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Introduction

 How can we quickly evaluate whether or not
equipment within a high-altitude gondola will
stay within an acceptable temperature range
during a short-duration flight?

e Short-duration < No steady state

 Temperature constantly changes on ascent and
descent

 Temperature dynamics are slow to respond
 Need a dynamical thermal model
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Introduction

* Approach:

* |dentify a first-order thermal model for an assumed
iIsothermal node (the payload).

- Desirable for the |.D. procedure to be easily carried out in
an academic laboratory at ground level atmospheric
pressure.

* Raises questions:
« Will a suitable model depend on atmospheric

pressure?
- |f so, by how much? %\)
- |Is pressure independence acceptable? L ]
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Model Identification

 Assume a single isothermal node:

0 Gondola
\ L
Tout +
0,
* Energy balance:
C T (1)= (T (1) =T (1))+ 0, 1)+ 0, 1
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Model Identification

* Experiment:
« Zero Q_ _and apply a known Q,
- T_. should be constant (if not, average it)

* Record:
- Time, Payload Temperature T, and T__

* Notice the analytical solution to the differential

equation is:

T(t)=(T(0)-a,)e" +a,

where «=RC  gnd @=T(x)

“‘:*-'2; " EMBRY-RIDDLE Taylor University, Upland, IN.
s AERONAUTICAL UNIVERSITY 6/26/2013 - 6/28/2013



6 of 17

Model Identification

- Find a, and a, that make the analytical solution
best-fit the recorded data.

e How? Minimize | where:

| |
_l‘l

Tmeas(t1>_ (Tmeas<0)_a2>e B +Cl2

Lots of ways to solve this!

¥ -
= et S
|
z
1

IR
I
~

3
@
—
~
\S]
I
~

“‘:*-'2; " EMBRY-RIDDLE Taylor University, Upland, IN.
s AERONAUTICAL UNIVERSITY 6/26/2013 - 6/28/2013



7 of 17

Model Identification

» Solving the minimization problem provides:
e Time-constant: a,=RC

« Steady-state temperature: «,=7(x)

- Notice: we don't have to collect data until steady-state is
reached!

e To find thermal resistance:

* Use steady state solution: 0=—(T ()~ T,,)+0,

T(0)—T K
SO, R: Q)= out
QH_ . ,
 Thermal capacitance: c=- I@l
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Model Identification

» To find Q__ :
 Zero Q,

* Place gondola in direct sunlight

* Allow payload to reach a steady-state temperature
- Could also curve fit.

T, (oo)=T ,
° Then, qun: meas(R) ou
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Laboratory Results

* In order to T .
investigate |
pressure s B—
dependence, the S
first part of the |.D. /-
procedure was .
carried out on a o
test gondola at
different pressures
in a vacuum -

290 | | | |
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Laboratory Results

* Provided data on - ———
thermal resistanceand :-=, = —
thermal capacitance
VS. pressure.

» Substantial change in
thermal resistance.

* Fits logarithmic curve!
 Minor change in

thermal capacitance. i@]
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Laboratory Results

e Using the fitted

thermal resistance %

curve and a typical T

flight altitude and I/
pressure profile, we
find: X

* it is almost affine with _/\

T T
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S —

 at constant ascent, it /,/
Is almost affine with e

time.
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Laboratory Results

* Trends show that thermal resistance is pressure
dependent

 Thermal capacitance? <« not too conclusive

* Currently carrying out test on different gondolas
to determine if thermal resistance vs. pressure
Is consistently in the form of a logarithmic
curve.

* |f so, two-point calibration could be used for building

)

a pressure dependent model (would require one g/
test to be performed in a vacuum). i I
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» Test the model's effectiveness by evaluating its
response to data not used for identification.

 How well does this response match the model
response”?

e Carried out validation process for three
gondolas that flew on three different flights.

e Gondo
« Gondo
« Gondo
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Validation
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Validation
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Validation

* Less than three percent error (measure is

somewhat mis
e No consistent

eading)
ead/lag in the response.

 May show up with more tests.

e Measured data is colder on ascent and descent
than model response.

* Unmodeled forced-air convective cooling?
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Conclusion

* Pressure independent models seem to provide acceptable
results for short duration flights even though thermal
resistance appears to be highly pressure dependent.

e Future improvements:

 The solar input test is highly dependent upon time of day and
year.

- Use National Renewable Energy Lab solar tables to scale
value for time of day/year.

* Provide correction factor for forced air convection (probably make
this a function of pressure)

- Would likely require an additional experiment. (DS
« Try 2-point calibration for developing pressure dependent i : I

model.
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