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Abstract 

The high cost and limited availability of commercial ultra-high performance concrete (UHPC) 
products have motivated researchers and several state departments of transportation to develop 
non-proprietary UHPC mixes using locally available materials. Several non-proprietary mixes 
following different mixing and curing regimens have been developed in different geographic 
locations across the United States. Although these existing mixes can be utilized as starting points 
for developing suitable UHPC mix design for a project, fine-tuning localized mix designs is still a 
cost, labor, and time intensive task. A limited number of studies in the existing literature have 
utilized machine learning techniques to predict strength of inputted UHPC mixes. However, 
practitioners typically determine the concrete mix design after selecting the target performance 
criteria such as compressive strength, and workability for the project. To address this need, this 
study is a first step towards utilizing machine learning techniques for reverse-engineering UHPC 
mix proportions based on selected performance criteria and incorporating readily available 
materials.  A database of 215 UHPC mixes extracted from 24 published manuscripts is compiled. 
This database is used to train ensemble learning algorithms such as Random Forest, Support Vector 
Machine (SVM), and Gradient Boosting. A comparative assessment on the most promising ML 
models trained with selected mix design parameters is presented. The tool developed in this study 
will be beneficial for practitioners to establish a locally sourced non-proprietary mix design of 
UHPC based on the required attributes.  

Keywords: Non-proprietary mix design, Machine learning, Ultra-high performance concrete. 

mailto:abdullah.alsarfin@usu.edu
mailto:mohsen.zaker@usu.edu


Third International Interactive Symposium on Ultra-High Performance Concrete 2023  
 
 
 

Publication type: Full paper 
Paper No: 35 2 
 
 

1. Introduction 

Ultra-high performance concrete (UHPC) is a class of advanced cementitious material with 
superior strength and durability (Piérard et al.; Kodur et al.; Banerji et al.; Banerji and Kodur). 
UHPC is also known to have excellent performance under high strain rates (Thomas and Sorensen; 
Al Sarfin), seismic loading (Chao et al.), fatigue loading (Jia et al.). The achievement of such 
superior properties lies on the careful sampling and proportioning of the mixture variables, low 
water-to-binder ratio, effective utilization of the pozzolanic behavior of supplementary 
cementitious materials (SCM), and optimum packing density (de Larrard and Sedran). Current 
literatures show that a wide range and variety of SCM, fillers, and fibers are employed to achieve 
the desired properties of the material. For instance, silica fume, fly ash, slag, limestone powder, 
and metakaolin are some of the common pozzolanic supplements. With so many possible 
combinations of materials available, designing a UHPC based on locally available or economically 
optimized materials is of benefit to designers. Utilizing alternate data-driven methods can 
effectively reduce the time and associated cost in developing and optimizing non-proprietary 
UHPC mixes.  

In recent years, researchers have been exploring the application of data-driven techniques in 
structural and material engineering with promising results (Mahjoubi, Barhemat, et al.; 
Esteghamati and Flint; Banerji). Ghafari et al. trained an artificial neural network (ANN) with 15 
neurons in the hidden layers and reported improved prediction of compressive strength and slump 
flow compared to a statistical mix design (Ghafari, Bandarabadi, et al.). García developed a four-
layer multi-layer-perceptron model for predicting compressive strength of UHPC by training the 
model with experimental and collected data (Abellán-García). Saleh et al. proposed a  Gaussian 
process  modeling with batch Bayesian optimization framework to infer the mixture design of 
UHPC (Saleh et al.). Abuodeh et al. employed Sequential Feature Selection and Neural 
Interpretation Diagram to identify the critical constituents by training the ANN model with a 
database of 110 compressive strength tests (Abuodeh et al.). Mahjoubi et al. noted the challenges 
for wider acceptance of machine learning methods for development and application of UHPC such 
as limited scope of existing machine learning models due to limited number of variables, low 
generalization performance and overfitting issues due to small datasets, inadequate information on 
the input variables, and limited studies on hyper-parameter optimization   (Mahjoubi, Meng, et 
al.). 

This study aims to contribute to the existing knowledge by creating a comprehensive database 
of UHPC mixtures and utilizing an integrated framework to train and tune machine learning 
methods for identifying the critical mixture components that predict key performance properties 
of UHPC using recursive feature elimination (RFE) which has not been used in other studies 
involving training machine-learning models for UHPC mixes.  

2. Methodology 

The following subsection describes the methodology to collect and preprocess the dataset, as well 
as for training and tuning the developed machine learning models. 
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2.1. Data Collection and Preparation 

A dataset is assembled by collecting data from publicly available published research works (Habel 
et al.; Wille et al.; Allena and Newtson; Wang et al.; Hassan et al.; Graybeal; Yoo et al.; Yu et al.; 
Ghafari, Costa, et al.; Rangaraju and Li; Meng et al.; Soliman and Tagnit-Hamou; Khaloo et al.; 
Alsalman et al.; Meng and Khayat; Wu, Shi, et al.; Sadrmomtazi et al.; Wu, Khayat, et al.; Arora 
et al.; Mo et al.; Nguyen et al.; Shafei; Banerji and Kodur). From 24 research papers, 215 mix 
proportions are collected. The mixture parameters are: cement (C), water (W), silica fume (SF), 
fly ash (FA), limestone powder (L), slag (GBBS), metakaolin (M), quartz flour (QF), nano-silica 
(nS), river or regular concrete sand (S), micro-sand (MS),  masonry sand (MnS), light-weight sand 
(LWS), quartz sand (QS),  nano-CaCO3 (NC), glass powder (GP), coarse aggregates (CA), water 
reducing admixtures (SP), and curing regime (Cure).  

The data is extracted with GRABIT in graphical format, a program developed with MATLAB 
(Doke). Missing information is filled in by a regression-based imputation, as necessary (Young et 
al.). The data are normalized using z-score normalization (Wan; Raju et al.; Mahjoubi, Meng, et 
al.). The complied dataset is investigated for partial correlation between the features and multi-
collinearity by calculating Pearson correlation coefficient, 𝑅𝑅, and variance inflation factor (𝑉𝑉𝑉𝑉𝑉𝑉) 
(Alin). 

2.2. Model Selection 

Initially, seven machine-learning models, with default hyper-parameters, are trained by splitting 
the dataset of 215 mixes into 75% of the data for training and 25% of the data for testing. The 
machine learning models analyzed are least square linear regression, ridge regression, lasso 
regression, Support Vector machine with linear kernel, Random Forest, Decision Tree, and 
Gradient Boosting. Based on the performance of the models, Support Vector Machine, Random 
Forest, and Gradient Boosting are chosen for further tuning.  

2.3. Model Optimization and Validation 

Recursive Feature Elimination is employed to reduce model complexity and overfitting, to save 
computation cost, and to improve interpretability (Li et al.; Liu and Motoda). In this method, a 

Figure 2: Correlation matrix of 
the features. 

Figure 1: Frequency 
distribution of cement. (1 kg/m3 

= 0.0624 lbs./ft3) 

Figure 3: Feature selection 
through recursive feature 

elimination 
(1 MPa = 0.145 ksi) 
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machine learning algorithm is trained with the initial set of features and less important features are 
eliminated recursively based on a ranking criterion until the optimum set of features is achieved.  

The selected models are optimized by hyper-parameter tuning using randomized search and  
grid search. Grid search performs an exhaustive search for the optimum hyper-parameters over a 
specified range. One-fourth of the data are held for testing the optimized models. Furthermore, the 
actual and predicted compressive strengths obtained for the test dataset are compared to validate 
the accuracy of the final models. 

3. Results and Discussion 

The frequency distributions of all the features are plotted to investigate the distribution of the 
features and to identify any potential irregularities as shown for cement in Figure 1. 

Table 1: Selected features for three machine learning models 
Model Selected Features 

Random Forest C, W, SF, FA, L, QF, S, MS, MnS, GP, SP, Sf, Cure 

Support Vector Machine C, W, SF, FA, GGBS, QF, nS, MS, MnS, LWS, GP, Sf, Hf, Cure 

Gradient Boosting C, W, SF, FA, QF, S, MS, MnS, GP, SP, Sf, Cure 

The correlation matrix of the normalized features is shown in Figure 2. The maximum 
correlation coefficient is 0.8 for quartz flour and quartz sand. The remaining correlation 
coefficients are below 0.7. The mean 𝑉𝑉𝑉𝑉𝑉𝑉 is 9.08. A 𝑉𝑉𝑉𝑉𝑉𝑉 value smaller than 10 is indicative of no 
multicollinearity problem in the dataset (Alin). Therefore, the compiled dataset does not show high 
collinearity and is used to train machine learning models without further processing. 

Table 2: Performance metrics of untuned and tuned models (1 MPa = 0.145 ksi) 
  Training Scores Testing Scores 
  Before Tuning After Tuning Before Tuning After Tuning 

Random Forest 
RMSE (MPa) 6.03 3.99 10.38 10.46 

R2 0.96 0.98 0.82 0.82 

Support Vector 
Machine 

RMSE (MPa) 15.89 6.72 17.64 8.61 

R2 0.7 0.95 0.49 0.88 

Gradient Boosting 
RMSE (MPa) 5.42 6.34 11.15 9.04 

R2 0.97 0.95 0.8 0.87 

Selection of features through the recursive feature elimination procedure is shown in Figure 3. 
The selected features for three machine learning models are shown in Table 1. The number of 
selected features for Random Forest, Support Vector machine, and Gradient Boosting are 13, 14, 
and 12, respectively. Among the supplementary cementitious materials (SCM), silica fume and fly 
ash are revealed to be the most important component of the mixtures as these two are selected by 
the recursive feature elimination procedure for all three models. Additionally, glass powder, a filler 
material, is another component selected for all the machine learning models. At least one type of 
sand (S, MS, MnS, and LWS), straight steel fibers, and curing is found to be other important mix 
components to predict the compressive strength of UHPC mixes. 

The models are retrained with the selected set of features and the optimum hyper-parameters 
are obtained through randomized search and grid search. The final models are evaluated by 
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performance metrics. The performance metrics for tuned and untuned models are compared in 
Table 2. The performance metrics of random forest and gradient boosting methods for training set 
before tuning shows high accuracy, while the testing scores shows relatively low accuracy. After 
tuning, significant improvement in performance scores of testing dataset for Support Vector 
Machine and Gradient Boosting methods are observed.  

For support vector machine, the scores for the training and testing sets from untuned models 
are less accurate than the other two models. But after tuning, the training and testing 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 are 
6.67 MPa and 11.32 MPa, respectively, and the 𝑅𝑅2 for training and testing are 0.94 and 0.85. 
Finalized hyperparameter are presented in Table 3. 

Table 3: Finalized hyper-parameters 
Random Forest Support Vector Machine Gradient Boosting 
No of estimators = 397  
Minimum samples splits = 5  
Minimum samples leaf = 1  
maximum features = �𝑛𝑛𝑛𝑛 𝑛𝑛𝑜𝑜 𝑜𝑜𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 
bootstrap = False 

C = 112 
Epsilon = 0.491 
Kernel = Radial basis function 
Gamma = 0.135 

Loss= Quantile regression 
Learning rate = 0.2 
No of estimators = 300 
Minimum samples splits = 10  
Minimum samples leaf = 2  
Alpha = 0.45 

The actual and predicted compressive strengths for the models are presented in Figure 5. The 
plots demonstrate that all the models perform with reasonable accuracy. Overall, the Support 
Vector Machine and Gradient Boosting models performs better in terms of predicting the 
compressive strength from the testing set. 

4. Conclusions 

By training machine learning models with the collected dataset, following conclusions are made: 
• The developed dataset of mixture designs does not show any multi-collinearity issue as the 

mean 𝑉𝑉𝑉𝑉𝑉𝑉 is 9.08. 
• Silica fume and fly ash are found to be the most important SCMs to predict the compressive 

strength of the UHPC mixes. Curing and straight steel fibers are other mix components 
selected by the recursive feature elimination procedure for all three models.  

• In terms of fitting the training and testing sets, the Support Vector Machine (R2 for training 
and testing set are 0.95 and 0.88, respectively) and Gradient Boosting Machine (R2 for 

(a) (b) (c) 
Figure 4: Predicted and actual compressive strengths (a) Random Forest, (b) Support Vector Machine, 

and (c) Gradient Boosting. The dashed line represents zero-error (1 MPa = 0.145 ksi) 
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training and testing set are 0.95 and 0.87, respectively) model performs the best to predict 
compressive strength of the mixtures.  

As such, it can be concluded that machine-learning methods are effective and robust tools that 
can be used to develop designer friendly and convenient mixture designs tools.  This work can be 
further developed to reverse-engineer the machine-learning model to predict mix component 
quantities based on specified performance parameters. 
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