 • July 2011 through September 2011 • www.atmae.org

faster than a built-in software iSCSI
initiator as was used in this study.

4.	 Provisioning of iSCSI targets
may be approached differently
from the approach used for this
study. In addition to Openfiler,
other iSCSI storage can be used to
better understand the performance
differences.

In addition, this study by itself is not
sufficient to explain the results we have
observed. The authors believe it may
due to the fact that the block size of the
physical SCSI hard drive is also small.
Therefore, the I/O performance of a
virtual SCSI interface is good when the
size of the request is 4KB (small). And
the I/O performance declines signifi-
cantly when the size of the request is
32KB (large): additional overheard
occurs to map a virtual block to a few
physical blocks. Another possible cause
of the phenomena could be the size of
the disk write buffer. If the disk write
buffer is big enough to hold the sequen-
tial 4KB write requests but not enough
to contain the sequential 32KB write
requests, then it can explain why the
virtual SCSI interface can achieve great
I/O performance when the requests are
small and poor performance when the
requests are large. More experiments
are therefore needed to discover the
root cause of problem.

CONCLUSIONS
Based on the findings of this study,
it is apparent that in a typical storage
system, smaller size write requests are
processed quicker via virtual SCSI
controller. This result suggests that it
is more efficient to deploy a VM with
a virtual SCSI controller for frequent,
small write requests. An example of
such demand could be a database that
constantly creates small size write
requests. For instance, a database that is
configured to store records of secu-
rity auditing log needs to be updated
very often and each record is typically
very small in size. As for larger write
requests, such as 32KB, a physical hard
disk controller is more capable in com-
parison with a virtual storage controller.

There are some changes that could be
made to improve the performance of a
virtual storage controller. According to
Perilli(2005), the following is recom-
mended for better I/O performance
when deploying a virtual machine: a)
create a dedicated partition for virtual
machines only, b) create guest virtual
disks with “Allocate all disk space
now” option, and c) schedule a daily
defragmentation for the virtual ma-
chines’ directories. It is important to
understand, that while the virtual SCSI
controller processes write requests
faster, it does not write more data in
either case of 4KB or 32KB requests.
This phenomenon maybe explained by
the fact that the underlying hardware
for the virtual controller is a network
storage device, that initially has to be
reached by the ESX host and only after
the connection is established, can the
data be written to the disk. A reason-
able solution for a case where the vir-
tual controller processes I/O faster than
the physical controller but the amount
of data written by a virtual controller is
not larger than the physical controller’s,
is to use a write-back type of cache on
storage devices. In such devices a write
acknowledgement is sent as soon as
cache memory receives a write request
and the actual recording of data is
processed at a later time (Shrivastava
& Somasundaram, 2009). Database
systems may benefit from such setup.

In conclusion, it is important to consider
performing more tests with virtual sys-
tems as they overwhelmingly surmount
enterprise environments. With introduc-
tions of new storage technologies based
on 40 GB/s or even 100 GB/s systems
(Dornan, 2008), there may be a signifi-
cant improvement in performance of
virtual storage controllers.

REFERENCES
Asaro, T. (2009). iSCSI vs. FC perfor-

mance: A closer look. Data storage
technology and management resourc-
es - SearchStorage.com. TechTarget.
Retrieved on March 12, 2009 from
http://searchstorage.techtarget.
com/news/column/0,294698,sid5_
gci1161824,00.html.

Bhadkamkar et al, (2007). BORG:
Block-reORGanization and Self-opti-
mization in Storage Systems. Florida
International University Technical
Report TR-2007-07-01.

Caffrey et al. (2010). Expert Oracle
Practices: Oracle Database Adminis-
tration from the Oak Table. Apress,
1st Edition, January 2010.

Childers, B. (2009). Openfiler: an Open-
Source Network Storage Appliance.
Linux Journal 2009. ACM Digital
Library. Retrieved on June 22, 2009
from http://www.linuxjournal.com/
article/10414.

Cormier, L. (2008). iSCSI in a Virtual-
ized World. Communications News.
Academic Search Complete. EB-
SCO. Dec. 2008: 12-12.

Diskeeper Corporation (2006). Virtu-
alization and Disk Performance.
Retrieved on July 13, 2009 from
http://files.diskeeper.com/pdf/Virtual-
ization_Performance.pdf.

Dornan, A. (2008). One Network to Rule
Them All. InformationWeek, May 18,
2008.

Foot, C. (2004). OCP Instructors Guide
for Oracle DBA Certification: A
Study Guide to Advanced Oracle
Certified Professional Database
Administration Techniques (Oracle
In-Focus series). Rampant Techpress;
Stg Edition, April 2004.

Goldner, J. (2003). The Emergence of
iSCSI. Queue 2003. Association for
Computing Machinery. Retrieved on
April23, 2009 from http://doi.acm.
org/10.1145/864056.1388769.

Hufferd, J. (2003). iSCSI: The Universal
Storage Connection.©2003 by Pear-
son Education, Inc. Addison-Wesley
2003.

IBM (n.d.). IBM 350 disk storage unit.
International Business Machines
Corporation Archives. Retrieved on
April 3, 2009 from http://www-03.
ibm.com/ibm/history/exhibits/stor-
age/storage_350.html.

Iometer (2003). Iometer User’s Guide.
Retrieved on July 13, 2009 from
http://iometer.cvs.sourceforge.
net/*checkout*/iometer/iometer/
Docs/Iometer.pdf.

10

Journal of Industrial Technology • Volume 27, Number 3 • July 2011 through September 2011 • www.atmae.org

Perilli, A. (2005). How to improve disk
I/O performances with VMware
Workstation. Retrieved on April 2,
2009 from http://www.virtualization.
info/2005/11/how-to-improve-disk-
io-performances.html.

Ponniah, P (2001). Data Warehousing
Fundamentals: A Comprehensive
Guide for IT Professionals. Wiley-
Interscience August 2001.

Rogers, J. (2007). VMware Tackles Stor-
age. Information Week Dec.2007.
Retrieved on July 13, 2009 from
http://www.lexisnexis.com/us/lnaca-
demic/results/docview/docview.do?st
art=2&sort=RELEVANCE&format=
GNBFI&risb=21_T6947250718.

Shrivastava & Somasundaram (2009).
Information Storage and Manage-
ment. ©2009 EMC Education
Services. Wiley Publishing, India-
napolis, Indiana.

Thompson, D. (2002). Method and Ap-
paratus for Accessing Remote Stor-
age Using SCSI and an IP Network.
Cisco Technology, Inc., assignee.
Patent US006895461B1.

VMware (2007). iSCSI Design Con-
siderations and Deployment Guide.
Tech. 5 Nov. 2007. Retrieved on May
12, 2009 from http://www.vmware.
com/resources/techresources/1006.

VMware iSCSI (2010). iSCSI SAN
Configuration Guide, ESX 4.1, ESXi
4.1. Copyright © 2009, 2010 VM-
ware, Inc. EN-000288-00, available
at http://www.vmware.com/support/
pubs.

VMware VMFS (2007). Virtual Machine
File System: Technical Overview
and Best Practices. Tech. Palo Alto,
VMware Inc., 2007.

VMware (2009). VMFS Volume Man-
agement. VMware Resources. May
19, 2009. VMware Inc. Retrieved
on June 2, 2009 from http://www.
vmware.com/resources/techresourc-
es/10003.

Western Digital (2009). WD launches
industries’ first 2TB drive. Press
release. Western Digital. 27 Jan.
2009. Retrieved on July 13, 2009
from http://www.westerndigital.com/
en/company/releases/PressRelease.
asp?release=01D0EF49-E149-410A-
A173-F872D0E6C335.

