Design of an Attitude Control System for a High-Altitude Balloon Payload

Nguyen K. Tran, David E. Zlotnik, James R. Forbes

Department of Mechanical Engineering, McGill University
Montreal, Quebec, Canada
屚 McGill
June 27, 2013

Introduction

Background

- Physicists seek to determine the expansion rate of the universe by observing polarization in the cosmic microwave background (CMB).
- Ground-based telescopes exist to observe this type of polarization.
- No celestial source is strong enough to properly calibrate these telescopes.

Introduction

High-Altitude Ballooning

- A high-altitude balloon can be used to elevate a tuned microwave source to calibrate these telescopes.
- An actuator can be used to correctly point the source to the telescope.
- High-altitude ballooning is quickly becoming a relatively inexpensive hobby.

Goals

- Construct a high-altitude ballooning platform with attitude control for the purpose of pointing down to a ground-based telescope.
- Must be able to point to within $\pm 1^{\circ}$ at an altitude of approximately 15 km.
- Payload must be compliant with ballooning regulations.
- Less than 6 lb per box for the Federal Aviation Administration.
- Less than $112 \mathrm{ft}^{2}$ of gas in the balloon for Transport Canada.
- Inexpensive (budget of $\$ 1800$).

Actuation

- A reaction wheel system was implemented.
- Functions by applying/creating a torque about an axis of rotation.
- A Maxon EC-60 Flat brushless motor was used as a reaction wheel.
- The flat, cylindrical shape of the inner rotor essentially serves as a flywheel.

Balloon and Interface

- 600 g Totex Balloon bought from Kaymont balloons.
- With a 6 lb payload and $110 \mathrm{ft}^{3}$ of helium, this is enough to lift the payload to approximately 25 km .
- A swivel hook is used at the interface between the parachute and the balloon to decouple the box from the spinning of the balloon.

Sensors

- Inertial measurement unit (IMU) contains an accelerometer, gyroscope, and magnetometer.
- Accelerometer measures the acceleration of the system.
- Gyroscope measures the angular velocity.
- Magnetometer measures the magnetic field.
- All three of these sensors can be combined using sensor fusion techniques.
- Specifically, we used a Pololu Minilmu-9 with L3G4200D gyroscope and LSM303DLM accelerometer/magnetometer which communicates on the Inter-Integrated Circuit ($\left.I^{2} \mathrm{C}\right)$ bus.

- Used a Raspberry Pi single-board computer containing a 700 MHz ARMv6 processor and 512mb RAM.
- Runs on Debian Linux allowing for the entire codebase to be written in Python 2.7.
- Has breakout connections to SPI, I2C, and UART for sensor communication.

Power

- Main system powered using a single 4 cell 14.8 V lithium polymer battery.
- A 5V switching regulator is used to power the Raspberry Pi along with various sensors.
- A separate 2 cell 7.4 V lithium polymer battery powers one VHF transmitter.

Estimation and Control

- We estimate the rotation matrix describing the attitude using the method of Mohany and Hamel.
- A more sophisticated way of estimating Euler angles (pitch, roll, yaw) of the system; similar to a complementary filter.
- The goal is to drive $\hat{\mathbf{C}}_{b i}$, the estimated attitude, to $\mathbf{C}_{b i}$, the true attitude.
- Use a PD control law based on yaw error:

$$
\tau_{c, 3}=-k_{p} \hat{\theta}_{3}-k_{d} \omega_{3}^{y}
$$

Simulation Results

McHAB-1

Maiden Flight

- Created the McGill High Altitude Ballooning (McHAB) team.
- Ballon Radio Amateur du Quebec (BRAQ), a local ballooning group, helped launch the payload.
- Purpose of the first launch:
- learn how to launch stratospheric balloons;
- test our attitude estimator;
- and, collect some preliminary data on atmospheric conditions.

McHAB-2

Purpose

- Collect more attitude data using the estimator.
- Payload train now only contains one box.
- Test reaction wheel system.
- Continue to learn how to launch stratospheric balloons.

McHAB-2 Flight Results

Flight Outcome

- Payload traveled 59km in 3.5hr landing close to Granby, Quebec, Canada.
- Successfully recovered payload containing data stored on the Raspberry Pi's 32GB SD card.

McHAB-2 Altitude

McHAB-2 Control of Yaw Axis at 4km

McHAB-2 Control of Yaw Axis at 6.8 km

McHAB-2 Control of Yaw Axis at 13.5 km

McHAB-2 Yaw Axis at 7 km with no control

Conclusions and Future Work

Conclusions

- Reaction wheel inertia does not provide enough control torque.
- Reaction wheel does not saturate as fast at higher altitudes.
- No adequate means to desaturate the reaction wheel.

Future Work - McHAB-3/SPT HAB

- Equip with reaction wheel with a flywheel to increase the control authority.
- Determine how to effectively desaturate the reaction wheel.
- Redevelop software using a microcontroller.

Questions

Thank you for your attention, and attending.

Questions?

khoi.tran@mail.mcgill.ca

Presentation created using ${ }^{A} T_{E} X$ and Beamer.

Modelling the System

- Model the system as two rigid bodies, a pendulum representing the tether, and the platform.
- Use Lagrange's equation to derive the motion equations:

$$
\hat{\mathbf{M}}\left(\boldsymbol{\theta}^{b i}, \boldsymbol{\theta}^{p i}\right) \dot{\hat{\boldsymbol{\nu}}}+\hat{\mathbf{f}}_{n o n}=\hat{\mathbf{f}}+\hat{\boldsymbol{\tau}}_{c},
$$

 disturbances, and $\hat{\tau}_{c}$ is the control torque.

Estimation and Control

- We estimate the rotation matrix describing the attitude using the method of Mohany and Hamel.
- The goal is to drive $\hat{\mathbf{C}}_{b i}$, the estimated attitude, to $\mathbf{C}_{b i}$, the true attitude. Specifically,

$$
\dot{\hat{\mathbf{C}}}_{b i}=-\left(\boldsymbol{\omega}_{b}^{b i v}+\boldsymbol{\sigma}\right)^{\times} \hat{\mathbf{C}}_{b i}=-\hat{\boldsymbol{\omega}}^{\times} \hat{\mathbf{C}}_{b i},
$$

where $\hat{\boldsymbol{\omega}}=\boldsymbol{\omega}_{b}^{b^{i}}+\sigma$, and σ is the innovation,

$$
\boldsymbol{\sigma}=-k\left(k_{g} \hat{\mathbf{g}}_{b}^{\times} \mathbf{g}_{b}^{y}+k_{m} \hat{\mathbf{m}}_{b}^{\times} \mathbf{m}_{b}^{y}\right)
$$

where

$$
\hat{\mathbf{g}}_{b}=\hat{\mathbf{C}}_{b i} \mathbf{g}_{i} \quad \text { and } \quad \hat{\mathbf{m}}_{b}=\hat{\mathbf{C}}_{b i} \mathbf{m}_{i},
$$

are the estimates of \mathbf{g}_{i} and \mathbf{m}_{i} expressed in the body frame.

- Use a PD control law based on yaw error:

$$
\tau_{c, 3}=-k_{p} \hat{\theta}_{3}-k_{d} \omega_{3}^{y}
$$

