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ABSTRACT  

The first full-depth, precast, ultra-high performance concrete (UHPC) waffle panels have 
been designed and implemented in a bridge replacement project to utilize accelerated bridge 
construction (ABC) and increase bridge deck longevity. After satisfactory performance of bridge 
deck under moving loads, this paper examines the options to optimize the bridge deck design to 
minimize the UHPC volume and associated labor costs. Using the full-scale finite-element model 
of the bridge, an optimization of the waffle panels was undertaken by varying the number of ribs 
as well as spacing between the ribs. An optimized panel was achieved by reducing the interior 
ribs per panel from four to two, or zero, in the longitudinal direction and six to two in the 
transverse direction, without compromising the panel’s structural performance. Using the 
recommended optimized design, it was shown that the UHPC volume can be reduced by 13.4% 
compared to the design completed for the bridge, thereby significantly reducing the construction 
costs.  
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1. Introduction 
 

Current bridge infrastructure challenges in the U.S. caused by growing traffic volume and an 
increasing number of aging, structurally deficient or obsolete bridges, demand accelerated bridge 
construction (ABC) methods and structural systems with increased longevity. The Better Roads 
Bridge Inventory survey (2009) indicated that the deterioration of the deck is a leading cause for 
obsolete and/or a deficient inspection rating of the bridges. Due to the excellent durability and 
structural properties of ultra-high performance concrete (UHPC), it has been receiving more 
attention by bridge engineers as a means to increase the bridge service life and reduce life-cycle 
costs by requiring less maintenance (Piotrowski and Schmidt 2012). 

The dense matrix of UHPC leads to enhance durability properties over the conventional 
concrete as measured by freeze-thaw tests, scaling tests, permeability tests, resistance to alkali-
silica reactivity (ASR), abrasion tests, and carbonation (Russell and Graybeal 2013). Hence, the 
use of UHPC in bridge deck application prevents the detrimental solutions from infiltrating into 
the matrix when it is designed to be crack free and exposed to the environmental deterioration. 

However, currently the UHPC’s initial unit quantity cost far surpasses that of conventional 
concrete, which underscores the need for economy in its use, by optimizing the design as 
emphasized by the FHWA-HRT-13-060 report (Russell and Graybeal 2013). Additionally, 
utilizing precast concrete deck panels is gaining significant interest among several State 
Departments of Transportation (DOTs) for both new and replacement bridges, as a system 
promoting ABC (Terry et al. 2009). Previously, Issa and Yousif (2000) and Berger (1983) 
showed that the use of precast, full-depth concrete deck systems can significantly accelerate 
bridge construction/rehabilitation, resulting in minimized delays and disruptions to the 
community.  

For the reasons noted above, the State of Iowa, which has the third highest number of 
deficient bridges in the U.S. (ASCE 2013), has been actively implementing UHPC in its 
infrastructure. The Iowa DOT led the nation with the implementation of UHPC Pi girders 
(Keierleber et al. 2008) and the development of an H-shaped UHPC precast pile for foundation 
applications (Vande Voort et al. 2008). In one of the recent projects sponsored by the FHWA 
Highways for LIFE (HfL), by combining the advantages of UHPC with those of precast deck 
systems, a bridge system with prefabricated UHPC waffle deck panels and field-cast UHPC 
connections was developed. Following a successful laboratory evaluation of the structural 
performance of waffle deck panels and suitable connections (Aaleti et al. 2011), a full-scale, 19.2 
m (63 ft) long, single span demonstration bridge with full depth prefabricated UHPC waffle deck 
panels was constructed on Dahlonega Road in Wapello County, Iowa. This replacement bridge is 
the first UHPC waffle deck bridge in the U.S. and is used to demonstrate the deployment of the 
UHPC waffle deck technology from fabrication through construction. 

After verifying satisfactory performance of bridge deck under moving loads (Honarvar et al. 
2016), this paper investigates cost effective design alternatives to the deck design completed for 
Dahlonega Road Bridge with an intention of reducing UHPC volume and the waffle deck cost. 
An optimization of the waffle panels was undertaken by varying the number of ribs as well as the 
spacing between the ribs, using a finite-element model (FEM) of the bridge developed using 
ABAQUS. The design guidelines proposed for the implementation of UHPC waffle deck 
systems in new and replacement bridges, by Aaleti et al. 2013, were given consideration in the 
optimization study. Furthermore, girder live load moment distribution factors (DFs) of the 
optimized designs were calculated and compared with the current design to ensure that the 
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was nearly 2.3 times the estimated value using the equation recommended by Harris and 
Wollmann (2005). Therefore, both punching shear capacity values reported by Aaleti et al. 
(2013) and Harris and Wollmann (2005) are greater than the punching shear that would be 
experienced by a bridge deck when subjected to AASHTO truck. 

In the context of minimizing the volume of UHPC for waffle deck panels, the number of ribs 
and ribs spacing can be potentially altered to reduce the UHPC volume. The remaining structural 
properties of components, such as panel dimensions and deck reinforcement, were retained 
during optimization. In this study, two designs were investigated as alternatives to the waffle 
panel used in the Dahlonega Road Bridge, with the prospect of reducing the UHPC volume in 
line with the design guideline (Aaleti et al. 2013). The guideline recommends a maximum 
spacing of 0.91 m (36 in.) for the ribs in both longitudinal and transverse directions. However, 
these limits were slightly exceeded due to geometric constraints of the panel in the alternative 
designs.  

The first alternative design reduced the number of ribs per cell, to one, in both longitudinal 
and transverse directions with a transverse and longitudinal rib spacing of 0.95 m (37.5 in.) and 
1.05 m (41.5 in.), respectively. In the second alternative design, the longitudinal rib was 
eliminated as the load was primarily transferred in the transverse direction for the bridge deck. 
Therefore, the two longitudinal ribs in the original panel design were removed, while one 
transverse rib was retained. The elimination of the longitudinal ribs transformed the waffle slab 
effectively into the ribbed slab. It should be noted that the rib reinforcement [one continuous No. 
19 (No. 6) reinforcing bar at the top and bottom of each rib] as well as rib tapering along the 
depth [101 mm (4 in.) wide at the top with a gradual decrease to 76 mm (3 in.) at the bottom] in 
the proposed designs were kept the same as the original design. Hereafter, the recommended 
designs are referred to as redesign 1 (i.e., the design with one rib in both directions) and redesign 
2 (i.e., the ribbed slab). Panel geometrical details for the original design, and redesigns one and 
two, are demonstrated in Figure 4.  

The field test results indicated that peak strains in the deck panels occurred primarily for 
load path two (center of traffic lane) and load path three (straddling bridge centerline). Thus, 
evaluating the performance of the alternative designs, the analysis was conducted for these load 
paths. The location of the maximum transverse strain at the bottom of each panel for load path 
two is demonstrated in Figure 4. The maximum estimated live load tensile strains at the bottom 
of the panel for the three designs are reported in Figure 5. It can be seen that the original design 
produced the smallest transverse strains, while redesign 2 produced the highest transverse strains. 
However, these strains are still lower than the UHPC cracking strain, thereby demonstrating 
satisfactory structural performance of the two proposed alternative designs. As expected, the 
longitudinal strains are fairly similar for the different designs. The strain distributions for the 
different designs at the critical location along the bottom of the mid-span panel were compared 
in Figure 6. The results indicate that the proposed redesigns do not significantly change the strain 
distribution trend when compared to the original design and field measurements. 

In the design guide (Aaleti et al. 2013), it was recommended to provide at least one interior 
longitudinal rib between two consecutive girder lines in addition to the exterior longitudinal ribs 
to ensure adequate connections between two adjacent panels. However, the load transfer in the 
current bridge seems to be in the transverse direction rather than the longitudinal direction. 
Hence, the adequacy of the connection between the two adjacent panels was analytically 
examined for redesign 2. As an extreme case, it was assumed that no bonding existed between 
the two adjacent panels except for the regions where there were exterior longitudinal ribs, which 
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According to the results of this finite element analysis, the two alternative designs can be 
used instead of the original design with acceptable structural performance. Evidently, the second 
redesign is more economical than the first redesign. Nevertheless, proper experimental validation 
of the two recommended deck panel redesigns is recommended prior to implementation in 
practice.  

Table 1. Comparison of Girders Live Load Moment DFs for the Different Designs 

Girder 
Original design: 
Measured deflections 

Original design: 
Estimated deflections 

Redesign 1: Estimated 
deflections 

Redesign 2: Estimated 
deflections 

Interior  0.44 0.46 0.47 0.46 

Exterior  0.34 0.31 0.30 0.31 

Table 2. UHPC Volume for the Different Designs 

Design Single Panel Volume (m3) Bridge Deck Volume (m3) 
Original Design 1.61 22.54 

Redesign 1 1.48 20.72 

Redesign 2 1.42 19.88 

Table 3. Strength I Limit State Moments for the Two Redesigns 

Redesign 
Positive moment (kN-m/m) Negative moment (kN-m/m) 

Demand Mr Demand Mr 

1 43.5 49.9 49.9 93.7 

2 43.4 49.9 49.8 93.7 

 
6. Summary and Conclusions 

 
Following the satisfactory structural performance of the bridge under live load testing (Honarvar 
et al. 2016), cost effective deck panel alternatives, to that implemented in the field, were then 
explored with the objective of minimizing the UHPC volume and associated labor and material 
costs. Using the FEM, the optimization of the waffle panels was undertaken by varying the 
number of ribs as well as spacing between ribs, such that the structural performance of the panels 
would not be compromised. 

The following conclusions can be drawn from this study: 

 For the first recommended optimized design, the number of transverse and longitudinal 
interior ribs, per panel, was effectively reduced from six to two and four to two, respectively. 
This design was found to be appropriate, which reduced the UHPC volume by 8.8% 
compared to the original design.  

 The analyses showed that the longitudinal interior ribs could be completely removed without 
affecting the connectivity of two adjacent panels. Therefore, in the second recommended 
optimized design, all longitudinal interior ribs were removed while retaining only two 
interior transverse ribs per panel. This alternative was also shown to be effective, which 
reduced the UHPC volume by 13.4% compared to the original design, with potential 
additional saving, that resulted from a reduced labor cost. 
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 For both optimized deck panel designs, the live load moment distribution factors and strain 
distributions remained the same as those obtained for the original design. 
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