Validation Results of Pressure Independent First-Order Thermal Models of High-Altitude Balloon Gondolas

Jeremy Meduvsky, Michael Howeth, Chelsea Katan, Douglas R. Isenberg Department of Aerospace and Mechanical Engineering Embry-Riddle Aeronautical University Prescott, AZ 86301, USA

Taylor University, Upland, IN. 6/26/2013 - 6/28/2013

1 of 17

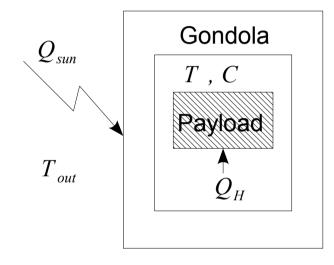
Introduction

- How can we quickly evaluate whether or not equipment within a high-altitude gondola will stay within an acceptable temperature range during a short-duration flight?
- Short-duration ← No steady state
 - Temperature constantly changes on ascent and descent
 - Temperature dynamics are slow to respond
- Need a dynamical thermal model

Introduction

- Approach:
 - Identify a first-order thermal model for an assumed isothermal node (the payload).
 - Desirable for the I.D. procedure to be easily carried out in an academic laboratory at ground level atmospheric pressure.
- Raises questions:
 - Will a suitable model depend on atmospheric pressure?
 - If so, by how much?
 - Is pressure independence acceptable?

• Assume a single isothermal node:



• Energy balance:

$$C\dot{T}(t) = -\frac{1}{R}(T(t) - T_{out}(t)) + Q_H(t) + Q_{sun}(t)$$

- Experiment:
 - Zero $\mathbf{Q}_{_{\!\!\text{sun}}}$ and apply a known $\mathbf{Q}_{_{\!\!\text{H}}}$
 - T_{out} should be constant (if not, average it)
 - Record:
 - Time, Payload Temperature T, and T_{out}

n

Notice the analytical solution to the differential equation is:

$$T(t) = (T(0) - a_2)e^{\frac{-t}{a_1}} + a_2$$

where $a_1 = b$

$$\mathbf{d} \quad a_2 = T(\infty)$$

- Find a_1 and a_2 that make the analytical solution best-fit the recorded data.
- How? Minimize $\|e\|^2$ where:

$$\underline{e} = \begin{bmatrix} T_{meas}(t_1) - \left((T_{meas}(0) - a_2) e^{\frac{-t_1}{a_1}} + a_2 \right) \\ T_{meas}(t_2) - \left((T_{meas}(0) - a_2) e^{\frac{-t_2}{a_1}} + a_2 \right) \\ \vdots \\ T_{meas}(t_n) - \left((T_{meas}(0) - a_2) e^{\frac{-t_n}{a_1}} + a_2 \right) \end{bmatrix}$$

Lots of ways to solve this!

MATLAB ← "Isqnonlin" works well

- Solving the minimization problem provides:
 - Time-constant: $a_1 = RC$
 - Steady-state temperature: $a_2 = T(\infty)$
 - Notice: we don't have to collect data until steady-state is reached!
- To find thermal resistance:
 - Use steady state solution: so, $R = \frac{T(\infty) - \hat{T}_{out}}{Q_H}$

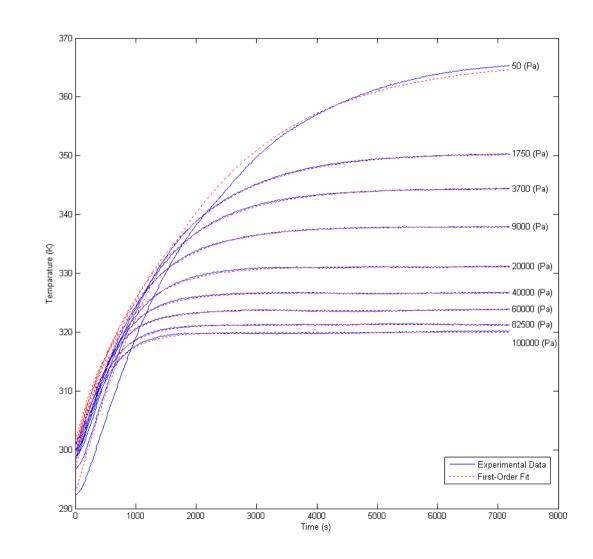
• Thermal capacitance: $C = \frac{a_1}{R}$

$$0 = -\frac{1}{R} (T(\infty) - \hat{T}_{out}) + Q_H$$

- To find Q_{sun} :
 - Zero Q_H
 - Place gondola in direct sunlight
 - Allow payload to reach a steady-state temperature
 - Could also curve fit.

• Then,
$$Q_{sun} = \frac{T_{meas}(\infty) - \hat{T}_{out}}{R}$$

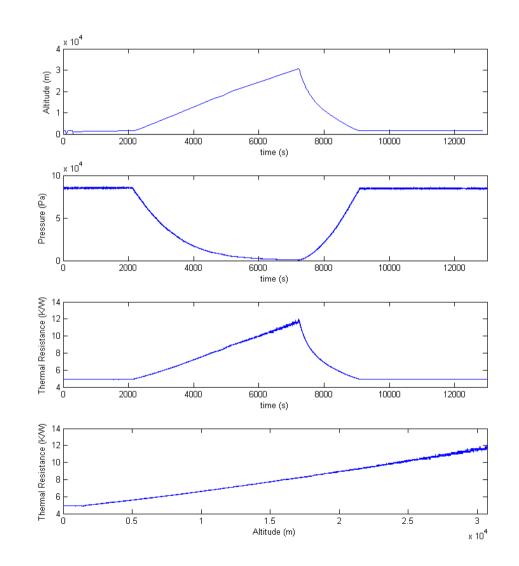
 In order to investigate pressure dependence, the first part of the I.D. procedure was carried out on a test gondola at different pressures in a vacuum chamber.



- Provided data on thermal resistance and thermal capacitance vs. pressure.
- Substantial change in thermal resistance.
 - Fits logarithmic curve!
- Minor change in thermal capacitance.

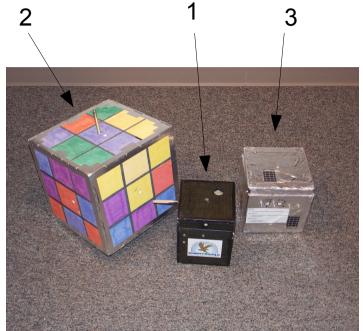


- Using the fitted thermal resistance curve and a typical flight altitude and pressure profile, we find:
 - it is almost affine with altitude.
 - at constant ascent, it is almost affine with time.

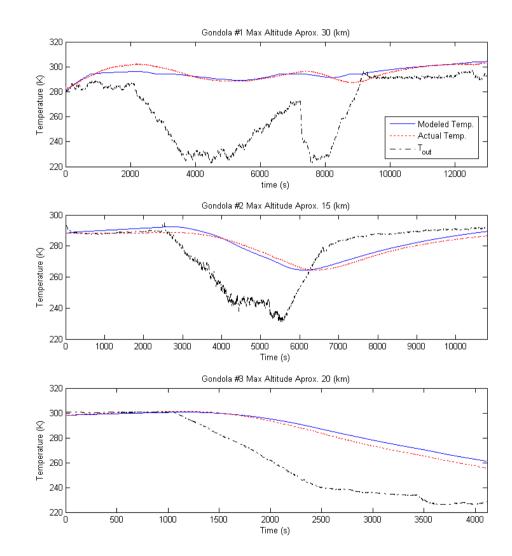


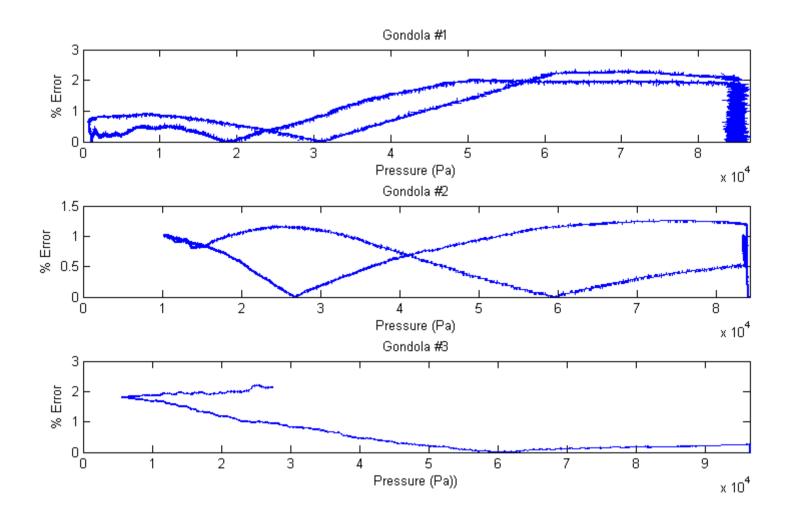
- Trends show that thermal resistance is pressure dependent
 - Thermal capacitance? ← not too conclusive
- Currently carrying out test on different gondolas to determine if thermal resistance vs. pressure is consistently in the form of a logarithmic curve.
 - If so, two-point calibration could be used for building a pressure dependent model (would require one test to be performed in a vacuum).

- Test the model's effectiveness by evaluating its response to data not used for identification.
 - How well does this response match the model response?
- Carried out validation process for three gondolas that flew on three different flights.
 - Gondola 1 \rightarrow maximum altitude = 30 (km)
 - Gondola 2 \rightarrow maximum altitude = 15 (km)
 - Gondola $3 \rightarrow$ maximum altitude = 20 (km)



Gondola	Q _{sun} (W)	R (K/W)	C (J/K)
1	3.189	4.803	610.17
2	2.161	2.560	980.38
3	0.733	5.724	399.42





- Less than three percent error (measure is somewhat misleading)
- No consistent lead/lag in the response.
 - May show up with more tests.
- Measured data is colder on ascent and descent than model response.
 - Unmodeled forced-air convective cooling?

Conclusion

- Pressure independent models seem to provide acceptable results for short duration flights even though thermal resistance appears to be highly pressure dependent.
- Future improvements:
 - The solar input test is highly dependent upon time of day and year.
 - Use National Renewable Energy Lab solar tables to scale value for time of day/year.
 - Provide correction factor for forced air convection (probably make this a function of pressure)
 - Would likely require an additional experiment.
 - Try 2-point calibration for developing pressure dependent

