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Abstract:  

Analytical solutions are developed for deflection calculations of determinate beams subjected to 

usual loading patterns. The solutions are based on a bilinear moment curvature response 

characterized by the flexural crack initiation and ultimate capacity based on a deflection 

hardening behavior. Equations for deflection distribution along the full length of a beam are 

presented for multiple cases including three- and four-point bending, which can be further 

extended to uniform load, concentrated moment, and cantilever beams. The proposed equations 

are capable of tracking the curvature, angle of rotation and deflection at any point along the 

beam as serviceability based design approach. A parametric study is conducted to examine the 

effects of moment and curvature at the ultimate stage to moment and curvature at the first crack 

ratios on the deflection. Results are examined for UHPC beams with different reinforcement 

types and test configurations. The accuracy of the present model is successfully verified. 

Keywords: analytical, deflection, bilinear, moment-curvature, full range. 

1. Introduction 

Ultra-high performance concretes (UHPC) have been developed for their exceptional strength 

and durability properties. UHPC has attracted the growing interest of researchers in academia, 

engineers in the public and private sectors, and contractors across the world due to its highly 

enhanced mechanical and durability properties in comparison to conventional concrete. 

Exceptional mechanical properties of compressive strengths in excess of 22 ksi (150 MPa) and 

tensile strength of about 1-1.5 ksi (7-10 MPa) can be obtained (Wille et al. 2014). Design 

guidelines for UHPC are desired to address critical infrastructure criteria of sustainability, 

resiliency, and life-cycle design. This will be based on proper material parameter definitions, as 

well as a robust procedure to relate structure, properties, and behavior under loads. Most 

importantly, these procedures must also include critical key parameters for ductility, 

serviceability and sustainability.  

Analytical and empirical expressions for moment vs. curvature or rotation relationships have 

been extensively used in modeling of load-deflection behavior, ultimate load capacity, as well as 

ductility of structures (Hillerborg 1990; Lopes and Carmo 2006). Extensive experimental and 

modelling approaches are availab1e for various structural members including beam and columns 

(Kheyroddin and Naderpour 2007; Sheikh and Yeh 1992), composite plates and slabs (Crisinel 

and Marimon 2004), steel girder bridges (Barth et al. 2004). Strain compatibility analysis has 

been used to obtain closed-form moment–curvature relationship for FRC and HRC beams, such 

as Taheri et al. (2011) as well as Van Zijl and Mbewe (2013). Solutions based on numerical 

methods were used to predict the load-middle span deflection response. Despite a widespread 

applicability, these procedures are impractical for general users since it requires numerical 
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methods programming and only simulates specific values such as the mid-span deflection. A 

more generalized and fast approach is desired for design procedure. 

In this work analytical solutions of moment-curvature response of reinforced concrete section 

for strain hardening UHPC, hybrid reinforced concrete (HRC) are developed based on a 

parametrized bilinear moment-curvature. The advantage of using a bi-linear moment-curvature 

response is that material input parameters can be dramatically reduced which is beneficial for the 

development of design tools. The analytical moment-curvature is then used to obtain load vs. 

deflection response of a beam under typical statically determinate loadings. Furthermore, results 

of experimental tests conducted on a range of common structural sections are simulated to verify 

model applicability to a range of analytical moment-curvature responses for different materials 

used as input.  

2. Model Derivation 

2.1. Closed-form Moment-curvature Relationship 

A general strain hardening tensile, and an elastic perfectly plastic compression model as derived 

by Soranakom and Mobasher (2008) and shown in Figure 1. Tensile response is defined by 

tensile stiffness, E, first crack tensile strain, cr, Cracking tensile strength, cr =Ecr, ultimate 

tensile capacity, cr, and post crack modulus, Ecr=. The softening range is shown as a 

constant stress level, Ecr. The compression response is defined by the compressive strength, 

cy defined as Ecr. The moment-curvature relationship is generated based on the tension and 

compression models discussed.  

 

  

Figure 1. Material models for homogenized UHPC: (a) compression model and (b) tension model 

Moment capacity of a beam section according to the imposed tensile strain at the bottom 

fiber (t = cr) can be derived based on the assumed linear strain distribution as shown in Figure 

2. For example, Figure 2 shows the strain and stress distributions of cross-section in different 

stages as defined by Soranakom and Mobasher (2008). The corresponding strain and stress 

distributions of other stage also can be generated by flowing the tension and compression 

models. Force components and their distance to the neutral axis can be expressed as:  
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where F and y are the force and its centroid, respectively; subscripts c1,t1,t2 designate 

compression zone 1, tension zone 1 and 2, respectively; b and d are the width and the height of 

the beam, respectively. The neutral axis parameter k is found by solving the equilibrium of net 

internal forces equal to zero, Fc1 + Ft1 + Ft2 = 0.  

 

 

  

  

Figure 2. Stress–strain diagram at different stages of normalized tensile strain at the bottom fiber 

(β): (a) 0 ≤ β ≤ 1 and λ ≤ ω; (b.1) 1 < β ≤ α and λ ≤ ω; (b.2) 1 < β ≤ α and ω < λ ≤ λcu; (c.1) α < β ≤ βtu 

and λ ≤ ω; (c.2) α < β ≤ βtu and ω < λ ≤ λcu (Soranakom and Mobasher 2008). 

The neutral axis parameter k is found by solving the equilibrium of net internal forces and the 

nominal moment capacity Mn is obtained by taking the first moment of force about the neutral 

axis. Closed-form equations of moment and curvature at different stages for FRC and HRC 

sections can be found in (Soranakom and Mobasher 2008; Mobasher et al. 2015). Figure 3 shows 

an example of the normalized moment-curvature and linearized portions for deflection-hardening 

material which can be exhibited by UHPC. Similarly, one can use commercially available or 

open sources programs to generate the moment-curvature responses for given cross section, and 

subsequently linearize them.  
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Figure 3. Normalized moment-curvature diagram and approximate bilinear model for deflection 

hardening (μ > μcrit). 

2.2 Bilinear moment-curvature relationship 

Figure 4 presents the simplified parametric moment-curvature response as a bilinear function 

including elastic stage (Stage 1) and post-crack stage (Stage 2). As shown in Figure 4a, the 

elastic range of moment increase with a slope of EIg up to the first flexural cracking moment of 

coordinates (φcr, Mcr), where 2 6 2cr cr cr crM bd E / , / d     . The post-crack region is characterized 

by a reduced stiffness EIcr and extends to the ultimate flexural capacity (φu, Mu) which 

corresponds to the limit state of plastic hinge formation, or associated with a specified maximum 

curvature, maximum tensile or compressive strain, depending on the specified limit state or 

flexural failure criteria. The bilinear moment-curvature response is defined by two control points 

(Mcr, φcr) and (Mu, φu) and expressed using linear functions as:   
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(a) 

 

(b) 

Figure 4. Parametric moment-curvature relationship: (a) bilinear representation; (b) dimensionless 

moment-curvature curve represented as variables (q’, m’). 
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Equations 4 can be normalized with respect to cracking moment Mcr, resulting in dimensionless 

moment m’ and curvature q’ as illustrated in Figure 4b.   

2.3. Statically Determinate Systems 

A case of three-point bending of a prismatic beam as shown in Figure 5 illustrates the moment 

and curvature distributions as well as the subsequent derivation of load-deflection solutions. 

Different stages of bilinear moment-curvature relationship (c.f. Figure 3) and regions along a 

beam (c.f. Figure 4), create several piecewise linear distributions.  

 

(a) 

 

(b) 

 

(c) 

Figure 5. Moment and curvature distribution along the beam (a) prior to cracking, (b) after 

cracking, (c) calculation of ξ by means of similar triangles. 

As shown in Figure 5a, during Stage 1 for the linear elastic beam prior to the first flexural crack 

(0 ≤ M’(L/2) ≤ Mcr), the curvature is linearly related to the bending moment diagram throughout 

the beam as shown in Figure 3. Similar triangles are used to express the bending moment and 

curvature as a function of the location x (only half of the beam is considered due to the 

symmetric condition): 
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By taking double integration of the curvature throughout the length of beam, one can obtain the 

equations for mid-span deflection as follows: 
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The subscripts of “1” and “2” refer to curvature in Stages 1 and 2. The symbol of asteroid 

indicates that the deflections normalized with respect to material properties and geometries. The 

actual deflection can be obtained by multiplying a factor of 2 *
1crL  , For example, 2 *

1 1crL   . 

A similar approach has been applied to a variety of combinations of beam types including four-

point bending, cantilever, over-hang and loading conditions with detail derivations and results 

presented by Wang (2015). 

3. Parametric Study 

Parametric study is conducted by using a set of material models to generate moment-curvature 

response. Two primary model variables m and q which can be obtained for various beam types 

and material properties are evaluated in a parametric study presented next. Figure 6 shows the 

profiles of deflection coefficients for a three-point bending beam when m and q range from 1.2-

2.0 and 2-5, respectively, using equations (7) and (8). The sign convention is defined as 

downward negative. 

 

 

(a) 

 

(b) 

Figure 6. Effects of (a) normalized moment m and (b) normalized curvature q on the deflection 

distribution of a beam subjected to three-point bending. 

 

First International Interactive Symposium on UHPC – 2016



Flexural Design Procedures for UHPC Beams and Slabs  

Yao Y., Wang X., and Mobasher B. 7 

Figure 6a shows the deflection coefficient at three levels of ultimate curvature (q1, q2, q3) in a 

three-point bending beam. The model parameters m = 2 implies that the ultimate moment is 

twice of the cracking moment. Increase in the ultimate curvature q from 2 to 5 indicates a 

reduction in post-crack stiffness. As the post-crack stiffness decreases, the deflection increases 

for as much as 50%. Different regions of I (solid lines) and II (dashed lines) are also identified in 

the figures by the length of region I, defined as parameter ξ. If the maximum moment m is held 

constant in this exercise, ξ is also a constant and equal to 0.25 for m = 2 (as it is a function of L & 

m). As m increases, ξ decreases indicating that a larger portion of the beam is in the cracked 

region with higher load. As a comparison, the elastic solution at the end of Stage 1, i.e., m= q=1, 

is also plotted.  

4. Experimental Verification of the Analytical Model 

The applicability and accuracy of the proposed model are verified against the experimental data 

of various beams tested by different researchers. Yang et al. (2010) tested full scale UHPC 

beams with 2.7m span under four-point bending. The beam was reinforced by steel rebar of 0.9% 

with addition of 2% steel fiber. The comparison between experimental and simulated responses 

is shown in Figure 7a. The parameters used in the model include Young’s modulus E = 51GPa, 

first crack tensile strain εcr = 300με, and stiffness ratio η = 0.25. Limit parameters for m and q 

were used as 3.4 and 10.5, respectively. Figure 7b compares the responses of a full scale beam 

reinforced with steel fiber only, tested by di Prisco et al. (2013). The beam span is 3.0m and the 

fiber volume fraction is 1.2%. As plain FRC beam, the levels of ultimate load and ductility are 

much lower compared to the beams with longitudinal reinforcements. Yoo and Yoon (2015) 

tested UHPC beams with a hybrid reinforcements including 0.94% of rebar and 2% of smooth 

steel fiber. The comparison is illustrated in Figure 7c where the model parameters are indicated. 

According to the parametric studies conducted by Mobasher et al. (2015), the normalized 

moment capacity dramatically increased from 6.3 to 13.1 as the reinforcement ratio increased 

from 0.01 to 0.03. The improvement due to addition of fibers was marginal compared to 

longitudinal rebars. The present modelling of hybrid section is an extension of the analytical 

study on moment-curvature responses. 

In addition to traditional steel rebars, GFRP bars have also been used to reinforce UHPC beams 

with steel fibers studied by Yoo et al. (2016). Full scale beams with 0.5% of GFRP bars and 2% 

of steel fiber were tested under three-point bending. The cross section of the beam is 200mm by 

270mm while the beams tested by Yang et al. has a section of 180mm by 270mm. It is also noted 

that the model parameters of the two sets of simulations are quite similar except the stiffness 

ratio and η ultimate curvature q. Compared to steel rebar, the beams reinforced by GFRP bars 

exhibit lower stiffness but higher ductility, which is attributed to the differences in the 

mechanical properties of steel and GFRP. It is also noted that the load-deflection responses 

exhibit a plateau stage while approaching the maximum ductility, which is due to the yielding of 

tensile steel. This has also been captured by the authors’ previous analytical work (Mobasher et 

al. 2015). In present study, the steel yielding stage is simply represented by a constant moment 

value. The simulated results are quite favorable for different materials and test configurations. 
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(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 7. Comparison between experimental data and proposed model for the beams tested by (a) 

Yang et al. (2010), (b) di Prisco et al. (2013), (c) Yoo and Yoon (2015), (d) Yoo et al. (2016). 

5. Conclusions 

A bilinear moment-curvature relationship defined by the flexural crack initiation and ultimate 

capacity is proposed as basis for the derivation of an analytical load-deflection model exhibiting 

deflection hardening behavior. The analytical solutions characterize the full range distribution of 

curvature, angle of rotation, and deflection responses at any given point along the beam. Various 

types of beams and loading conditions are addressed such as three-point bending, four-point 

bending, uniform loads, concentrated moment on simple beams and cantilever beams.  

A parametric study examines the effect of moment-curvature bilinear parameters on the load-

deflection response. Simulations are conducted to predict the flexural responses of UHPC beams 

with different reinforcement types, cross sectional properties, geometries and testing 

configurations. The accuracy of the proposed model is successfully verified. 
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