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This contribution presents experimental research on scattering in post cracking tensile behaviour 
of Ultra-High Performance Fibre Reinforced Concrete (UHPFRC). The main objective of this 
work is to determine the main influence factors for scattering in post cracking tensile behaviour. 
The experimental programme includes 8 series of four-point bending tests, 48 specimens in total, 
varying the cross-sectional geometry, steel fibre type and fibre content. Each test series consists 
of 6 specimens. In order to exclude influences caused by the production and casting of UHPFRC, 
the specimens of each series were always cast in a continuous beam (length 4.2 m) and cut out 
later. 
To gather information on the fibre orientation and distribution, slices were cut from each 
specimen after its bending test. By using an opto-analytic method it was found that the detected 
number of fibres in the section varies widely among all specimens, while the fibre orientation is 
very uniform.  
The results of the experimental programme show decreasing scattering with increasing fibre 
content and cross-section area.  

Keywords: UHPFRC, scattering, tensile behaviour, self-compacting, bending test 

1. Introduction 

The post cracking tensile behaviour of UHPFRC is assumed to scatter widely, as demonstrated in 
several different investigations, e.g. (Gröger et al., 2012; Leutbecher, 2012; Fehling et al., 2013). 
In bending test series, deviations of ± 30% are common. In Leutbecher, 2012 and Fehling et al., 
2013 the large scattering was found to result from both an inhomogeneous fibre distribution and 
orientation. Recent research efforts have focused mainly on the fibre orientation and its effective 
control. Different methods for positively influencing the fibre orientation had been developed, 
although their practical application was limited due to challenging and/or costly requirements.  

However, new studies indicate that the main reason for the large scattering is the 
inhomogeneous fibre distribution. The fibre orientation in a component is nearly uniform and 
scatters only within a small range.  

To enable an effective structural design with UHPFRC, which requires a precise 
specification of the scattering to define reasonable safety factors as well as correct characteristic 
material parameters, extensive experimental investigations were carried out at Graz University of 
Technology, Austria. In this contribution, the experimental results are presented and discussed. 

2. Experimental Investigations 

The experimental programme consisted of four-point bending tests of 8 series with 6 specimens 
each. All 48 specimens had a length of 0.7 m but two different kinds of cross-sections. Type A 
represents thin plate elements with a height of 0.05 m and a width of 0.2 m; type B represents 
quadratic cross sections of 0.15 x 0.15 m (standard beam according to the German guideline for 
fibre concrete). Two cross-sections were chosen in order to compare thin elements with 
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Figure 3. Flexural strength of thin plates with a cross section of 0.05 x 0.2 m (M1 – M4) 

The standardised beams (Figure 4) with addition of 0.75 vol.% 13 mm fibres (M1) enable a 
maximum flexural strength of 12 N/mm², with 1.50 vol.% 13 mm fibres (M2) enabling a 
maximum flexural strength of up to 20 N/mm². 20 mm fibres enable average load bearing 
capacities of 18 (M3) and 23 N/mm² (M4). 

 

 

Figure 4. Flexural strength of standardised beams with a cross section of 0.15 x 0.15 m (M1 – M4) 
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Table 2 summarises the scattering of the investigated flexural parameters of all mixtures. The 
average value σmax and the coefficient of variation ϑmax are shown for the equivalent flexural 
tensile strength at load maximum. Further, the average flexural tensile strength σ0.5/3.5 and the 
coefficient of variation ϑ0.5/3.5 are shown at 0.5 mm and 3.5 mm mid-span deflection according to 
(DAfStb, 2009). 

 

Table 2. Statistical analysis of bending tests. 

  thin plates (h = 0.05 m; w = 0.20 m) standardised beams (h = 0.05 m; w = 0.20 m)

  M1 M2 M3 M4 M1 M2 M3 M4 

σmax  [N/mm²] 12.9 19.2 17.9 25.6 11.6 19.8 18.7 22.3 

ϑmax [%] 8.5 3.4 9.5 4.8 5.3 2.8 1.8 3.7 

σ0.5 [N/mm²] 11.1 13.5 11.3 13.1 11.3 17.0 14.3 17.8 

ϑ0.5 [%] 8.0 6.9 3.7 3.0 6.2 4.4 2.6 4.8 

σ3.5 [N/mm²] 11.9 18.7 16.7 22.9 5.8 11.9 12.8 18.2 

ϑ3.5 [%] 9.9 4.9 7.1 4.0 7.4 5.7 5.4 4.2 

 

The statistical analysis demonstrates that thin plates lead to a slightly higher maximum bearing 
load than standard beams. The load bearing capacity rises with increased fibre content. This 
effect is even more distinct when using fibres of 13 mm instead of fibres of 20 mm. Apparently, 
the maximum fibre dosage is already reached when using 20 mm fibres. Further, Table 2 
demonstrates that the coefficient of variation for all test series is within the range of 3 – 10 %. 
This indicates a very homogeneous fibre distribution, which was achieved using the fibre dosage 
machine. Furthermore, the scattering of the test results is decreased by increasing fibre content 
and cross section area. However, longer fibres lead to higher equivalent bending strength and 
lower coefficient of variation. Note, this conclusion is only valid as long as the failure 
mechanism is primarily controlled by fibre pull-out. 

2.3. Fibre orientation and distribution 

In order to gather information on the fibre orientation and distribution, slices were cut from each 
specimen after its bending test. Each slice had a width of 5 cm, and both fibre distribution and 
fibre orientation were determined using an opto-analytic method (Tue et al., 2007) on both 
cutting surfaces. After sawing, the cutting surfaces were prepared using a wet and a dry grinding 
method, in order to restore the generally elliptically shaped fibre cross-sections. By post-
processing, closely spaced fibres that melted as a result of the high thermic and mechanical 
stresses during sawing were separated again. Figure 5 shows cut surfaces including fibres and 
created ellipses according to computer supported opto-analytic analysis.  
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Figure 6. Number of fibres and fibre orientation in different sections (1 – 12) 

 

Table 3. Statistical analysis of fibre orientation ηS or ηV, number of fibres m in a cross-section and calculated fibre 
content ρf (whereby μ is the mean value and ϑ the coefficient of variation of a tests series).     

   thin plates (0.20 m x 0.05 m) standardised beams (0.15 m x 0.15 m) 

   m ηS ηV ρf m ηS ηV ρf 

M1 
μ [N/mm²] 1563 0.77 0.68 0.72 3153 0.71 0.61 0.72 

ϑ [%] 6.6 3.8 4.5 7.4 5.9 3.5 3.9 5.3 

M2 
μ [N/mm²] 3217 0.75 0.69 1.46 6769 0.70 0.61 1.54 

ϑ [%] 5.5 3.3 3.3 5.1 4.7 2.3 3.3 4.0 

M3 
μ [N/mm²] 1786 0.76 0.71 0.80 3475 0.72 0.63 0.77 

ϑ [%] 5.4 4.0 4.8 3.7 4.8 4.8 3.8 5.1 

M4 
μ [N/mm²] 3440 0.75 0.70 1.54 6929 0.72 0.64 1.52 

ϑ [%] 6.1 3.4 4.4 6.9 3.9 3.6 3.4 3.8 

 

Table 3 and Figure 6 also demonstrate that the number of fibres in section m and the calculated 
fibre content ρf scatter in a larger range (ϑm ≈ 4 - 7 %; ϑρf ≈ 4 - 8 %) within a test series. In thin 
plates with low fibre content (0.75 vol.%; M1 & M3), the number of fibres is between 1323 and 
1940, and with higher fibre content (1.5 vol.% M2 & M4) the number of fibres is between 2956 
and 3834. When using standardised beams with low fibre content (0.75 vol.%; M1 & M3), the 
number of fibres is between 2827 and 3723 and with higher fibre content (1.50 vol.%; M2 & 
M4) the number of fibres is between 6163 and 7217. The scattering in the calculated fibre 
content (equation 3) is within the range of the scattering in the number of fibres. Furthermore, 
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the scattering in the number of fibres and the calculated fibre content decrease with increasing 
fibre content. In addition to this, longer fibres lead to a lower scattering and thus, to a lower 
coefficient of variation. 

3. Discussion 

In general, the results of the 4 point bending tests show in all cases that the scattering in the post 
cracking tensile behaviour can be reduced by appropriate fibre addition during the mixing 
process. So far, the type of fibre addition was not important. This leads to the conclusion that the 
scattering can be reduced significantly by appropriate fibre addition.  

Furthermore, the fibre orientation in a beam is very uniform when all specimens are 
manufactured in a continuous process. In contrast, the number of fibres in a section and the 
calculated fibre content scatter more strongly. To conclude, the observed scattering in flexural 
behaviour is mainly caused by an inhomogeneous fibre distribution.  

The distribution of fibres changes from section to section. Two parallel sections usually 
show different numbers of fibres. The results of the opto-analytic analysis demonstrate that there 
is no correlation between the detected fibre number and orientation with the observed flexural 
behaviour of a specimen. Therefore, the structural behaviour of a beam cannot be predicted by 
the number and orientation of the fibres in a section next to a macro crack.  

Furthermore, the scattering in the bending tests correlates with the scattering of the 
calculated fibre content ρf within a test series. Figure 7 shows the relationship between the 
scattering of the fibre content ρf and the scattering of the bending tests ϑmax, ϑ0.5, ϑ3.5 (see Table 
2). 
 

 

Figure 7. Correlation of scattering achieved by bending tests and opto-analytic analysis. 

It is remarkable that, with an increase of the fibre content and cross-section area, the scattering in 
the bending behaviour and in the number of fibres as well as in the calculated fibre content 
decreases. Figure 8 shows that the scattering in bending behaviour and fibre content decreases 
when the average number of fibres in the section increases. Similar conclusions have also been 
reached by other researchers, such as (Erdem, 2002) and (Lingemann et al., 2013). 
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Figure 8. Decreasing scattering by increasing average number of fibres in a section. 

4. Conclusions 

This paper presents experimental investigations on the scattering in the post cracking 
tensile behaviour of UHPFRC. An extensive experimental programme was conducted, including 
4 point bending tests as well as fibre orientation and distribution analysis of all tested specimens. 
By producing all specimens of each series in a continuous beam (length 4.2 m), from which they 
were cut out later, further influences on the scattering which may result from the production of 
the UHPFRC and the casting process, were excluded.  

The results of the bending tests demonstrate that the scattering can be reduced by 
appropriate fibre addition during the mixing process. Furthermore, the scattering can be 
decreased by increasing fibre content and increasing cross-section.  

The analysis of the fibre orientation and distribution showed that the fibre orientation 
scatters only in a low range, while the fibre distribution still scatters significantly. Based on this, 
it can be concluded that the scattering in the post cracking tensile behaviour of UHPFRC is 
mainly caused by an inhomogeneous fibre distribution. However, longer fibres lead to lower 
scattering. 
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