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Abstract 

Several procedures for design of UHPC use formulations based on a strain compatibility 

analysis, which can be extended to a serviceability-based design by incorporation of full 

material stress-strain relationship. The material models can be implemented in finite 

element and elastic-plastic solution methodologies in order to close the gap among 

properties, analysis, modeling, and design. The tensile characteristics of UHPC can be 

defined in the context of fiber content and response after the matrix has fully cracked. The 

general terms of strain softening and/or strain hardening are defined, and additional sub-

classes of deflection-softening and -hardening may be outlined based on the behavior in 

bending.  

Keywords - UHPC, Hybrid reinforced UHPC, Fiber reinforced UHPC, Serviceability, 

Design.
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1 Introduction 

UHPC materials are designed to exhibit noticeable ductility, energy absorption capacity, 

and post-cracking strength under tension by employing a relatively high dosage of fiber 

reinforcement (Meda et al., 2012; Yao et al., 2017). The enhanced post-cracking tensile 

strength and improved crack control due to the distributed fiber reinforcement can improve 

shear behavior and may potentially substitute or reduce conventional transverse 

reinforcement (Balaguru et al., 1992; Batson, 1976; Dinh et al., 2010; Lee et al., 2011; 

Prisco et al., 2009; Soranakom and Mobasher, 2009; Vandewalle, 2002, 1999). 

Simplified equations to account for the contribution of fibers to the tensile and shear 

response, cracking strength, and post-crack softening response are widely used to evaluate 

the mechanical performance. By representing the bridging force as an average effective 

tensile stress-crack width relationship (or stress-strain relationship for a specimen of finite 

width referred to as a localized plastic hinge), one can model the material property as 

nonlinear spring elements to simulate the residual capacity of a cracked section (Barros et 

al., 2005; Naaman and Reinhardt, 2006).   In many situations, direct interpretation of results 

primarily based on the strength can be misleading, since the interactions due to variables 

are not considered. Different cracking mechanisms often lead to conservative 

interpretations which underestimate the effect of real parameters (Bernard, 2004; Minelli 

et al., 2007). 

2 Parametric Yield Hinge Model 

Simulation of the load-deflection response of a flexural member can be used as the basis 

of analysis and design in many applications. The general closed-form relationship of 

moment-curvature response can be obtained based on piecewise-linear material 

constitutive relationships. These formulations can be used in the design of plain, reinforced, 

as well as fiber reinforced concrete and can also be extended to the calculation of the load-

deflection response of UHPC (Soranakom and Mobasher, 2008, 2007). The parametric 

model can be used to develop a serviceability limit state (SLS) or ultimate limit state (ULS) 

criteria for the design of FRC flexural members (Soranakom and Mobasher, 2009) using 

both for strain softening and strain hardening FRC. As an extension to the model, one can 

also consider a combination of fibers and plain reinforcement in the context of hybrid 

reinforced concrete (HRC) which addresses structural members that combine continuous 

reinforcement with randomly distributed chopped fibers in the matrix. (Lim et al., 1987; 

Lok and Pei, 1998; Taheri et al., 2011; Vandewalle, 2002).   

The proposed solution strategy can be used to reduce the total amount of reinforcement, 

section size, or the ductility of the UHPC mixtures while meeting the ultimate and 

serviceability flexural stress requirements. In addition, the moment-curvature expressions 

for homogenized UHPC can be used to analyze the cracking and ductility response as well 

as estimate the serviceability deflection level. 

An analytical model for simulating the flexural behavior of HRC, has been presented by 

(Mobasher et al., 2015a). Figure 1(a) and (b) present the constitutive model for 

homogenized strain softening and hardening with two fundamental material parameters: 

Elastic modulus, E, and first cracking tensile strain, cr = cr/E and several parametric 
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variables. The compressive response in Figure 1(a) is elastic-plastic with an initial modulus  

 E (=1) up to the compressive strength of   cr where  represents the ratio of 

compressive strain capacity to tensile strain cracking , cr. The trilinear tension model in 

Figure 1(b) is defined  by an elastic range E, post-cracking modulus Ecr=E, and residual 

strength  cst= crE= cr in the post-crack region. Three tensile strain measures define 

the first cracking, transition to constant stress softening, and ultimate strains (cr, trn = cr 

, tu). Two non-dimensional strain parameters define the limit-state compressive strain cy 

=  cr, and cu = cu cr. The strain variables are also represented as non-dimensional using 

t =  cr , and c =  cr  

 
Figure 1. Material models for homogenized fiber reinforced concrete: (a) compression model and (b) 

tension model (Chote Soranakom and Mobasher, 2007a). 

 

The stress‐strain relationship in compression for UHPC is affected by the dense 

microstructure and fibers, however the tensile capacity does not scale with the increase in 

compressive strength. The parametric components defined above can be obtained from the 

experimental closed-loop tension and compression tests or the empirical relations used by 

various guides and codes. For example, VSL Australia (Gowripalan and Gilbert, 2000) as 

well as Almansour (Almansour and Lounis, 2010) developed an idealized stress‐strain 

relationship by assuming that the compressive strength is limited to 0.85f’c (i.e., 2 =0.85), 

and tensile strength is 4% of the compressive strength, the normalized compressive strength 

  is then obtained as Eq 1, with similar approaches adopted for ACI 318, or Model code.  
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The flexural response is measured using the closed-form solutions of moment-curvature 

response through a sectional analysis (Mobasher et al., 2015a).  The detailed derivations 

for strain softening, strain hardening FRC as well as hybrid reinforced concrete (HRC) 

section containing both rebar and fibers can be found in (Mobasher et al., 2015b; Chote 

Soranakom and Mobasher, 2007b; C. Soranakom and Mobasher, 2007; Soranakom and 

Mobasher, 2008b) and summarized in Table 1.  These equations address the interactions 
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among different stages in tension and compression models, where the parameterized 

functions are all normalized with respect to the cracked section modulus, and: 

2

' , , ' ,
6 2

cr cr
cr cr cr cr

bh
M M M M

h
= = = =

 
    ,   

( )
'

2 1
i

ik


 =

−
 (1) 

Table 1 Normalized Neutral axis depth k, normalized moment Mi’ and curvature i’ for each stage i 

of normalized tensile strain at bottom fiber () 

Stage k Mi’  

1 

0< <1  
1

1
                for =1

2

1
     for <1 or >1

1

k




 







= 
− +

 − +

 
( ) 3 2

1 1 1

1
1

2 1 3 3 1
'

1

k k k
M

k

  − + − +
 

=
−

 

2.1 

1<<α 

0< < 

2 2 4 2
21 21

21
21

D D
k

D

    + − +
=  

( )2 2

21 2 1 2 1D      = − + + − −  

( ) 3 2
21 21 21 21 21 21 21

21
21

2 3 3
'

1

C k C k C k C
M

k

 + − + −
=

−
 

3 2 2 2
21 ( 2 3 3 1)C      −= − + − − +  

2.2 

1<<α  

<< cu 

22
22

22 2

D
k

D 
=

+
 

( )2 2
22 2 1 2 1D      = − + + + −  

( ) 2
22 22 22 22 22 22' 3 2M C k C k C= + − +  

3 2 2 3 2
22 (2 3 3 1)C        −= − + − + −  

3.1 

 <<tu 

0< < 

2
31 31

31 2
31

D D
k

D



 

−
=

−
 

( )
( )

2
31 2 1

2 2 1

D   

   

= − +

+ − + −
 

( ) 3 2
31 31 31 31 31 31 31

31
31

2 3 3
'

1

C k C k C k C
M

k

− − + −
=

−
 

( )2 2 2 2 3 2
31 (3 2 1)C        −= − − + + + −  

 

3.2 

<< tu 

<<cu 

32
32

32 2

D
k

D 
=

+
 

( )

2 2

32

2 1

D   

    

= +

+ − − + + −
 

( ) 2
32 32 32 32 32 32' 3 2M C k C k C= + − +  

( )2 2 2 2 3 3

32 2

3 2 1
C

       



− − + + − + −
=  

 

2.1 Ultimate Strength and Ultimate Limit State for Plain UHPC Beams in Flexure    

The flexural capacity of a UHPC section can be viewed in terms of three strength 

parameters, the first one represents the first cracking of the section under a linear elastic 

response, the second is the equivalent strength obtained at the maximum load carried by 

the section and this is normally obtained at a point where the tensile crack has progressed 

along the section depth. This maximum load obtained under a flexural loading is converted 

to an elastic equivalent ultimate strength.  
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For the serviceability based design criteria, the maximum load can be obtained analytically 

by the interaction of various modes of loading. The third and final strength parameter is 

the limit state which is obtained as the stress at the cracked section stabilizes at the residual 

tensile strength of the material.  In this case the fiber phase is resisting the load and the 

strain or deflection is increased up to a limiting crack width. The capacity at this stage can 

be obtained using asymptotic analysis and presented in terms of the parametric variables 

represented in Equation 2 as discussed in (Arora et al., 2019) 

2
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+
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6

cr
cr
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Using a value of ω=20 in Equation 2, the nominal moment capacity at limit state can be 

expressed within 0.5% accuracy as 2.85n crM M=  which is similar to the analytical limit 

for the ultimate design capacity obained as 3n crM M= by (Soranakom and Mobasher, 

2008a) for a bilinear elastic-residual strength material and in line with the experimental 

predictions of 2.85n crM M= (Bakhshi et al., 2014; Graybeal, 2014). Using the moment-

curvature closed form equations, it is possible to simulate the load-deflection response of 

a beam using the moment-area method or other closed form approaches as well (Yao et al., 

2017). 

 

2.2 Ultimate Limit State for Hybrid Reinforced Concrete (HRC) 

The HRC analytical model presented by (Mobasher et al., 2015a) is used in a design 

approach applied to the UHPFRC members. Equations to determine the moment-curvature 

relationship, ultimate moment capacity, and minimum flexural reinforcement ratio were 

explicitly derived (Mobasher, 2011). The arrangement of the rebars within a cross-section 

of width b and depth h is used to obtain the centroid of the reinforcement at a distance 

d=h. Several other parameters are defined to consider the elastic modulus, yield strain in 

steel, Es=nEc, sy=cr and reinforcement ratio, As=gbh respectively. The closed form 

equations for these cases have also been developed which may be easily replaced with the 

moment curvature relationship represented in the Table 1.  Regardless of the reinforcement 

type and content, the net effect on the cross-sectional analysis is the updated moment-

curvature relationship.  

 

3 Design Tools For Serviceability Based Limit State (SLS) 

A sustainability-based approach enables the designer to follow different deformation stages 

in tension and compression layers and predict the response of the section under a specific 

service level of imposed tensile strain, t (or parameter ). This approach allows one to 

specify the desired deflection (curvature) of the section and then to calculate the equivalent 

tensile strain at the bottom fiber and the relevant moment capacity (Chote Soranakom and 

Mobasher, 2007a; Soranakom and Mobasher, 2008a, 2009; Mobasher et al., 2015a).  
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The equations of Table 1 can be further simplified using polynomial or power curve fitting 

with detailed application for individual cases presented in (Mobasher, 2011) as 

demonstrated by an example of design procedure. The first step is the representation of 

moment curvature for a series of set values of various parameters.  For example, calculation 

of the neutral axis under the two cases of tension cracking (range 2.1) and tension softening 

(3.1) where compression response is assumed to be elastic is defined as a function of strain 

parameter  = t / cr < tu is obtained as:   
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(7) 

In order to simplify the process, one can use a curve fitting algorithm to generate the 

moment capacity and moment-curvature response for any cross section using basic tensile 

material parameters and represent the results using curve-fit parameters. For example, for 

a given material with specific tensile stress strain response, one can obtain the parameters 

and generate the master moment-curvature-neutral axis curves. Figure 2 and Table 2 show 

the case of (=0.0001- 0.5, =1 and =51), and for different values of post-crack stiffness, 

=1.0, 0.67,0.33, 0.0 where tu is assumed to be equal to 200. The moment-curvature-

neutral axis relationships are now developed as a function of applied strain or the curvature 

for that specific material and can be represented as a function of remaining parameters.  

Results of Figure 2 show that an increase in applied tensile strain leads to a decrease in the 

neutral axis compression zone depth. The transitional black line represents the elastic 

perfectly-plastic response of the section, (=0.0). Blue lines belong to the strain-softening 

( 0) response and the red curves stand for the strain-hardening ( 0) behavior.  

(a) (b) 

Figure 2.  Effect of a) Depth of Neutral axis on the Moment capacity of a section for strain softening 

and hardening and b) the moment-curvature response in the Range 2.1 
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The neutral axis k is a function of applied strain   and is used to obtain the moment-

curvature relationship. Figure 3 demonstrates a 3D plot of moment and curvature diagram 

for a specific limiting strain such as 50tu = = . These plots can be achieved for other   

values. Figure 4 illustrates the superimposed results from each range (i.e., ranges 1, 2-1, 

and 3-1) and the final simulated moment-curvature diagram. This figure shows that as the 

curvature (and therefore the strain in the lower fiber of the section,  ) increases, the 

calculated moment moves from one range to others. For the HRC sections the occurrence 

of the compressive failure is also possible.  

Table 2. Location of the neutral axis, moment, and curvature of a composite material with 1 =  and 

 = 0.0001- 0.5. and 3.1 range 1 = , 51 =  and  = 0.00- 1.00. 

Range 
η, µ A, (

A
k

A 
=

+
) )'(M k  )'(M   

2.1 =0.5 
20.5( 1- 2 ) 2 -1  + +  

8 3.5)1.36 2.3 10 ex (p k− −+   0.503 0.686+  

2.1 =0.2 
20.2( 1- 2 ) 2 -1  + +  

21.538 0.001 (15exp )k−+  1.097 0.383+  

2.1 =0.1 
20.1( 1- 2 ) 2 -1  + +  

1.52.124 0.0059 )p(5ex k−+  1.459 0.233+  

2.1 =0.05 
20.05( 1- 2 ) 2 -1  + +  

11.001 0.068 (72exp )k−+  1.73 0.1376+  

2.1 =0.01 
20.01( 1- 2 ) 2 -1  + +  

0.50.7293 0.258 )p(2ex k−+  1.208 0.4004 +  

2.1 1e-4 
20.0001( 1- 2 ) 2 -1  + +  

1.56.42 3.527 p( )ex k−  3.014 2.028 / −  

3.1 = -1e-3 
2 3( 1- 2 ) 10 2 -1x  −− + +  

2.59.669 7.043 p( )ex k−  2.649 2.201/ −  

3.1 µ =1. 2 1 −  5.041 2.038ex )p(k−  0.54.74 1.75e )xp(−− +  

3.1 µ=0.67 1.34 16.16 +  52347 2349exp( )k− +  35362 5364exp( )−− +  

3.1 µ=0.33 0.66 33.84 +  3227.9 228.9exp( )k− +  2519.7 52 )1exp(−− +  

3.1 µ=0.00 51 
265.86 65.86exp( )k− +  2)845 845exp(−− +  

 
Figure 3. 3D plot of moment and curvature diagrams (=1, =30, and =tu=50). 
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Figure 5 illustrates the effect of parameters  and  representing the residual tensile 

strength and the applied tensile strain on the moment-curvature response.  The parametric 

studies are expressed in terms of tensile strain, , for different levels of post-crack tensile 

strength (residual strength) parameter,  from brittle (=0) to ductile response (=). 

From these curves, the value for the moment and curvature can be obtained at any specific 

tensile strain, for any section.  

 
Figure 4. Superimposed responses of each range and the final simulated moment-curvature diagram. 

 

 

Figure 5. Normalized moment- curvature diagram as a function of tensile strain,  , for different 

levels of post-crack tensile strength (residual strength) parameter, . 

 

4 Comparison with Experimental data 

Kaka and Chao (Kaka and Chao, 2018) compared prestressed concrete structures with 

UHPC structural members.  Results of two simply supported beams, made of UHPC and 

monotonically loaded to failure are shown in Figure 6. The beam specimen dimensions 

were a width of 9” (229 mm), height of 16” (406 mm), and a span length of 134” (3404 

mm). A 20” (508 mm) constant moment region was at the mid-span of all specimens. The 

shear span to effective-depth ratio, a/d was 3.93 and ASTM A1035 high-strength 

corrosion-resistant low-carbon chromium reinforcing bars for both specimens. No shear 
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reinforcement was used. The comparison graphs between the experimental results and the 

simulated results, using the constitutive analytical model are presented in Figure 6b and 

show a good agreement. The effective tensile stress strain response necessary to simulate 

the model is also shown. The analytical model can be used up to any specified allowable 

strain or curvature level, therefore this approach allows one to design such reinforced 

concrete members without total reliance on the limit state design and the computations can 

be applied for ant prescribed strain level. 

(a) (b) 

Figure 6. a) Simulated load-deflection curves; b) Stress-strain graphs for tensile behavior. 

 

5 Conclusions 

Analytical approaches to evaluate the flexural capacity of the FRC, HRC and UHPC 

sections have been developed using a general approach to define the moment-curvature 

relationship of a section using material properties that are represented as piecewise linear 

models.  The equations for general cross-sectional analysis are obtained. This approach can 

be used for the serviceability and ultimate limit state designs. The closed form solutions 

can be converted to accurate curve fit relationships for various material types. The 

proposed approaches were investigated using the experimental results from available 

UHPC reinforced section beam testing results.  
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