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Abstract 

This study presents an AI-guided approach for designing low-carbon cost-effective ultra-high 
performance concrete (UHPC). The approach automates the design process for UHPC by 
integrating data synthesis, automated machine learning, and many-objective optimization 
techniques. Machine learning models are trained on both experimental and synthesized data 
obtained by generative modeling and semi-supervised learning to predict UHPC properties 
including compressive strength, flexural strength, mini-slump spread, and porosity. The approach 
is demonstrated in two design scenarios: the first maximizes the compressive and flexural strengths 
and minimizes porosity while retaining self-consolidation, and the second minimizes the life-cycle 
carbon footprint, embodied energy, and material cost in addition to the objectives of the first 
scenario. Using a state-of-the art many-objective optimization algorithm, called adaptive geometry 
estimation-based many-objective evolutionary algorithm (AGE-MOEA), and a decision-making 
method, namely technique for order of preference by similarity to ideal solution (TOPSIS), two 
UHPC mixtures are discovered based on the predictive models and specified objectives. The 
UHPC mixtures generated in the second scenario achieve a reduction of 73% in the life-cycle 
carbon footprint, 71% in embodied energy, and 80% in material cost compared to those in the first 
scenario. This research presents a promising solution for achieving low-carbon cost-effective 
UHPC and advances the development of cementitious composites including UHPC using AI-
guided approaches. 
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1. Introduction 

Ultra-high performance concrete (UHPC) is a type of advanced cementitious material that 
possesses self-consolidation, superior mechanical properties, and long-term durability. UHPC is 
characterized by a 28-day compressive strength that exceeds 120 MPa under standard curing 
conditions (Du et al.). This high strength is due to its dense microstructure, which is achieved 
through a high particle packing density and low porosity. Additionally, the incorporation of 
chopped fibers dispersed in the cementitious matrix results in high tensile and flexural strengths, 
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with the fibers providing crack-bridging effects (Karim and Shafei). UHPC's exceptional durability 
is due to its dense microstructure and discontinuous pore network.  

Despite its numerous advantages, the high material cost and carbon footprint of UHPC have 
hindered its wider acceptance in engineering practices. This is largely due to the use of costly and 
high-carbon raw materials such as steel fibers, chemical admixtures, and cement. Many studies 
have been conducted to develop low-carbon and cost-effective UHPC mixtures by using 
alternative materials based on experimental testing. For example, some researchers have developed 
UHPC mixtures using local river sand, masonry sand, and supplementary cementitious materials 
(SCMs) such as fly ash and slag (Meng et al.). Test results have shown that the developed UHPC 
mixtures deliver high mechanical properties and low cost, carbon footprint and embodied energy. 

An alternative approach to develop UHPC is to use data-driven machine learning models that 
are trained to predict UHPC properties based on calibrated relationship between design variables 
and properties (Fan et al.; Mahjoubi et al.). This study aims to address four limitations in using 
data-driven models and optimization algorithms for predicting UHPC properties: 1) lack of data 
for training, addressed by using generative modeling to enlarge datasets; 2) simple machine 
learning models used to predict high-dimensional relations with many variables, improved through 
the development of high-fidelity models; 3) difficulty for non-experts in machine learning to 
develop models with satisfactory performance, addressed through the development of an 
automated framework; and 4) previous studies focusing on optimizing either mechanical properties 
or material cost, while this study aims to optimize mechanical properties, cost, and eco-efficiency. 

2. Methodology 

The proposed framework includes seven steps: (1) Four datasets are established and divided into 
training and test sets. (2) Automated machine learning generates predictive models. (3) Generative 
techniques synthesize artificial data to enlarge training datasets. (4) Predictive models are re-
trained using the enlarged datasets and compared against eight state-of-the-art methods. (5) 
Objective functions and design constraints are formulated to optimize mechanical properties, eco-
efficiency, and cost-efficiency. (6) An evolutionary many-objective optimization algorithm (AGE-
MOEA) is used to solve the optimization problems. (7) A decision-making method (TOPSIS) is 
applied to select the most preferable optimal solutions. 

3. Results and Discussion 

To assess the predictive performance of the automated machine learning models for compressive 
strength, flexural strength, mini-slump spread, and porosity, we calculated two widely-used 
performance metrics: root mean squared error (RMSE) and coefficient of determination (R2), as 
detailed in Table 1. Our analysis reveals that the R2 values of the predictive models evaluated on 
the test datasets are consistently higher than 0.92, which indicates that these models offer high 
accuracy and generalizability. These findings demonstrate that the data-driven models have 
satisfactory accuracy and generalizability and can be utilized to design UHPC mixtures. 

 
Table 1. Performance metrics of the predictive models for UHPC properties 

Metric Compressive strength Flexural strength Mini-slump spread Porosity 
RMSE 6.40 1.89 9.62 0.16 

R2 0.95 0.92 0.94 0.97 
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Table 2 lists two UHPC mixtures discovered using the proposed approach for the two design 
scenarios and compares the two mixtures with three representative cost-effective UHPC mixtures that 
were developed through step-by-step experimental tests. The mixture discovered for DS1 (design 
obtained using design scenario 1) has higher mechanical properties than the mixture discovered for 
DS2 (design obtained using design scenario 2). The mixture discovered for DS2 has low carbon 
footprint, embodied energy, and material cost while satisfying the requirements of mechanical 
properties, workability, and porosity. The carbon footprint, embodied energy, and material cost of the 
UHPC mixture for DS2 are 73%, 71%, and 80% lower than those of DS1. Compared with existing 
UHPC mixtures developed through experiments, the discovered UHPC mixture for DS2 has 
comparable mechanical properties, workability, and porosity while highly reducing the carbon 
footprint, embodied energy, and material cost. 

Table 2. UHPC mixtures discovered for different design scenarios 

No. UHPC property Unit DS1* DS2⁗ 

UHPC-2 
(Wille and 
Boisvert-
Cotulio) 

UHPFRC 
(Yu et al.) 

1 Compressive strength MPa 171.82 133.3 166 160 
2 Flexural strength MPa 32.24 19.22 18.5 20 
3 Mini-slump spread mm 260.2 271.9 265 283 
4 Porosity % 8.88 12.13 9.64 14 
5 Carbon footprint kg CO2-eq/m3 922.5 247.1 652 984 
6 Embodied energy MJ/m3 9,631 2,750 5,014 9,507 
7 Material cost $/m3 1,664 329.1 472 1,203 

*DS1: Design obtained using design scenario 1; ⁗DS2: Design obtained using design scenario 2. 
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