STERKIANA

NO. 39
DOROTHY E. BEETLE :- A PHOTOGRAPHIC RECORD OF SNAIL, ACTIVITY 1
THIIRTY-SIXTH ANNUAL MEETING OF THE AMERICAN MALACOLOGICAL̆ UNION: KEY WEST, FLORIDA, JULY $16-20$: 19.70 8, 16, 38
BRANLEY A. BRANSON - JUGA, OXYTREMA AND MUDALIA, ANDA CORRECTION9
LESLIE HUBRICHT - THE LAND SNAILS OF NORTH CAROLINA 11
HENRY VAN DER SCHALIE - MUSSELS IN THE HURON RTVER ABOVE ANN ARBOR IN 1969° 17
FIELD JOURNAL OF HENRY A. PILSBRY PERTAINING TO NEW MEXICO ANETRANSPECOSTEXAS 23
REPRINTS OF GARE PAPERS ON MOIJLUSCA: BRYANT WALKER (1918)
SYNOPSIS"AND CLASSTFICATION" (CONTINUED FROM NO. 37) after page 38**EDITORIAL BOARD"
HENRY VAN DER SCHALIE
OHIO STATE UNIVERSITY UNIVERSITY, OF MICHIGAN

ANN ARBOR, MICHIGAN

WILLIAM J: WÁYNE

AURÈLE LA ROCQUE

ONIVERSTTY OF NEBRASKA.

 ohto state universtty
 LINCOLN, NEBRASKA

 COLUMBUS, OHIO
 EDITOR

AURELLE LA RÓCQUE 102 W. BEAUMONT ROAD COLUMBUS, OHIO 43214

IN FUTURE, PLEASE ADDRESS "ALL MAIL FOR STERKIANA TO THE ABOVE ADDRESS AND NOT TO THE ONE BELOW.

EDITOR

Aurèle La Rocque
Department of Geology Ohio State University 125 S. Oval Drive.
Columbus 10, Ohio

A PHOTOGRAPHIC RECORD OF SNAIL ACTIVITY
 DOROTHY E. BEETLE

Peninsula Nature Museum, Newport News, Va. 23601

Freshwater snails in their natural habitat move slowly over the vegetation and substrate, exhausting the patience of an observer trying. to record their activity. At infrequent intervals they exhibit, for mollusks, rapid motion, travelling a distance of several yards in a few minutes. Occasionally they drop from the tinderside of the surface film or ascend rapidly. The approach of another individual of the same species can result in short periods of investigative behavior, that sometimes leads to mating. A snail moves with slow dispatch.

To measure the time occupied by activity or rest and to observe what occurred during these periods, marked gastropods were filmed in the laboratory.

Three adult and two juvenile Goniobasis virginica and a single Pseudosuccinea columella were usedin this experiment. They had been collected, along with five other species of fresh water mellusks, from the Tar River at Rocky Mount, North Carolina, on September 30, 1968.

The river bed was completely exposed in places largely due to diversion of its waters by local industry in combination with a dry summer. Low water had isolated the mollusks so they could be easily handpicked from pools, among the rocks of the cataracts at the base of a small dam. These animals and succeeding generations were. rearedin the laboratory during the winter of 1968-1969 and used in studies, one of which, based on a film of their activity follows.

In this report, the Goniobasis will be identified as G-1, G-2, G-3, adult animals; G-4 and G-5, juveniles; and the Pseudosuccinea as P .

At the time of their capture the spires of the Goniobasis were eroded at the tips and included only 6 to 8 of the most recent whorl's. Similarly, the spires of the juvenile Goniobasis were eroded and showed only 5 to 6 whorls. No appreciable growth had occurred up to the date of the filming nor to the time of their death the following summer. Heights andgreatest diameters are as follows:

Animal. Height in mm.	Diameter in mm.	
G-1	26.8	8.3
G-2.	26.6	9.2
G-3	28.8	11.2
G. 4	12.9	5.6
G-5	15.7	6.1
P	12.0	6.5

For the film sequence the mollusks were introduced into a shallow pyrex dish, $81 / 2$ by $41 / 2$ by $31 / 2$ inches, positioned over a centimeter square grid to facilitate measurement. In order that the snails could be seen at all times only minute portions of leaf lettuce, algae and an alder leaf were added to the dish and replenished as consumed. Only tap water which had stood for 48 hours and was at room temperature was used. The water was kept at a depth of 2 inches during the filming.

Filming was begun on 12 December 1968 at $2 \& 30 \mathrm{pm}, 2$ hours after the animals had been introduced and ended at $2: 20 \mathrm{am}, 15$ December. A Bolex-Rex 16 mm movie camera was used. The camera setting was f-ll with a f - 1.6 lens approximately 2 feet from the subject. Exposure time was $1 / 30$ of a second, using Kodach rome II (photoflood) 8SA with one light 3200° Kelvin. Frames were exposed at the rate of one per minute.

Positions of the mollusks at minute in-
tervals were marked on charts, from which the distances were measured andplotted on graphs. When the snails were first introduced into the photographic situation, they expended considerable energy in rapid exploration of the dish. To eliminate the introductory explorations and to have equal unitsoftime for comparison, the decision was made to study activity patterns from
$12 \% 00$ am 13 December tomidnight of 14 December 1968.

Table 1 summarizes the amount of time each snail was either active or resting during the hours of dark and light. Sunrise occurred at 7815 am and sunset at 4:40 pm ESta on 3 and tu December. In this report daylight. was measured as the ten hours between $7: 00$ am and 5:00 pm.

TABLE Number of hous snaits were active or resting a 24 hour period.

No consistent sequence of activity is evident from Table 1.: Increased actiyity either in the dark or light did not occur and varied from day to day, even for the same indi vidual.

G-2 was the least active mollusk and the total number oftours spent in resting was equally diyided between day and night. The adults, G-1 andG-3 were active approximately twel ve of each, twenty-four hours, as were the juveniles, G-4 and G-5, except thot on 14 December $G-5$ was almos continuousiy in motion Pseudosuccinea was the most actiye animal. In the laboratory thys genus was dways more active than Goniobasis
Figure shows the patterns of activity obtaned from 48 hours of filming. Activity peaked for the three adult Goniobasis between 1000 pm and 500 am . During these hours two of the three snails were always
in motion and between 12:00 am and 1,00 am all three were active. Between 700 am and 9800 am and $1,00 \mathrm{pm}$ and 6.300 pm activity again showed an upswing.

G-1 entered a long rest lasting from predawn until noon on: both days. From noon to midnight on the 13 th it remained active with only brief stops (snailnaps) of six to thirty minutes duration. After sunset on the 14 th it had another long rest. Even the $G-2$ totaled equal amounts of rest in the dark and daylight, it had its longest rest during daylight hours. G-3 rested 5 hours before dawn of the 13 th But delayeditsmajor rest on the 14 th until late afternoon.
"The two juveniles, G-4 and G-5, were most active between 500 am. and 7800 mm , $10: 00$ am and 1800 pm and $8: 00 \mathrm{pm}$ to 10900 pm. The trace of G-5 on 14 December shown no major rest at all. "It ceased motiom:

seven times during the twenty-four hours, halting only six to thirty minutes each time. It is difficult to envision how it was able to sustain such a level of activity.

Al though thenumber of hours during which Pseudosuccinea was active was aboüt equally divided between day and night, its most sustained activity occurred during the day. It moved andfed ten and eleven hours with out rêst on both days. Out of each twen-ty-four hours, it fed approximately twelve hours, glided six hours and rested six hours. Its major rests were shorter than those of Goniobas is:

Biological rhythms have been déscribed in the Titerature for various animals. Thése may be círcadian, poly yyclic or reIated to special activities such as sex or migration. When Figure 1 wäs examined ín this light, it appeared from the alternation of activity and rest that any possible rhythmety was polycyclic rather than circadian.

That the cycles did not"coincide with dark or light, that "they varied between individuals and even from day to day for a single indi vidual possibly results from the nearty constiant temperature in which they had been raz sed. Cycles do not appear to persist for long periods under constant conditions and these animals had been kept in the laboratory for two and one hal fonths be fore being filmed.

GEVERAL BEHAVIOR PATTERNS

Various types of behavior we residentifiable on the film. These are designated as gliding, sweeping, feeding, contact añd rest. The following descriptions and information apply to Goniobasis except as Pseudosuccinea is specifically identified.

In gliding, Gonióbasis holds the rostrum and tentacles partially or fully extended and probing. in adyance of the route. The shell is carried above and nearly parallel with the body. It is advanced intermittently and abruptly as though sucked forward oñ the body

The greatestudistance covered per unit of time was during glidingg 5 to 15 mm was the basic distance advanced per minute; but during peak spurts both the Goniobais and the Pséudosuccínea travelled 40 to 60 mm per minute. Pseudosuccinea covered the greatest distance in one minute -64 mm .

An ânimál would glide an ayerage of 5
to 15 minutes, halt one minute, and resume travel. It would continue this pattern at least one to two hours before resting. The longest continuous glide period, performed by a juvenile Goniobasis, lasted five hours.

A clean pyrex dish was used during the filming to ensure visibility of the grid system and the paucity of food in it may have contributed to the long periods of travel without rest:

The mollusks glided either in a straight line or along acircular path. No preference for counterclockwise is opposed to clockwise motion was found.

Tracings of their paths indicated phobotaxis. The snaile fequently paralleled previou's courses of their own or of other individual's or crossed them, but they did not retrace the old paths.

During the forty-eight hour period, G-3 retraced parts offitsprevious paths only 8 times. for a total of 45 minutes. It never followed a path long. Retracing lasted from 2 to 7 minutes. The only exception of curred when it followed a former trail 17 minutes ofter an elapsed time of 2 hours 12 minutes. The shortest interval between retracing of a tract was 55 minutes the longest 34 hours 2 minutes. Twice $G-3$ duplicated part of a G-1 track for 3 and 7 minutes respectively.

Arriving at the corner of the dish or a side wall, an animal would make sweeping motions of the rostrum before orienting in a new direction. The paths of all animals converged in the corners, but they continued on in yarious directions after crossing each other's trails.

A second motion frequently employed was sweeping. The snail ceased forward motion and, with shell stationary, alternately extended the rostrum and tentacles in an arc to left and right. After all the area within its reach was covered, the body and shell were hunched into a slightly advanced position and the sweeping continued. This motion was an exaggeration of the probing seen during gliding. Duration of sweeping was 5 to 45 minutes. Most periods lasted 15 to 20 minutes.

The pattern resulting from sweeping appears to be efficient in its thorough coverage of an area. Raup (1969) has discussed foraging behavior of minute fossil sediment feeders and has recreated their
meapder patterns by digital computer. Uniform distribution of foodin the sediments favors compact grazing patterns which provide maximum coverage of an are and minimum crossing of existing tracks. The pattern produced by a snail sweeping bears a similarty to the movements of these ancient an mals int their meanderings As Goniobasis is targely phytophagous, utaldzing minute forms encrusting rocks and Teaves, the distribution afits food could encourage such a pattern.

As the snall travelled, it appeared to search continuously for food. Viewed through the side of the aquarium, its jaws and radula could he seen working rhythmicAly, rasping everythatntheir path. Onfy fithesnaij encountereda concentration of tood, guch as algee, would it halt for a welt defned feeding period. The anna L Lequently frazed on each other's shelts wheh werecovered with algat

Dead eaver and al gal encrusted pebbles from tocal frek were placed in the a queria ff food and replenished monthly. Dato (1965) has reported red and green al gae, dietoms and desmids as the preferred food of Gontobasts. These, would be ingested as the snails grazed the leaves and pebbies Tn addition his laboratory animals accepted leat lettuce. Al though the Juventes consumed small amounts, the adultsothpreport didnotreadily utilize letuge

Unfike the Goniobasis, the Pseudosuccinea fed voraciousty on leaf lettuce and alone consumed almost all supplied during the filming It could be seen rasping on the leafitheranimal and it's shell swinging from side to side with its exertions as it pulled the rettice to it and turned it around in the water.

Pseudosiccinea $\begin{gathered}\text { as the most persistent }\end{gathered}$ feeder. Nevertheless, it abstained once from feeding for 9 hours On 12' December between 240 p.m. and 11, 36 m. it deposi ted anegg capsule and subsequently compTeted 2 gT de andiorest periods of equal duration before feeding.

Table 2 lists the total time an animal remained th en area feeding during each 24 boúr period.

See Fig. l for times in which feeding occurred No consistent pattern of feeding is evident. An animal fed upon awakening, before resting, and might be active both before and after feeding.

TABLE 2. FEEDING PERIODS

Contact betwen two active individuals was frequent, on contact with another snail Goniabasis partially retracted its tentacles andhalted. An exploratory phase employins the tentacles followed for one to a few mintes. The animals would separate and chohge course or rest side by side with bodies withdrewn th to the shells, or one midhtrawl overtheotheror graze on toshelly In the laboratory juvenile animals used the larger ones as carriers and restineplaces Smallsiail frequent$1 y$ were found riding aboardothers, apparently not disturbing the carrier Motion was netther slowed norhalted by this ectivity. Threre wes lite discernible Teaction to being orawledover or having the shell grazed Rarely wasiapid twitehing of the shel used to dislodge an animal of equal size that had tarried:

The Goniobasir and Pseudosuccinea in general a roided each other. Upon contact they separated rimediately One exception occurred when Pseudosuctinea crawled upon the shell ot the latgest Gontobasis, a female ($G-3$), and remaned thepe 2 hours 7 minutes from 308 p . to 5 s 15 p m. 12 December, depositing an egg capsule. The capsule, 12 mmolong, containod 28 eggs. All but one hatched 20 to 22 days later: In the following week pseudosuccineadeposited 8 other capsules andone half size capsule and died on 29 "December.

The Goniobasi's studied and 21 otfiers remained alive until June and July, 1969, nearly 10 months after capture. ${ }^{\text {mo }}$ attemptscomatenwerevobserved nor were eggs found. They were kept in translucent white plastic containers and while the eges are easily overlooked, it is expected they would have been found had they occurred. Dazo ascribes to Winsor (1933) the observation that G virginica eggs are covered with forei matter. The lack of debris and sand grains may have contributed to the circumstances under which no eggs were found:

A rest period, as differentiated from brief pauses in contact or change of direction, was selected as lasting at least 30 minutes.

Major rests were commenced after an animal had been active at least an hour. Most resting periods occurred following 2 to 7 hours of activity.

The motion of the animal became fitful. It frequently travelled shortér distances per minute and stopped once or twice for several minutes before coming to rest. The lent thof a rest vari ed between 30 minutes and 9 hours 18 minutes of 42 reststotaled by all the snails more that hatf (24) were of 2 to 6 hours duration.

Gonobasis attached itself either to the ste of the container or on the bottom On the side of the container it rested with the headup, the apex of the shell pointedtoward the bottom. On the bottom the shell was held parallel to the floor in a straight line with the head It almostalway withew completely into the shell, atho in a few instances the rostrum and tentacles werepartially extended All the animals except $\mathrm{G}=2$ and $\mathrm{G}-4$ assumedra resting positton on the bottom more frequently than on the wall, in a ratio of 2\%1. Of 42. rest periods 27, occurred on the floor of on the wallsof the container.

Pseudosuccinea was once active for 11 hours 36 minutes before resting. On 14 December $G-5$ went almost entirely without rest.; It moved 16 hours 48 minutes with only 3 ests of minutes duration during that period, rested 18 minutes, moved 30 minutes rested onother 30 minutes and then commenced a. 4 hour 40 minute session of rapid glide.

If a snail had recently entered a rest period, it remãined quiet in spite of being bumped, shoved to another location or grazed by an active animal. A few times a resting snal moved several mm. in one minute to another position and continued sleeping.

Contact by an active animal often terminated the rest period of a snail which had been quiet for an hour or more. 24 major rest periods wereterminated when an active animal contacted resting one. A Quute or two after being bumped, the sleeper would resume gliding.

In 18 instances of 42 the resting animal resumed activity of its own accord. Pseudosuccinea, which was almost completely avoided by the Goniobasis, awoke from all its major rests without physical contact of another snail: $\bar{G}-5$ contacted it 3 times
to end short pauses of 24 minutes or less. G- 2 ended one of its short pauses, but there was no other contact between Pseudosuccinear and the Goniobasis other than the deposition of the egg capsule. While the animal's would be expected to awaken in the wild without physical contact between animals, the crowding in the photographic situation made it inevitable that they should frequently disturbeachother.

CONCLUSIONS AND SUMMARY

Goniobasis exhibited a polycyclic rather than a circadian. rhythm. There was no well defined preference to concentrate activity in either the dark or light. The animals were active approximately half of each 24 hours, alternating several hours of motion with several of rest. G-2 was the least active of the Goniobasis It spent only a thirdof the time in motion and mostof this occurred during thenight.

Pseudosuccinea was a more active animal than the Goniobasis:- It was engaged in various locomotor activities 18 of each 24 hours Its activity pattern was al so polycyclic, although the most sustained activity occurred during daylight hours. Rest periods were short, 3 to 4 hours at the most.

Several distinctive types of locomotor activity were clearly indicated in a film made of Goniobasis and Pseudosuccinea. These are described as gliding, sweeping, feeding, contact, and rest.

The maximum distance in a forward direction covered per unit time was in gliding. No preference for straight line, clockwise or counterclockwise motion was indicated. Sweeping motions with the shell held stationary and the rostrum and tentacles moved alternately to right and left in a series of arics, enabled the animal to search an area thoroughly: Feeding periods adhered to no particular pattern and were not concentrated either in the hours of dark or light. Feeding was preceded or followed both by activity or rest. No clearcut pattern emerged.

Contact between active animals usually resulted in a retraction of the tentacles and rostrum and a change in direction of motion after amoment"s halt. On the other hand, no reaction was apparent if the shell was grazed upon: pushed aside or crawled
over. Phobotaxis was exhibited in the pronounced avaidance of previous slime tralls, eitheritsown or those of others.

A single instance of egg deposition by Pseudosuccinea was filmed The eg. sulewar lad on the shell of the largest Goniobasis and was carried 20 to 22 days to the successful hatch of all but one of the eggs

More than half the major rest periods lasted betwen 2 and 6 hours. For at least an hour after entering a sleepeperiod passive indi yidual was not aroused by contact from others Beyond that initial period beipg pushed or grazed could disturbitsufficentry ro resume acti vity.

The euthor wishes to thank Paul Chanley through who good offices the facilities of the Virginia Institute of Maniescionce were made available to photograph the snalls fred Biges, Associate fnformation Officer, arranied the photography, A film viewer loaned by Wiliam Radeliffe of the. Mariners. Museum was used to analyze the flmara deeply indebted to these genthenen for the r assistance with thispro dectandethonald Mollick of Ch ristopher Wewport watese whoread the manuscript

REFERENCES

BAKER, F. C. (1928) Freshwater Mollusca of Wisconsin, L, Gastropoda.t Wis Geol. \& Nat. Hist. Survey, Bull. 70 : 170-187.

DAZO, B, G, (1965) The morphology and natural history of Pteurocera acuta and Gontobasts Livescens Castropoday Certhoiacea: Pleuroceridae) - -Malacologia $3(1)$: $1-80$

HARMON, W. N (1968) Replacement of Pleurocerids by Bthynianpolluted waters of central New York - Naut 81)3: 7783 .

KLOPPER, P, H and HAILMAN, JPP (1967) An introduction to antral behayior. -Prentice-Hall Inc, Englewood Cliffo N. J. 297 .

MORRISON, J. PE (1954) The relationships of old and new world melanians. Proc. USSNat, Mus 2 103 (3325): $357-394$.

RAUP, D. (1969) Fossil foraging behavior computer simulation - Science 166 $(3908): 994-995$

ACCEPTED FOR RUBLICATION MARCH 10,1970

THIRTY-SIXTH ANNUAL MEETING OF THE AMERICAN MALACOLOGICAL UNION, KEY WEST, FLORIDA, JULY $16-20,1970$

The local committee for this meeting, Ann Young, chairman, John Root, and Margaret Téskey, did a fine job according to al 1 accounts:
The majority of themetings were held in the Convention Hall, under the chairmanship of President. Alan Solem. Ann Young welcomed members in attendance ontbehalf olthe ocal commetee and Roy C. Anderson and Mayot Dr Dello Cobo on behalf of the hey West Conventio of Bureau and the Gity respectivety on the first day, Jily l'6.

Allit"of the paperspresented is given below ofter an account of the distinctive social and field collecting events of the meeting.

A CONCA TRATN TOUR of Key West was a feature of the first evening. The group picture was taken in front of Convention Hal on July 17 after a morning devoted entirely to symposium on Commercial marine mollusks of the United St at es convened by Arthur S. Merril. This symposium continued th roughout the afternoon.

The evening presentation was SHELL CLUB NiGHT, organized by John Root. Executive Council met at the same time.

SATURDAY" JULY 18. The morning was devoted to presentation of papers. In the afternoon one group went on a field trip to Samd Key for marine collecting andanother fornon-marine collecting in the icintyof Key West
tn the evento the organizational meting tet th AU CONSERVATION COMMITTE Was Keldinconvention, co-chairmen D. Sunt dee and Anne Spers presiding.

SUNDAY July 19 th, epapers on Mollusks introduced or thought to be introduced into Nort America were presented in the morning ond "Contributed Papers' in the afternon

In the evening, an identification seminar, moderated by William old, was held.

MONDAY, JUEY 20 th, a symposium con vened by Robert Robertson on Biological Sy stem-
"atics of marine bivalves and gastropods ${ }^{\text {a }}$ was presented, followed in the afternoon by another group of contributed papers.
The business meeting, was held at 300 pm. a cocktail party at 7800 and the annual banquet at 8,00 The after-dinner program included an address on Qiving Cephalopods by EdwrdT LaRoe, University of Mími, Miami, Florida, the customary "acknowledgements, greettings' from Past Presidents and the induction of new officers.

PAPERS PPRESENTED
(in order of their presentation)
WILLIAM J CLENCH. History of Florida Malacology.

CATHERINE H, ROBINS. (Institute of Marine Scrence, Miamioniora). The introduced freshwater snail; Marisa.

MARTIN FOMON Institute of Marine Science, Miami, Florida). Florida undersea parks.

THOMAS R WALLER (Smithsonian Institution, Washington, D. C.'). The glass scallop, Propeamussium, aliving relict of the past.
JOSEPH P̈ E. MORRISON (Smi th sonian Instifution, Washington, D.C.) Hy drobíidse:

MORRIS K. JACOBSON (Mu seum of Comparative:Zoology, Harvard University). Evo"uton of ashellor -amateur to publishing.pro

JAY D ANDREWS (Virginia Institute of Marine Science, Gloucester Point Vas) Oysters.

CARL N SHUSTER Jr (U. S Navy, CBC, Davisville, R. I . Hard clams and soft clams.

ROBERT HANKS and ARTKUR S. MERRILL (Biological Laboratory, Bureau of Commercial Fisheries, Oxford, Md) Bay scallops, razor clams and potential species.

Juga, oxytrema and mudalia, and a Correction

BRANLEY A. BRANSON
Eastern Kentucky University, Richmond, Kentucky, 40475

Scarcely had my brief note (Branson, 1969) on some western and southwestern snails appearedinprint before l received a cordial note from Allyn G. Smith (California Academy of Science) asking about the basis formy utilization of the combination Mudalia (Goniobasis) silicula (Gould). With a red face, I could only plead a lapsus calami, for in some manner or another I had used Mudalia where I had intended Oxytrema.

In the same letter, Dr. Smith indicated that he had been using Juga for western U.S. river snails, following the rationale of Taylor (1966). Prior to the latter work, Baker (1963, and more lately; 1967) selected Melania silicula Gould as the type of the Adams brothers' Juga. Taylor (loc. cit.) recognized Juga as a valid genus, and included in it all Recent and Tertiary Pleuroceridae of Western North America that have shells like Elimia (which is open to at least suspicion since Semisulcospira cancellata (Benson), 1833 has been found in Miocene rocks of Western Siberia (Zhadin, 1952). On the other hand, in the choice of Oxytrema as the generic designation for western river snails I agree with Morrison (1954): 'Thisgenus includes numerous North American species whose range extends from the Atlantic to the Pacific coasts and from southern Canada to Florida and Texas.' In the genus, according to Morrison, the eggs are laid in close, flat clusters of 3 to 10 egg capsules -- a fact l have verified by numerous field observations.

Moreover, I am progressively more uncertain regarding the relationships of $J u$. ga (fide Taylor) and the Oriental pleurocerid genus Semisulcospira. Although the last named genus is ovoviviparous (Davis, 1969; others), the question has been raised whether its species were not more closely related to western American 'melanians' than the western forms were to those of the eastern U. S. (Dall, 1910). Personally, I suspect that Semisulcospira and similar forms are secondary derivatives of pleurocerid stocks in the center of dispersal. and that the American fauna is the more primitive of the two, particularly species complexes of the southeastern United States (where considerable radiation has occurred). 'Pachycheilus' of Mexico, and 'Goniobasis' of Texas are relict faunas. The species of the west coast of America are presumed tohave been isolated there since at least late Pliocene times. The species of the Olympic Peninsula, and of the Puget Sound area in general, probably reinvaded the area following glacial abatement. There is ample evidence that many of the valleys were filled with ice during the Pleistocene, and field observations during the summer of 1969 demonstrated that Oxytrema is not now very abundant in glacier-fed streams, especially very far inland from the coast (or Hood Canal).

The author is now conducting a survey of the freshwater and terfestrial mollusks of the Olympic Peninsulal, and he hopes to continue this work into the Cascade and Sierra Nevada ranges - funds permitting.

1 Supported in part by Sigma Xi-RESA and Eastern Kentucky University Faculty grants in aid of research.

LITERATURE CI TED

BAKER, H.B. (1963) The genera of Recent Mollusca. -- Nautilus, 77:35.
--..- (1967) Juga and Melasma. - Nautilus, 81: 36.

BRANSON, B.A. (196́9) Distribution notes on western and southwestern snails. -Stertiana, 36: 21.

DALL, H. (1910) Land and freshwater molluske. - Harrinian Alaska Exped., 13: ixii; 1-250.

DAVIS, G.M. (1969) A taxonomic study of
some species of Semisulcospira in Japan (Mesogastropoda: Pleuroceridae). -- Malacologia 7: 211-294.

MORRISON, J. P. E.(1954) The relationships of Old and New World melanians. - Proc. U.S. Nat. Mus., 103: 357-394.

TAYLOR, D.W. (1966) Sumary of North American Blancan nonmarine mollusks. -- inklacologia, 4: i-172.

ZHADIN, V. I. (1952) Nollusks of fecsh
and brackish waters of the U.S.S.R. - Acad. Sci. U.S.S.R., 46: 1-368.

THE LAND SNAILS OF NORTH CAROLINA

LESLIE HUBRICHT

North Carolina is one of the states for which the land snail fauna is very poorly known. There has been considerable collecting in the mountains in the western partof the state; and some of the Coastal PTain, but the Piedmont Region has been vitually unknown.

This paper lists all of the records for the statein the collection of the author. As in previous papers in this series, only the counties are given as this is usually sufficient forplotting distributions.

Helicella caperata Montagu. Carteret.
Palygxra postelliana (Biand). Beaufort, Carteret, Columbus, Hyde, New Hanover, Onslow, Pamlico

Polygyrapustuloides (Bland).: Graham, Guilford, Johnston, Macon, Rowan, Ruther: ford, Stanly:

Stenotrema altispira (Pilisbry). Alleghany, Avery, Buncombe, Haywood, McDowell, Mitchell, Swain, Watauga, Yancey.

Stenotrema depilatum (Pilsbry). Graham, Swain.

Stenotreme barbatum (Cl app) Alamance, Anson, Bladen, Caswell, Chowan, Edgecombe; Harnett, Johnston, Nash, New Hanover, Pamlico, Wake, Warren.

Stënotrema stenotremastenotrema (Pfeiffer). Ashe, Burke, Caldwell, Forsyth, Gaston, Graham, Henderson, Macon, McDowell, Mecklenburg, Rowan, Rutherford, Stanly, Swain, Watauga, Wilkes:

Stenotremástenotrema voluminosum (Cl en ch \& Banks).. Swan!

Stenotrema-magnifumosum (Pilsbry). $\mathrm{Cl}_{\text {ay }}$, Graham, Haywood, Henderson, Jackson, Macon.

Sterotrema pilula (Pilsbry). Haywood, Henderson, Madison, McDowell, Swain.

Stenotrema. hirsutum (Say) Cabarrus, Caswell, Davidson, Guil ford, Montgomery, Person, Ran dolph, Rockingham, Stamly, Stokes. Stenotremaleaialiciae (Pilsbry). Rockingham.
Stenotrema fraternum montanum Archer. Swain.

Stenotrema fasciatum Pilsbry. Jackson.
Mesodon thyroidus (Say) Al amance, Beaufort. Bertie, Bladen Brunswick, Buncombe, Cabarrus, Caldwell Camden, Carteret, Cherokee, Chowan; Cleveland Columbus, Craven, Cumberland, Currituck, Dare, "Davidson, Duplin Edgecombe, Forsyth, Franklin; Gaston, Gates, Guiliford, Halifax, Harnett, Hertiford, Hyde, Johnston, Jones, Lenoir, Lincoln, Madison, Martin, McDowell, Montgomery Nash, New Homover, Northampton, Onsle Pamlico, Pasquotenk Pender, Perquimans, Pitt, Rendolph, Richmond, Robeson, Rockingh am, Scotland, Stanly, Stokes, Surrey; Swain, Transylvania; Tyrrell, Wake, Warren, Washington, Wayne, Wilkes, Wilson, Yancey.

> Mesodon claususclausus (Say). Cherokee, Macon:

Mesodon andrewsae W. G. Binney: Avery; Buncombe, Haywood, Mitchell, Swain, Trant sylvania, Yancey.

Mesodon nörmalis (Pilsbry). Clay, Graham, Haywood, Macon; McDowell, Swain, Transylvania, Yancey.

Mesodon zaletus (Binney), Haywood, Swain.
Mesodonclarki clarkil (Lea). Clay, Graham, Haywood; Jackson, Macon.

Mesodon clarkinantahala (Clench \& Banks). Swain.
Mesodon christyi (Bland). Cleveland, Gaston, Graham, Jackson, Lincoln, McDowell, Orange, Person, Rutherford, Suirey; Swain.

Mesodon wheat leyi (Bland). Avery', Graham, Haywood, Jackson, Macon, Mitchell, Swän, Transylvania, Yancey.

Mesodon ferrissi (Pilsbry). Haywood, Swain.
Mesodon laevior Hubricht. Carteret, Caswell, Pamlico, Sampson.

Mesodon appressus sculptior (Chadwick). Al exander, Caswell, Rowan, Stake's, Wilkes.
Mesodon perigraptus (Pilsbry). Cabarrus, Cherokee, Grahamn aywood, Henderson, Macon, Mecklenburg, Swain.

Mesodon jonesiaṇus (Archer). Haywood, Swain.

Mesodon subpalliatus (Pilsbry). Avery, Mitchell.

Mesodon sayanus (Pilsbry). Ashe, Wat--auga.

Mesodonirugeli (Shuttleworth). Buncombe, Cherokee, Graham, Haywood, Lincoln, Macon, Madison, McDowell, Mitchell, Rutherford, Swain, Yanceey.
Mesodon inflectús (Say). Avery, Burke, Cabarrus, Cádwell, Cherokee, Hartnett, Henderson, Iredell, Mecklenburg, Randolph, Rowan, Rutherford, Stanly, Surrey, Yadkin, Yancey:

Mesodon verüs Hubricht. Haywood.

: Triodopsis fuleiden. Hubricht: Burke, Catáwba; Cleveland, Lincoln.

Triodopsis tridentata (Say). Ashe, Avery, Burker Catawba, Forsyth, Gaston, Graham, Haywood, Henderson, Iredell, Jackson, Eincoln, Macon, McDowell, Rockingh am, Ruth'erford, Stanly; Stokes, Swain: Watauga, Wikes, Yadkin, Yancey.
Triodopsis tennessensis (Walker) Madison
arurodopsis burchi Hubricht. Davidson; Guilford, Mecklenburg, Montgomery, Randol ph, Rockingham:

Triodopsis vulgata Pilsbry"... Cl ay, Graham, Madison, Watauga.

Triodopsis jüxtiders (Pilsbry). Alamance, Bladen, Cabarrus, Caswell, Chatham, Columbus, Cumberland; Davidson, Durham, Edgecombe, Forsyth, Franklin, Guilford, Halifax, Hertford, Johnston, Mecklen burg; Nash, Pamlico, Person, Rockingham, Rowan, Stanly, Wake, Warren.

Triodopsis penduláa Hubricht. Al exander, "Arieghany, Burke, Cabárrus, Caldwell, Davie, Forsyth, Guilford, Tredell, Lincoln, "Röwn, Stokes, Surrey, Wilkés, Yadkin.

Triodopsis fallax fallax (Say). Catawba, Chatham, Cleveland, Forsyth, Franklin, Gaston, Gates, Gül ford, Harnett, Iredell, Johnston, Lee, Montgomery, Person, Randolph; Richmond, Rockingham, Stianly, Stokes, Surrey, Wake, Warren.

Triodopsis fallax affinis Hubricht. Alexander, Cabarrus; Caldwell, Cleveland, Gaston, Guilford, Lincoln, McDowell, Polk, Rockingham, Rutherford, Stokes, Surrey, Wwke, Wilkes.

Triodopsis messana Hubricht. Bertie, Bladen, Brunswick, Columbus, Craven, Cumberland, Duplin, Gates, Halifax, Hoke, Johnston, Montgomery, Nash; Northampton, Pender, Pitt, Robeson, Sampson, Scotland, Wilson.

Triodopsis hopetonensis (Shuttleworth). Beaufort, Bertie, Brunswick, Camden, Carteret, Chowan, Columbus, Currituck, Duplin, Hertford, Jones, Lenoir, Martin, New Hanover, Onslow, Pasquotank, Pender, Perquimans, Pitt, Scotland, Wayne.

Triodopsis obsoleta (Pilsbry). Beaufort, Bertie, Brunswick, Carteret, Chowan, Craven, Dare, Hertford, Hyde, Jones, Martin, Onslow, Pamlico, Perquimans, Sampson, Tyrrell, Washington.

Triodopsis messana X T. obsoletá. Sampson.

Triodopsis soelneri (J. B. Henderson). Bladen, Brunswick, Columbus, Jones.

Triodopsis denotata (Ferussac). Bladen.
Triodopsis albólabris (Say). Alexander, Beaufort, Bladen; Brunswick, Burke, Cabarrus, Caldwell, Carteret, Catawba, Columbus, Craven, Dare, Davidson, Davie, Duplin, 'Du rham, Edgecombe, Forsyth, Gaston, Gates, Guillford, Halifax, Hoke, Johnston, Jones, Lenoirt Martin, McDowell, Mecklenburg, Nash;' New Hanover, Northampton, Onslow, Orange, Pamlico, Pender, Perquimans, Pitt, Randolph; Robeson, Rockingham, Rutherfôrd, Stokes, Surrey,. Swain, Tyrrell, Wilkes, Yancey

Triodopsis major (Binney). Bladen, Brunswict, Cherokee, Columbus, Graham, Montgomery, Pender, Robeson, Rutherford; Sampson, Scotland.

Rumina. decollatá (Linne). Brunswịck, New Hanover.

Opeas pyrgula Schmacker \& Boettger. Wayne.
Haplotrema concavum (Say). Anson, Ashe, Avery, Beaufort, Bladen, Brunswick, Burke, Cabarrus, Caswell, Chatham, Chowan, Columbus, Craven; Currítuck, Davidson, Davie, Edgecombe, Forsyth, Graham, Guilford, Halifax, Haywood, Henderson, Jackson, Johnston, Lenoir, Lincoln, Macon, McDowell, Mitchell; Nash, New Hanover, Onslow, Orange, Pamlico, Pasquotank, Person, Rockingham, Stanly, Stokes, Surrey, Swain, TranSylvania, Wake, Watauga, Wilkes, Yadkin, Yancey.

Haplotrema kendeighi Webb. Swain.
Euconulus chersinus chersinus (Say). Avery, Beaufort, Bertie, Bladen, Brunswick, Chowan, Halifax, Johnston, Macon, Nash, Northampton, Onslow," Pasquotank, Pitt, Transylvania, Tyrrell, Wake, Yancey.

Euconulus dentatús (Sterki). Caswell.
Guppya sterkii (Dall). Avery, Macon.
Glyphyalinia busringtoni (Pilsbry). Aveqry, Haywood, Mitchell, Transylvania.

Glyphyalinia cumberlandiana (Cl app.). Graham, Jackson, Macon.

Glyphyalinia roanensis. (H'. B. Baker):
Avery, Graham, Macon, Mitchell, Yancey
Glyphyalinia wheatleyi (Bland), Caswell Franklin.

Glyphyalinia vanattai (Pilsbry \& Walker). Yancey

Glyphyalinta clingmani (Dall) . Yancey
Glyphyalinia pentadelphia (Pirsbry)
Graham, Macon
\therefore Glyphyalinia rhoadsi (Pillsbry) Caswelt. Davidson, Edgecombe, Harnett, Johnston, Lincoln, Mecklen burg. Person, vRutherford, Stanly, Stokes, Surrey, Wake, Wilkés, Yad lein.

Glyphyätinta indentata (Say) Avery, Beaufort, Bertilé, Bladen, Brunswick, Burke, Cabarrus, Camden; Chatham, Chowan, Clay, Cleveland, Columbus, Craven, Edgecombe, Franklin; Grahan, Guilford, Halifax
"Haytood, Jackson, Johnston, Macon, Martiñ; McDowell, Mecklen burg, New Hanover, Northhampton, onslow, Rookingham, Rutherford; Stoke, Sur rey, \%wain, Tyrrell, Wake, Wash-解官tom, Wilkes, Wilson:

GLyphylunin cầliniensis (Cockerell). Ashe Avery, Jackson, Mácon, Madison,. Mitche It, Rutherfordrsampon, Yadkin.

Glyphyalinig jund uskana (Cl ench \& Banks) Cherokee dranam-t
Glyphal liniapraecox (H. B. Baker). Grahain Macon', Swain,

Glyphyalinia lutticola Hubricht. Pasquotank.
Glyphyalinia sculptilis (BI and). Ashe Gridam.
Mespmphix andrewsae (Pilsbry) Graham, Hayood, Jackson, Mac on", Rutherford, Swain, 'Transylvania.

Mesomphix subplanus subplanus (Binney). Buncombe Gratiam, Hay wod, Henderison, Jackson; Macon, Madison, Ru therford, Swain, Yancey.

Mesomphïx subplanus planus Bank s: Yancey
Mesomphix rugeltrugeli (W. G. Binney). Mitchell, Transylvania.

Nosomphix rugel inoxycoccus (Vanatta).

 Ashe, Avery, Watauga:\because Meromphix perlaevis (Pilsbry). Burke, Caswell Davidson, Forsyth; Graham, Hay' wood, Macon, Madi son, McDowel 1 , Rockingham, Rútherford, Stanly,' Swain; Yadkin.
Mesomphix lattor Pilsbry Mitchell

Mesomphix cupreus (Rafinesque). Guilford, Madison, McDowell, Wilkes.
Mesomphix pilsbryi (Cl app) Anson, Stan$1 y$.

Vitrinizonites:latissimus (Lewis). Avery, Graham, Haywood, Macon, McDowell, Mitchell,' Swain, Transylvania, Watauga.

Parguitrea multidentata (Binney). Ashe, Avery, Mitchell, Xancey.

* Paravitrea lamellidens (Pilsbry). Cherokee, Graham, Hay yood, Macon, Swain

Paravitrea andrewsae (W. G. Binney). Avery, Madison, Mitchell, Yancey.

Paravitréa placentula (Shuttleworth). Swain.

Paravitrea capsella' (Gould). Graham.
Hawaiia minuscula minuscula (Binney). Beaufort, Bertie; Brunswick, Carteret, Columbus, Craven, Currituck, Harnett, Hyde, Johinston, New Hanover; Onslow, Pamlico, Pasquotank,: Perquimaris, Pitt, Rockingham, Tyrrell, Wake:
Gastrodonta interna (Say). Burke, Catawbacherokee, Cl elyand, Graham, Haywood. Henders on, Iredell, Jackson, McDowell', Ru th erford, Yancey.

Ventridens pitsbry Hubricht. Burke, Cheroke, Clay, Graham, Macon, Yancey:

Ventridens decusisatus (Walker \& Pilsbry): Avery, Clevel and, Graham, Haywood, Mi tchell Transyivania.

Ventridens decussatus (Walker \& Pilsbry) Avery, Cleveland, Graham, Haywood, Mitchell, Transylvana.

Ventridens theloides (Walker\&Pilsbry) Alleghany, Bu rke, Catawb, Graham, Macon, McDowell, Matherford Wilkes, Yadkin.

Ventridens lawae (W. Ginney). Henderson, Madison, Transylvania.
\therefore Ventridens coelaxis (Pilsbry). Alleghar ny, Watayga.

Ventriden"s gularis (Say) Cleveland, Gaston, Guilford, Johnston, Randolph, Rockingham, Rowan, Stanly, Transyl vani'a.

Ventridens cerinoideus (Anthony). Beaufort, Bertie, Bl aden, Brunswick, Camden, Carteret, Chatham; Chowan, Columbus, Craven', Cüritûck, Dare, Franklin, Halifax, Harnett, Hoke, Johnston, Jones, Lenoir, Montgomery, Nash, New Hanover, Northamptón; Pasquotank, Pender, Pitt, Robeson, Scotland, Tyrrell, Wake, Washington, Wilson:

Ventridens suppressus (Say). Stokes.
Ventridens acerrus (Lewis). Ashe, Graham, Haywood, Jackson, Macon, Madi son, Swain, Watauga, Yancey.

Ventridens ligerus (Say). Caswell; Johnston, "Nash", New Haṇover, Rockingham, Wake, Warren.

Ventridens intertextus (Binney). Brunswick, Catawba, Cherokee, Cleveland, Columbus, Davidson, Fränklin, Gaston, Graham, Granville, Guilford, Iredell, Johnston,

Lincoln, Macon, Mecklenburg, Polk, Randolph, Rockingham, Rowan, Rutherford, Stanly, Stokes, Wake, Wilkes, Yadkin.

Ventridens elliotti (Redfield). Buncombe, Burke, Cherokee, Cl eveland; Graham Haywood, Ir edell, Jackson, Macon, McDowell, Polk, Rowan, Swain, Transylvania.

Zonitoides arborés. (Say). Beaufort. Bertie, Bladen, Brunswick, Cabarrus, Car, teret, Chatham, Cherokee, Clevel and, Columbus, Craven Duplin, Franklin, Graham; Guilford, Hallifax, Harnett, Haywood, Hyde, Johnston, Leñoin, Lincoln, Mi techerl, North hampton, Onslow; Pasquotank, Rockingham, Transylvania, Tyrell, Wake, Warren, Wayne, Wi-lkes.

- Z Zonitoides patuloides (Pilsbry) Macon.

Striatura meridionelis (Pilsbry \& Ferriss). Beaufort, Caswell, Columbus, Craven, Franklin, Graham, Halifax, Harnett, Johnston, Macon, McDowell, Swain, Trañsylvania, Yancey.
Striatura ferrea Morse : Haywood, McDowel Mitchell, Yancey
Anguispira alternata. (Say). Cáswell, Swain'
Anguispira strongylodes (Pfeiffeŕ) Burke McDowell Ruther ford.

Anguispira fergusoni (Bland) Beâufort, Bertie, Camden, Caswell, Carteret, Columbus, Craven, Cunberland, Franklin, Gates, Halifax, Lenoir, Martin, New Hantovers. Ontislow, Pamlico, Pasquotank, Requimans Pitt, Sampson, Tyrrel, Wake, Warren, Washington, Wayne
Anguispirajesica Kutchka Graham; Haywood Méchell Swain, Watauga, Yancey.
Discus cronkhitei (Newcomb) Guil ford.
Biscas patulus patulus (Deshayes). Avery, Burke, Cabarrus, Davidson, Graham,
Hay wood, Macon; Meck len burg, Mitchell, Stan
"'y, Swain, Wátauga, Yadkin.
Discus : nigrimontanuls (Pilsbry). Ashe, Watauga.

Díscus bryanti (Harper) Aýery, Madison, Mitchell

Helicodiscus fimbriatus (Wetherby), Graham.

Helicodiscus notius notius Hubricht. Catawba, Guil ford, Mecklenburg, Mitchell.

Helicodiscus parallelus (Say). Alexander, Bladen, Brunswick, Caswell, Chatham, Cleveland, Columbus, Davidson, Duplin, Franklin, Gates, Graham, Guil ford, Hal ifax, Harnete, Johnston, Lenoir, Líncoln, Macon, Nash, Northamp ton, Onslow, Pasquotank, Per'son, Polk Rutherford, Stanly, Tyrrell, Wake, Washington, Watauga, Wayne.

Panctum minutissimum (Lea). Avery.

Punctum blandianum Pilsbry. Avery, Graham, Johnston, Swain, Yancey.

Punctum smithi (Morrison). Caswell
Derocepas laeve (Muller) Widely distributed in Nórth Carolina but no collections were made.

Arion fasciatus (Nilsson). Buncombe, Swain.
Limax maximus (Linns). Widely distributed on the Piedmont and Coastal Plain but no collections were made.

Philomycus carolinianus (Bosc). Anson, Ashe, Beaufort, Bertie, Bladen Brunswick, Burke, Carteret, Caswell, Columbus, Craven', Daire, Duplin, Edgecombe", Franklin, Gates, Halifax, Johnston; Jones, Lenoir, Liticoln; Martin, Montgomery, Nash, Northhampton, Onslow Panlico, Pender, Perquimens, Pitt, Polk, Robeson, Sampson, Stanly, Stokes, Swain, Wake, Warren, Washington, Wilkess

Philomy cus virginicus Hubricht. Henderson.

Philomycus venustus Hubricht. Avery, Haywod, Macon, Mitchell, Swain, Watauga.

Pallifera: mutabilist Hubricht: Bertie, Bladen; Brunswick, Cleveland Edgecombe, Gates, Greene, Iredell, Lenoif, Lincoln, Martin, Rockingham, Rowan, Stanly, Swain, Tyrrell, Wake.

Paltuera dorsalis (Binney). John'ston, Rocking am, Wake.

Pallifera hemphilli (W. G. Binney) Avery, Buncombe, Mitchell, Swain, Yancey.

Pallifera secreta (Cockerell). Ashe, Burke, Caswell,Clay, Graham, Haywood, Macon, Mitchell, Stokes. Swain, Watauga. ${ }^{4}$ Yadkin'

Patlifera megaphalltca Grimm. An son, Beaufort, Burke, Graham, Guil ford, Hyde, Iredell, LincoIn, Macon, Person, Rockingham, Stanly; Swain, Tyrrell, Wake.
Oxyloma effusa effusa (Pfeiffer). Chowan.

Succinea ovalis (Say). Swain, Yancey.
Succinea pronophobus Pilsbry. Beaufort, Bertie, Brunswick, Chowan, Craven, Dare, Hyde, New Hanover, Onslow, Pamlico.

Succinea concordialis Gould. Chowan, Perquimans.

Succinea indiana Pilsbry. Craven
Succinca wilsont Lea. Beaufort.
Succinea campestris Say. Brunswick, Carteret, Martin, New Hanoyer, Onslow, Pender.

Succinea witteri Shimek. Beaufort.
Catinelilavermeta (Say). Beaufort, Bertie, Bladen, Brunswick, Chowan, Columbus,

Craven, Gates, Johnston, Jones, Martin, Nash: Onslow, Perquimans, Tyrrell, Washington.

Catinella oklahomarum (Webb). Brunswick, Carteret, Johnston, Onslow, Pitt, Swain, Wilson.

Catinella hubrichti Grimm. Beaufort.
Catinella pugilator Hubricht. Curfituck.

Strobi-lops labyrinthica labyrinthica (Say). Catawba, Franklin, Guilford, Lincoln, Mecklenburg, Onslow, Wake.

Strobilops: labyrinthicaparietalis Pilsbry. Beaufort; Carteret, Tyrrell, Washington.

Strobilops aenea Pilsbry. Beaufort, Brunswick, Cabarrus, Chowan, Cleveland, Craven, Duplin, Franklin, Gates, Halifax, Johnston, Lincoln, Northampton, Pasquotank, Tyrrell.

Gastrocopta contracta (Say). Beaufort, Brunswick, Chatham, Cleveland, Halifax, Harnett, Lincoln, Onslow, Pasquotank, Rockingham, Washington, Wayne.

Gastrocopta pentodon (Say). Halifax, Johnston, Pasquotank.

Gastrocopta tappaniana (C. B. Adams). Beaufort, Chqwan, Craven; Currituck, Duplin, Onslow.

Gastrocopta rupicola (Say). Brunswick, Carteret, Craven

Gastrocopta procera procera (Gould). New Hanover.

Pupoides albilabris (C.B. Adams). Beaufort, Brunswick, Carteret, Columbus, Craven, Hertford, New Hanover, Pamlico, Pasquotank, Wake.

Vertico milium Gould. Beaufort, Brunswi ck.

Vertigo ovalis Sterki. Beaufort, Chowan.
Vertigo ovata ovata. (Say). Beaufort, Bertie, Brunswick, Camden, Chowan, Cramen, Curfituck, Gates, Pamlito, Pasquotank. Ty rrelp, Washingtoño on

Vertigo teskeyae Hubricht. Beaufort, Camden, Chowan, Columbus, Craven, Gates.

Cólumella edentatá(Draparnaud). Caswel' M, McDowell

Vallonïa pulchella (Müller). Northampton.

Cionella morseana Doherty. Ashe, Avery, Burke, Caswell, Jackson, Maicon, Swain, Transylvania.

Carychium: exile.H. C. Lea. Caswell, Chatham, Franklin, Halifax, Harnett; Johnston, Nash, Pitt, Wilkes, Yädkin

Carychium clappi Hubricht. Avery, Graham, Haywood, Jackson, Macon, Madison, Mitchell, Rutherford, Swain, Transylvania, Yancey.

Carychium exiguum (Say). Beaufort, Brunswick, Chowan, Craven, Duplin, Franklin, Johinstion.

Carychium nannodes Cl app. Avery, Graham, Jackson, Rutherford; Swain, Transylvania, Yadkin.

Pomatiopsis lapidaria (Say). Beaufort, Brunswick, Chowan, Craven.

ACCEPTED FOR PUBLICATION MARCH 31, 1970

ALBERTK. SPARKS (Biological Laboratory, Galveston, Texas) West Coast mollusk fisheries

HERBERT HIDU(Chesapeake Biological Laboratory, Solomons, Md.) World aspects of molluscan culture.

JOHN W. ROPES (Biological Laboratory, Oxford, Md.) Surf clams and ocean quahogs.

JULIUS A. POSGAY (Biological Laboratory, Woods Hole, Mass.) The North Atlantic Sea Scallop.

HAROLD HUDSON (Tropical Atlantic Biological Laboratory, Miami, Fle.) The Calico scallop.

EDWIN A. JOYCE, Jr. (Marine Research Laboratory, St. Petersburgi, Fla.) The Sunray Venus, a new Florida fishery.

MALCOLM MERCER(Fisheries Research Board of Canada, St. Johns, Nfld.) Cephalopod fisheries in the Northrest Atiantic. Presented by Kenneth Boss.

KENNETH J. BOSS (Museutn of Comparative Zoology, Cambridge, Mass.) Conch fisheries.

CARL J. SINDERMANN (Tropical Atlantic Biological Laboratory, Miami, Fla.) Preda. tors and diseases of commercial mollusks.

DONALD A. LEAR (Federal Water Quality Agency, Annapolis, Md.) Pollution problems in commercial mollusks.

KENNETH J. BOSS (Museum of Comparative Zoology, Cambridge, Mass.) How many species of mollusks are there?

Pat TORRANCE (St. Petersburg, Fla.) Observations on a Florida Gast-cpteron.

OHARLES E. JENNER (University of North Carolina, Chapel Hill, N. C. and ANNE B. McCRARY, (University of North Caralina at Wilmington, N.C.) Montacuta floridana Dall and Aligena elevata (Stimpson) as closely related species.

CARL W. GUGLER (University of Nebraska, Lincoln, Nebraska) Fertilization in Discus

KENNETH R. BAZATA (University of Nebraska, Lincoln, Neb.) The renopericardial aperture in Discus.

MARC J. IMLAY (National Water Quality

Laboratory, Duluth, Minn.) Methods for growing freshwater sponges, mussels and clams in the laboratory.

WILLARD N. HARMAN. (Department of Biology, New York State University College, Oneonta, N. Y.) A local case of clinal intra-population variation in Lymaea emarginata (Say)

HAPOLD J. WALTER (103 East Elmwood Avenue, Dayton, Ohio) Amphigyra, miniplanorbs and microsculpture in planorbid systematics.

RITA STURGEON (6273 Miller Road, South Miami, Fla.) Achatina fulica infestation in North Miami, Florida.

ARTHUR H. CLARKE (National Museums of Canada, Ottawa, Canada) Littorina litto-- ea, native or incroduced? --..a review.

RALPH M. SINCLAIR (FWPCA Training, 4676 Columbus Parkway, Cincinnati, Ohio 45226) Co-bicula and Dreissena parallels.

DOLORES S. DUNDEE (Dept. of Biological Sciences, Louisiana State University in New Orleans, New Orleans, La.) Introduced Gulf Coast Mollusks.

ALBERT R. MEAD (Dept, of Zoology, University of Arizona, Tucson, Ariz.) Helicid land moliusks introduced into North America.

HAROLD D. MURRAY (Biology Department, Trinity University, San Antonio, Texas) Introduction and spread of Thiarids in the United States.

LOWELL L. GETZ, Department of Zoology, University of Illinois, Urbana, Illinois) Introduced terrestrial slugs.

ALBERT R. MEAD (University of Arizona) Status of Achatina and Rumina in the United States.

MARTIN L. H. THOMAS (Fisheries Research Board of Canada, Dartmouth, N.S., Canada) Mollusca of Prince Edward Island, their distribution, composition and origin.

JEAN--JACQUES VAN MOL (Service de Zoologie systématique, Université Libre de Bruxelles, 1050 Bruxelles, Belgium) Anatomical studies in the families Urocyclidae and Helicarionidae.
W. LLOYD PRATT, Jr. (Fort Worth Museum of Science and History, Fort Worth, Tex:)

MUSSELS IN THE HURON RIVER ABOVE ANN ARBOR IN 1969

RENRY VAN DER SCHALIE

Museum of Zoology, Ann Arbor, Michigan

In mid-December 1909 ropairs were made to the Argo. Dam at: Ann Arbor, Michigan. Consequently, the water in the Huron River between the harton and Argo dams was unusually low. Al thon ofh the weather was bitter cold. il was an ideal occasion formaking sime observations on the mussels in an area helow Barton Dam where conditions alhough somewhat impounded, were still shoal-
to bevetained "The oportunity to examine
The shol sdirocty during such a fow water stagewth the damsopen (depth was not more than sixinches over extended reaches) was

- or special interest, cince a survey of the
mussels was made in this same portion of
the river more than thirty years ago (van ally paved the bottom on such shoals as usilally serve as mussel beds. The study of the mussels in the whole lluron River drainage indicated that the several spees lorm characteristic ecological assemblages, so that the kinds of lakes (riverMolil lad lecked, etc., creeks, hed its own typical assemblage of mussels. The need for information on original conditions is evident, when this in formation is taken in its broader context to trace former stream confluences (varder Schalie, 194.5):

Some of the changes brought about in the ready evident a decade aro (van der Scha lies 1958) when the ruinous effects of the
war economy brought about serious depletion among the 25 species of mussels that occupied long stretches of this river. It is generally conceded that mussels aresensitive to pollution and are considered good formonitoring degrees of depredation in streans and lakes. Sínce many live confined to a very restricted portion of a shoal; they have been used to measure fallout"(Nelson, 1934) and pesticides (Bedford, et al., 1968).
\therefore Al though in the early thirties the dams (Barton and Argo) had already had an adverse influence on themussels in that region of the river, the list given here shows that at leas thirteen species were found at that time. In the intervening years both pollution and especially fluctuating water levels brought about by water level regulation tended to deplete the fauna. While conditions wereuncomfortable when the collections were made during the low water stage last December, it was of interest to find the few mussels that still managed to survive there. Six species were taken alive\& another 4 were recorded as empty shells. Only two, Cyclonaias tuberculata and Anodonta grandis, were found in appreciable numbers. The lack of young specimens found recently also clearly indicated that this shoal nolonger is healthy in appearance. This local survey was undertaken by three collectors, Curt Schneider, Daune Crankshaw and the author.

It is just this vital need for infor-

MUSSELS FOUND BELOW BARTON DAM, ANN ARBOR: 1938 vs 1969

1938 species	1969 December 14 and 15 10 species (6 alive)	$\begin{array}{r} 1969 \\ \text { Aliye } \end{array}$	Dead
Cyclonaias tuberculata	Cyclonaias tuberculata	19	8
Elliptio dilatatus	Elliptio dilatatus	4	4
Strophitus rugosus			
Anodonta grandis	Anodonta grandis Anodonta imbecillis	15	7 1
Lasmigona costata			
Alasmidonta calceolus	Alasmidonta calceolus		1
Ptychobranchus fasciolaris			
Villosa (Micromya) iris	Villosa (Micromya) iris	1	1
Lampsilis fasciola	Lampsilis fasciola		5
Lampsilis siliquoidea	Lampsilis siliquoidea	1	
Lampsilis ventricosa	Lampsilis ventricosa	3	3
		43	30

mation on the original fauna in drainage systems that makes the detrimental changes brought about by the many destructive agents so unfortunate. Those responsible for alterations in the environment such as are brought about by power dams, sewage, industrial wastes, etc. usually are quick with a reminder that they will clean up their mess. Yet, few who are instru. mental inmaking the changes have the foggiest notion of the fact that the losses in the biota are irreversible and the al. terations witnessed will leave gaps in inter-relationships of fields like parasitology, public health, physiography, zoogeography, Pleistocene geology, etc. which cannever again bebridged! It would, however, seem. Worthwhile to have those same agencies try to contribute something, if only in funds, to assist those who will at some later time try to bring back a semblance of the natural conditions where such assets were destroyed.

In the list of six species taken alive the relative abundance of the pink wartyback (Cyclonaias tuberculata) was interesting because somewhat farther upstream in the region of Delhi Mill (below Dexter) the shoals formerly produced thousands of specimens. This section of the stream is essentially the same ecological
zone as the area below Barton Dam. As previously stated (van der Schalie, 1958), specimens of this species amounting to several tons were gathered and piled up on the bank of the river years ago when collectors tried to harvest pearls (produced by metacercariae of trematode parasites) commonly found in the mantle tissue between the interdental plate area of the hinge of this mussel. Since this species produces anacre that is an off-color pink and not lustrous, their venture obviously was wasteful. All of the mussels at the site above the Barton Dam have now disappeared so that it is interesting to find some are still surviving below that dam. In view of the changes brought about in the river and the disappearance of all of the mussels below Dexter, it would seem reasonable to have these mussels used for almost any purpose rather than have them destroyed, as they too often have been, by pollution.

The next most common mussel was thepapershell, Anodonta grandis, which while not formerly abundant probably becamenumerous by virtue of the slowing of the current as brought about by the impounding of water after the construction of the Argo Dam. All of the specimens collected were old and larger than usually found in the flow

[^0]
system of a stream. The area evidently has become sufficiently lake-like to form the type of habitat in which Anodonta thrives. The general area alsohas assumed features that one associates with muskrat and mink habitats. Mussels are known to be the staple food of thesefur bearers during the winter and, as a consequence. the survival and propagation of Anodonta (as well as the other species of mussels) can be viewed not only as important in the food chain, but also as a worthwhile feature formaintaining natural conditions in that portion of the Huron-Clinton park system.

Only four live lampsilid mussels were found, one Lampsilis siliquoidea (Barnes) and three Lampsilis ventricosa (Barnes). They are evidently less pollution tolerant than the more numerous species at this station. When the three Pocketbooks (Lampsilis ventricosa) were placed in a tray with water, the two females extended their mantle-flaps producing the strihing min-now-like structures often seen in females of the Lampsilid group (Figure l). Isaac Lea, as early as 1836, described and fig. ured the flap of lnio radiatus (now known as Lampsilis radiata (Gmelin). Ortmann (1911) was among the first to observe the behavior of the flaps which are developed only in the females. He indicated that there are two possible uses one may invol've the need they serve to assist in aerating the protruding gills when they are heavily charged with developing glochidia: the other that the fish-like flaps serve as a lure for fish which may then serve as hosts for the glochidia. Loujse R. Kraemer (1966) made an extensive study of the flaps of three lampsilid mussels but was. careful to avoid any anthropocentric interpretations pending morecritical studies designed to prove their function. Recently Welsh (1969) adduced plausible reasons to indicate that theflaps do serve to attract fish hosts.

Productive mussel-sustaining sivers are gradually disappearing. While formerly naiades were used extensively in the pearl button industry they now are eagerly sought by dealers for shipment to Japan for use in the pearl industry. Tons of mussels (Pig-toes, Wash-hoards, Niggerheads, etc.) are shipped to the Orient. The Japanese craftsmen grind out seed-pearls, which are then placed in live marine mussels for the addition of a lustrous outer
coat to make marketable natural pearl. In the U.S.A. one center for harvesting the shell for the pearl industry was the Kentucky Reservoir in the lower Tennessee River. The impact of this large impoundment on the mussels of that region was discussed by Bates (1962). It is now recognized that the supply is disappearing. Data on the studies undertaken during a three-year survey in that impoundment will be presented later. Many of the animals taken there were measured, aged and sectioned. It is evident that the fauna in those deep waters created hy the dam at Paducah areprobably mussels remaining from the preimpoundment period. The gonads of many of the animals were studied histologically (van der Schalie, in press) and it is now known that even animals from shells showing 25 annuli havenormal reproductive functions. Evidently the marked ecological changes from flowing river to impoundment no longer permit the normal processes in the life histories of the several species andyoung specimens clearly are not appearing in the deep water beds.

More recently intensive studies have been undertaken in the Muskingum River in Ohio: This stream is still highly productive and as much as 50 tons of mussels per year have been sent to Japan. In addition to the collaborative work in the Museum of Zoology, intensive studies have been undertaken by John Bates andhis group at fastern Michigan University. Since in the past. records on production of mussels on shoals in rivers have been poorly reported, these studies willenable not only a measure of what the river yields but also some estimates as to the amounts that can safely be harvested. Means will be sought to replenish mussels on shoals in rivers, Jike thelluron, to reestablish the original fauna as an aid in the process of purification in streams.

REFERENCES

BATES, John M. (1962) The impact of impoundment on the mussel fauna of Kentucky Reservoir, Tennessee River -- Amer. Midl. Nat., 68: 232-36.

BEDFORD, F.W., ROELOFS. E.W. \& ZABIK, J (1968) The freshwater mussel as a biological monitor of pesticide concentrations in a lotic environment. - Limnology and Oceanography, 13:-118-126.

KRAEMER, Louise R. (1966) The mantle flaps in three species of freshwater mussels. -- Thesis, University of Michigan. 192 pp.

LEA; Isaac (1836) Observations on the genus Unio, etc. Vol. 2: 53; Plate 15. figure 49. Philadelphia; printed for the author.

NELSON, D.J. (1964) Deposition of strontium in relation to morphology of clam (Unionidae) shells. -- Verh. Internat. Verein Limno.". 15: 893-902.

ORTMANN, A. E. (1911) Monograph of the Najades of Pennsylvania. -- Mem. Carnegie Mus., 4: 279-347.
van der SCHALIE, Hen ry (1938) The Naiad fauna of the Huron River in southeastern Michigan. --Univ. Mich., Mus. Zool., Misc. Papers, 40 : $1-83,12 \mathrm{pls}$.
-.... (1958) The effects of thirty years of 'progress' on the Huron River in Michigan. -- The Biologist, $40: 7=10$.
-..-. (1970)Hermaphroditism among North American fresh-water mussels. - Malacologia (in press).

WELSH; John H. (1969) Mussels on the move. -- Natural History, May, 1969: 56. 59.
manuschipt accepted for publication may 1970

FIELD JOURNAL OF HENRY A. PILSBRY PERTAINING TO NEW MEXICO AND TRANS PECOS TEXAS

ARTIE L. METCALF

Department of Biological Sciences
UNIVERSITY OF TEXAS AT EL PASO, 79999

INTRODUCTION

On file in the Department of Mollusks, Academy, of Natural Sciences of Philadelphia (ANSP), are a number of field journals kept by Hen ry A. Pilsbry during several expeditions to the sou thwestern United States and Mexico. The notes are in nk and pencil, faded ín some places, and the notebooksare of rather poor quality. paper. Herein parts of these journals pertaning to New Mexico and Trans-Pecos Texas have been extracted. . Four expeditions are involved: 1906, 1910, 1922, and 1935. 1 it was unable to find any notes pertaining to another expedition, which Pils-: bry made to the Black Range of New Mexico in 1915.

Three sections are comprised belowi (1) Pilsbry journal notes (with explanatory comments indented or: in bracketsp parentheses are Pilsbry's); (2) annotations referring to the notes, and (3) a list of station numbers that Pilsbry maintained for each expedition and the ANSP collection numbers that pertain to these stations.

I thank Dr. Robert Robertson and Dr. R. Tucker Abbott for making available the notebooks at the Academy of Natural Sciences of Philadelphia. The following persons provided information concerning localitiesi Dr. Clifford B. Casey, Alpine,

Texasi Mres. Walter Glover:. Pine Springs, Texast Dr Arthur H. Harris: University of Texas at El Pasob Mr. John H. Kiger, San Andres National Wildife Refuge, New Mexicor Mr. Philip F. Van Cleave, Carlsbad Caverns Nation Park Dr Barton Warnock, Sul Ross State College Texase and Mr Roland Wáuer, Big Bend National"Park.

NOTES FROM NOTEBOOKS OF PILSBRY

In 1906, Pilsbry and James H: Ferriss crossed northern New Mexico on their way to Arizona, where they collected extensively (Pilsbry, 1906: 7). They left Joliet, Illinois, the home of Ferriss, on Oct. 8 and arrived in Al buquerque, N.M., on Oct. 10 : On this expedition, only a few notes pertained to New Mexico.

Oct. 10. Trinidad to Al buquerque, where we arrived about 9 "pm. Went morning to see Prof. Tight, at the Univ. of $N \mathrm{M}$. Then crossed the Rio Grande, finding a very little drift, \& went west to a terrece covered with volcanic blocks, ca. 5 miles from Al buquerque-or about 7 by road, Found one B. procerá \& 2 Pupoides marginatus. Al so some large ground beetles. Left at about. 8 pm .

Grants, NM: 12th Oct. Arr. at 12830 The country is traversed by ridges capped with
'malpais' or basaltic rock, which over lays sandstone, forming a cliff of 10-50 ft. The valley to N.S. of RR sta is evidently an eroded anticline. Near head of valley or where it narrows northward, we found Pupillidae \& Oreohel. neomex. in a coarse rock talus which slopes very steeply from the foot of the basalti c cliff, down perhaps a 100 yards. They were got by digging deep; to the earth; through the basaltic rock fragments.

On Oct. 30, the party returned to Albuquerque, made a short trip into the Sandia Mountains, and then proceeded southwest to Deming, Luna County, N. M. Here they made a trip into the Florida Mountains, southeast of Deming. Pilsbry (1915: 346 - 349) publisheda short account of the Molluscacollected on this trip.

Nov. 1 Deming. Drove out to Florida Mts. 18 miles stoppedinabout middle of Wide Priser has a cabin which his brother occupies here.

Nov. 2. Ascended range just behind cabin in Spring Canyon. Summithere is a great limestone cliff on $E, W, \& N$ sides, but slopes down on S. somewhat so rounded top can begained. III Covered with grass, rock, cacti, Fouquieria \& agave, with low shrubbery. No sagebrush. A few prickly pears \& the round-branched kind. Plain around looks like the sea-with islands at intervals. In East Organs are visible. The mountain-islands rise abruptly, as if half submerged, from the plain. Around base of rock top of Mt. we found Ash. [AshmunellaI walkeri \& Sonorella everywhere, the former in pockets. The rock below is granitic, but at top; limestone. 2 oaks, one holly-leafed, the other scrub, wi th white oak leaf, hackberry, sotol, no nar-row-leafed yucca on the Mt., but there is some mescal \& a stout-leaved yucca. (2]. Saw keg cactus at base of Mt. The roundbranched cane-cactus(Cylindropuntia) grows all over Mt., from foot of slope to summit.
'Trails first made by the bear \& deer, then followed by the Indian, \& then by the White Man' [3]

Elevation of Deming according to S.P. sign, is 4333 ft . Mts. must be about 2500 or 3000 ft higher. Limestone in middle, granitic south \& porphyritic N. The range runs nearly $N \& S$., \& is about 13 miles long. a low continuation sep by pass at
N end is known as the little Floridas. Dry process farming being started around Deming.

The part of the 1910 expedition described below seems to have been made by Pilsbry and Lorenzo E. Daniels, only, although James Ferriss seemingly joined theparty later in southern Arizona (Pilsbry, 1910: 84). However, one of the snails taken by Pilsbry and Daniels in the Big Hatchet Mountainswas named Oreohelix ferrissi Pilsbry. The mollusks taken in the Big Hatchet Mountains were reported by Pilsbry (1915: 323-346).

Aug 17 1910, With L. E. Dwniels, en route for El Paso. Stopped from 9:30 to $1: 35$ at Duran, N.M. Elevation 6272 ft ., \& explored a large butte about 1 mile S. of Station [48]It is white sandstone, lower slopes covered with stones, larger above. Found Bifidaria hordeacella (?) Pupillalike Blandi but very small, and a flat, delicate, ribbed Vallonia. Most abundant quite near top on N. side, under flat stones. The sides \& flat top of butte are thickly covered with scrubby cedar, a little pinyon \& very little scrub oak, knee high. There is a Cereus, an Echinocactus, 2 flat prickly pears \& the cylindric cane cactus. Saw on top a young barrel cactus (?) \& two ferns. The mesa has also scrubby juniper cedar., \& a small yucca, near and on but[te] there is a small, filamentous agave. The buttes S. of Torrance (\& alsoN.) form ranges, \& there are also isolated, more or less barren, small buttes thus Isketched in all stages of degradation. The mesa is evidently formed by their erosion \& is quite sandy. The sandstone is fine, white, \& in level strata. This sort of country is found from about Santa Rosa southwest.
[In margin] Butte nr. Duran is about
500 ft above town.
At Carrizozo there is a fine range east. ward, the Capitans. Splendid \& very high, beautifully wooded. About 8 miles distant \& looks 2. [5I Best reached by a branch road from Carrizozo to Capitan, trains run Monday \& Thursday at $6 \mathrm{a} . \mathrm{m}$. Westward, more distant, are the Organ Mts. Capitan is a fine place to outfit. Upper slopes of Capitans are vivid green, the sidesiare deeply furrowed with canyons, \& the mass culminates in the fine peak of El Capitan. I5I Farther south on the EP \& SW EEl Paso and Southwestern Railroady it appears that the green range trends eastward. Southward the
mts. are arid. The mass is probably iso: lated. [5].

At Tularosa the peaches are the best ever Next best at Al amogordo , 4320 ft el evation. The Capitan, Sacramento \& S ISierraI Blanca form asystem cut off from the Mts westward by a broad mesa, highest at \& below Duran (6666"ft at Corona) but here the Mts are sandstone \& very arid. Reached El Paso ca 8 B 3 p m.

El Páso Aug 18/10. Explored Franklin Mt: gongo out Highland Park car to Al tura [6], perhaps 3 miles \& on the E side of Mt. The Mtisismonocline strata dipping steeply west. \quad Gong up the canyon at Altura it is redgrente first, then metamorphic \& top half Limestone bluish \& hard; wi thout fodsils on the ridge we started towards town, reachingapeak *** [word illegiblel whtheavyock\&litle cliffs. Here found a fewtolosira roemeri \& Bul pasonis, in fane grass omong stones. The Mt: is extremely y ry, with abundance of a small agave. Upabove there is Fouquieria, a fine sawtooth apaye, \& a few large yúccas. Almost no soy Descended si de towards town, \& wen down to river, which is dry bed of sand "fine gray mud, with a little water annerrow pools in places.
Ampat 19 Left for Hachita at 7:50 a *, Crossed into Mex. I7I where the hills ftre arid \& sandy, with very little herbage. It becomes more grassy further on. There are several ranges including the Floridas inview Arrived at Hachita at lla.m, \& gotintouch with Mr. John Pitts foreman of "the e Hachite ranch, managed \& owned, by Mr. Everliardi. Sorted our stuff \& drove out to the ranch, 15 miles, found turtle in garden. I81

Aug.: 20 Drove into Sheridan canyon, wh'ere two men are at work drilling a well. Wells at ranch are ca. 150 ft deep. The Mts are very barren, more so than Floridas. This canyón is abg one about 7 miles long \& much branched". Made camp in a shack put up by miners ne"ar the Sheridan mine \& the well After lunch struck out southward to a high peak surrounded with cliffs, about - 3 miles distant-Teocalli Peak. Here at bases $\&$ benches of cliffs found Holospira. \& Oreohelix, the latter very rare. ['Sta. 10 in margin.I On way back found a draw with Holo ca $1 / 3$ way to camp on N. side of a hogbeck running to ridge. on which peak stands Sta. 2° in margin) $\{9$
"Aüg. 21 Sunday. Went to Mt facing mouth
of Sheridan. The cliffs are high, near summit very many Oreo. \& Holo. TOreohelix and Holospiral in talus at bases of cliffs \& found living Oreo. under small \& large stones \& leaves, but not deep, on a bench of cliff half way up. \mathbb{L}^{4} Sta. 3^{2} in margin. \bar{y} Here they live on the face of an almost inaccessible cliff, where they can look out 50 miles into Old Mexico.. On top there is sotol, candelabral mescal, Fouquieria \& cacti. Below cliffs, dwarf oak, kneehigh, wild roses, candle cacti \& the small branching stick kind, \& prickly pear, etc. Also ferns in rocks, \& very rare cedar trees, low like an apple tree.

Written out of sequence on another page is the followingi "Hachitas have no water whatever, \& no timber. Scrubby cedars \& small but old pinyons are sparsely scattered near peaks. All limestone, hard \& angular with very few fossils--some corals like Zaphrentis \& crinoid stems with oraces of a spiral snail \& very räre brachiopods. Produce rattlesnakes, smal'í pale brown scorpions, large centipedes \& tarantulas. Heat intense from suñise on Sky cloudless until noon when small white clouds appear inmiddle of p.m. perhaps covering 10%. Most days with very little breeze, often still'

Aug. 22 Monday. Went westward to a Mt. at head of Thompson Canyon. The way is up to Sheridan mine, then following the ridge which rises in a succession of steps or stages, culminating in the mountain (Thompson Mt). The N, branch of Sheridan almost connects with Thompson Canyon, but is sep arated by a rather lowsaddle. North side of summit of Daniels 'Thompson' crossed out and 'Daniels' written above it I Mt. descends in high cliffs, at base of which the steep slope supplies abund an good rock for snails. ('Sta. 5' in margin. J. There are occasional pinyons allover this slope. Found large Holospira, Ash. mearnsi, \& 2 Oreohelix here. There are slender Holospiras also all over the sunny side of same Mt. high up (Sta, 4). What we took were nearly as high as the base of cliffs.

Aug. 23/10. Stayed in' camp. Collected plants in morning. rested. Ash. mearnsi liyes in earth and stones like A. walkeri. South of Hachita group there is another group., very rugged and full of high cliffs. looks dry, \& is not nearly so high as Hachita Grande. Away to the west there are very high Mts, apparently well wooded distant perhaps 25 or 30 miles, possibly more.
（10）Sheridan Cn ．has been scooped out of middle of range，also Thomson 「sic．I out of N ．end．

Aug．24．Started at 7 a．m．for Big Hat－ chet．followed along draw which heads up a low col betw Teocalli ridge \＆Thompson Mt．Here Antithompson Cn ．［The word＇Sun－ set＇has been inserted between＇Antithomp－ son＇and＇Cn．＇I seems to have stolen the long（ca 2 miles）head of the Sheridan draw． Followed this up SSta． 6 was seemingly on the southwest side of this canyonJ \＆at its head ascended Mt on right \＆got Sonorella in some abundance near summit．SSta．I on stones among pinyons，from here went around Big H．Mt．on right across gulley，Sta． 8. Ascending ridge to camp，which was on the warm side of a low rock wall．Gathered wood－－small cedar \＆agave stalks－－－\＆spent the night，which was cold，in keeping up fire．In morning ascended to small peak 10 ， where Daniels got Sonorella \＆Oreohelix．I went up to the highest peak，ll Found Oreo． bones all over \＆many living ones on \＆un－ der stones，just below peak．Left name \＆ date in can on cairn at peak．Saw 4 Mt ． sheep from sta．10．They spent over anhour on a ledgenear Sta．9．One ram \＆ 3 ewes． Started for camp about 10 \＆reached there about 4，both of us about＇all in．＇

Aug．26／10．Cleaned up catch this mor－ ning At noon went up to cliffs opp．\＆S． of Teocalli \＆these cliffs，but it is not cut so low as the one southward．This mor－ ning took photo．of Teocalli，纹 2 on film， $\neq \neq 1$ is view of peaks and head of Thomson ／sic．／Cn．from camps．Men at well are Wil－ lard Merrill \＆McBride Howard

Inserted on back of page，out of sequen－ ce：＇There is a zone of big yuccas several miles from Hachitas．It is 2 or 3 miles wide．Inside this there is an agave zone． The Mts are very full of small agave with filaments along the sides＇lichigylla＇（see about spelling），（parens．Pilsbry＇s－－pre－ sumably he referred to Agave lecheguilla Torr．I besides several other spp．On high peaks much of the compact broadleafed dark agave with black spines．＇

Aug 27．Saturday．Mr．Pitts brought us down to ranch，arriving about 2 oclock． Very hot．Mr．Everhard there．

Aug．28，Sunday About 7 a．m．started for town．Reached Hachita about $10 \& 1 \mathrm{fft}$ for west at ll：10 a．m．，reaching Bisbee \｛Ari－ zonal about 4 p．m．

The southwestern expedition of 1922 was outlined briefly by Pilsbry（1926： 5－6）in his commemorative account of James H．Ferriss who joined him on this trip．Seemingly Mrs．Ferriss（presuma－ bly the＇Mrs．F．＇of the notes，below） and a Miss Jane Towne ac companied the party at least part of the time，al though references to them in the notes are few． The trip was by automobile，perhaps one belonging to Ferriss，as Pilsbry（1926 5）noted，in regard to the 1915 expedi－ tion to the Black Range＇This was the last of the trips by wagon and pack train．Ferriss bought a Ford．＇Title of the notebook，all of which is given here，is＇1922．Santa Fe to Great Bend． ＇Great Bend＇refers to the Big Bend a－ rea of the Rio Grande in southwestern Texas．

Sept．17．Sta．201．Road from Santa Fe to Albuquerque Lavahada－－dry stream near adobe village southwest of the steep hill． ［1］

Sunday Sept 18．Left Albuquerque about 9 am．for Sandia Mts．Went up Tijeras ca－ nyon \＆a left branch to San Lorenzo Falls． Camped $1 / 2$ mile below falls．Hills covered with juniper．Some distance above falls some yellow pine－a sparce Isicy stand，\＆ abundant scrub oak．Pine goes nearly to the top，but the last 800 ft scrub oak on－ ly－－from 10 ft or more to ankle high near summit．Under summit are groves of aspen Rock on Al buquerque side is granitic the peaks \＆whole Mt．otherwise a hard lime－ stone．In the canyons where there is water some maple groves．

Sta．202．Canyon above falls in juniper zone mixed with pinyon pine．

Sta． 203 On top，in aspen groves．
Wednesday， 20 th Sept．Camped last night ca． 10 miles south of Albuquerque．Before leaving camp collected［＇Station 204＇in－ serted herel in swampy strip along the rail－ road It is quite dry now，but with close growth of tules，cattails（ 2 species）\＆c． found Lymaea，Physa，Planorbis，abundun－ dant 〔sic］．Are continuing S ．on the Camino real．

21st Sept．Camped in valley at windmill \＆tank， 24 miles N of Socorro．Wash runs west，with vertical earth banks 6－10 ft high，gravel \＆boulder bed．In the banks found Succinea，Lymaea \＆Zonitoides spar－ cely．［Sta．207］

Sta．205．Broke camp at noon，proceed－ ing southward．The valley sides are sand－ stọne．No shells to be found．

Sept．22．Camped 15 mi ．S．of Socorro \＆ several miles off the road west at Nogales canyon． 112 in the E ．foothills of the San Mateo range，Sta． 206 Found small stuff only．It is about 10 miles to the main range．

26 th Camped at Elephant Butte Dam．Some small stuff in drift．Sta 207a．（At Socor－ ro we went w．a couple of miles to Socorro Mt．，rhyolite，no shells whatever）．

Sta． 207 Dry wash $91 / 2$ miles N．W．of Hot Springs．［13】

28 Sept．Camped last night at the Jor－ nado 〔sic〕 ranch 17 miles N ，of Las Cruces． This morning rode out to the western slopes of the San Andres－－about 9 miles．The Fou－ quieria society occurs on S．slopes，with pinyon and cedar on the northern．In the latter found Bulimulus \＆in same slopes， Holospira roemeri．［＇Sta．208＇in margin】 On top there is agave and bear grass．On the mesa broad yucca belt．Got large series of plants．Also a Crotalus．The ranch buildings are in the lowest part of the plain．The rainfall here is usually about $8-9$ inches，but this year only 3 or 4 so far．Water in one of the canyons，the others dry．Humming birds and black bum－ ble bees abundant：Burke＇s Spring is the general loc．for Sta 208．（14 The head of the Jornado ranch is Dr．Enoch Nelson．Man－ ager B．P：（？）Lister．

29 Sept．Left at 8 for Ropes Spring a－ bout 13 miles N．E．of the Jornado ranch buildings，Il5I \＆probably 10 N of Burke＇s spring．Found Sonorella and Ashmunella in a ravine S．E．of the Spring．Both live under stones rather deep，chiefly in the bottom of the ravine．［＇Sta 209＇in mar－ gin］Holospira found under flat stones on the sunny side of the ravine．［1］The western division of the San Andraes Isic］ is wholly limestone－softer layers alter－ nating with thinner hard strata－the whole dipping steeply to the west．The slopes of the Mts largely follow the dip of the strata \＆are very steep．The ravines are relatively small．The summit here is said to be about 8000 ft ．

30 Left for Las Cruces \＆then for Drip－ ping Springs．

Oct． 1 Sunday．Camped．Dripping Spring． ［17］Found Sonorella at Sta．210．South of the Spring about 100 ft ．，higher．

Oct．2．Monday．Worked rock in bay east from hotel Sonorella．Sta 211.

Oct． 3 Tuesday．Went up N－E branch of the canyon．Very steep \＆rough．About 1000－800 ft below summit of ridge，are several long slides on right side of can－ yon．Ashmunella sparcely found dead，al－ so Sonorella living，in large slide．Fur－ ther up in a slide about 6 ft wide found Ashmunella living．［＇Sta．212＇in margin There are a few yellow pines，much scrub oak with white oak leaf，a scrub maple， few pinyons \＆cedar．One of the steepest climbs anywhere．［18】

Oct．4．Packing to return to Las Cruces． Saw Mr．Frank Herran，owner of Dripping Springs．Left Mrs．F．\＆Jane at hotel \＆ went up river 4 miles to Donana \｛Dona Anǧ where we camped．

Oct．5．Crossed Rio Grande on bridge \＆searched the Cerro Magdalana．F＇Sta 113＇ in margin－－apparently he meant 213 ＇I F ． found Pennsylvanian fossils which he gave me．［19］Very hot．Afternoon returned to Las Cruces \＆interviewed W．A．McCalla （Hatch，N，M．）whohas found fossil wood \＆c． on his ranch above Hatch．He gave me a fossil horse tooth for determination \＆re－ port．

About 5 p．m．left for the east，on road to Organ City［now called simply＇Organ＇］． Camped about 3 or 4 miles out．

Oct．6．continued journey to Organ City． On arrival we searched mountains south of pass，without success．I 20 I Got 2 horned toads．Camped east of the pass

Oct．7．Crossed desert to Alamogordo． Photographed white sands．Elev．about 4000 ft

Oct 8．Sunday．Went up to Alamo canyon ［21］\＆camped about $1 / 2 \mathrm{miles}$ from mouth Rested．Ferriss collected Bulimulus \＆Ho－ lospira［＇Sta．114．S side Alamo canyon above camp．＝214＇appears in marging

Oct．9．Went up right（southern）branch of canyon to high cliffs near top．Just below cliffs found Ashmunella and Oreohe－ lix bones，very dead．E＇Sta．215（115）＇ap－ pears in marging Nothing above cliffs but Gastrocopta\＆V．indentata．From summit of ridge one looks into another big canyon opening west．

Oct．10．Ferriss \＆I went up Alamo Can－ yon 6－6 miles－－to the mine．found practi cally nothing．

Oct．：11．Returned to Alamogordo
Oct．12．Went north on road to Carrizozo as far as Three Rivers．D\＆Very hot．By this time were in asevere sandstorm．Heat！ dust！Stoppedinlee of store for an hour． Storm abated Then took road past Sec＇y Fall＇s house［23］to Stone House，I＇elev 5800^{\prime} appears under the words Stone HouseI on the Thoroughbred Ranch，at the mouth of Three Rivers Canyon．Camped in mouth of the canyon．Johnson，supt of ranch seemed unwilling to give any information Camp is in Forest reserve．［24

13th F．\＆I went up canyon at the dam we met NW Palmer This is 6500 ft ．Went along up trail $1 / 2$ mile or more，where we found Ashmunella very abundant in rock piles along bottom of canyon $\mathbf{~} 251$ Station 216．The shells are under the edges of rocks in the mellow mould．A few on the rocks．This station is about 6700 ft ．Al－ so found very richearth with small shells about here．

Station 217 is about 7000 ft up on the south side of canyon，half a mile further up．Ashmunella is somewhat larger．Also dirt．The Ash are often in leaves along edges of stones．This station is near a grove of aspens．

Oct．14．Went along up 3 －rivers cn． About 1 mile above Sta 217 foundlarge Ash－ munella－－Sta 218.

Sta 219．About a mile further up，among a few aspens in floor of cn．，a short dis－ tance below old corral ca． 8000 ft ．

Sta．220．Aspen grove on side of canyon $1 / 4-1 / 2 \mathrm{mile}$ above old corral about 8500 ft ． mostly little stuff but Cochlicopa very rare－－no Euconulus．

Oct．15．F．\＆I went over to canyon southward，ca 4 miles：Got bones of same Ashmunella near mouth of cn．about a mile above the cultivated field \＆irrigation ditches Heavy rain．［26I Location of Sta． 22 D

Oct．16．Went updry branch＊＊＊th Ifirst part of wordillegiblebutprobably＇north＇I of 3 －rivers Cn ．about 2 miles up found trickle of water \＆near there collected large Ashmunellas［＇Sta 222＇in margin］ Ferriss collected somedistance above also on right side of cn．，「＇Sta．＇224＇appears in margin still larger ones．Cleaned all．

Oct．17．Returned to 3－rivers and left for the northward．Camped several miles east of Oscuro． 272

Oct．18．Went east 2 or 3 miles \＆climbed foothills．Found Helicodiscus \＆Succinea but specimens lost．Camped 2 of X bar I ranch．

Oct．19．Camped at Cottonwood Springs， several miles E of X bar I ranch．I went up canyon beyond spring \＆got small stuff \＆dirt．〔＇225＇in margin〕

Oct．20．Jim \＆I went up next canyon south of that on which Cottonwood Spring is situated．It is a canyon with 2 main branches \＆many forks．Went up to aspens the only ones visible，about 9000 feet． Mostof the ridges aredensely covered with scruboak．［28】

Sta．226．Found Ashmunella above 2d fork and from there up to 229，in the aspens． They are abundant under stones in maple． The canyonshere all contain a little wa－ ter．Maple，oak，ash，yellow pine \＆ spruce．

Oct．21．F \＆I went north about 4 miles to Water Canyon，on the western flank of Nogal Peak．［29］A large canyon，with some walnut，ash \＆oak，higher up，maples．Water down nearly to mouth of the canyon．Found Ashmunella abouthalfmile up，\＆from，there to summit．F．collected at three stations， about $1 / 2 \mathrm{mile}$ apart， $230,231,232$ ．I went far above these \＆collected in the aspens， now leafless，under the peak［Nogal PeakI on W side，［＇234＇in marging and at least 1000 ft lower on the west side of the southern branch of the head of Water Can－ yon（parallel topart of the Forestry Ser． vice trail［30］to the saddle south of the peak $\mathbf{~ ' ~}^{\prime 2} 33^{\prime}$ in marginj．Here A＇sh－ munella was very abundant，hybernating ［sic］under stones along the steep slopes of the narrow ravine．I got 104 from one stone about 18×12 inches．Ravine full of fallen maple leaves Above this the mountain is long bunch grass \＆small scrub oak，very steep，with a few rather low \＆ short cliffs．The rounded summit，about 50 ft long，has a rock monument．On its flanks are rock piles covered with large lichens，collected some of them．Scrub oak is the prevailing vegetation of these mountains in the upper 2000 ft or more． Found horned toad about 500 ft below sum－ mit．Now red brown \＆yellow．

Oct．22，23， 24 returned to Alamogordo \＆camped in public grounds．

Oct．25．Shopped，\＆about 3：30 got off southward．Ran about 15－20 miles \＆made dry camp on desert．Sage brush．Lsagebrush does not occur here；perhaps Pilsbry was referring to creosote bush，Larrea diva－ ricatgl lone house＇miner＇s shack．

Oct． 26 F went before breakfast to $\mathrm{Sa}-$ cranto Isurely＇Sacramento＇ismeant herel Mts abcut 2 miles away 20 mi ．S．of Alamo－ gordo．［＇Sta 235＇in margin］Got Bulimu． lus \＆Holospira．［3l］

Oct $26,27,28,29$ ，road to Orange．〔32】
Oct．30．Orange
Oct．31．Ran about 10 mi ．N．of Orange but turned back on account of engine trouble．P．M．，ran east to base of Mts． \＆camped at a tank \＆windmill ca． 2 miles from base of Mts．at base of PX Trail． ［33

Nov．1．I 34 I Went up canyon which enters from west to highest peak．Found Bulimu－ lus \＆Holospira all along．At head the canyon branches，N．S．\＆ 2 East found Ash－ munella on south branch．［Sta．236I

Nov 2．Went up PX trail to meadow Found Ashmunella \＆Lysinoe on N．slope of cliffs of a deep canyon south of the summit of trail．［ 237° in marginI Madrono common in heads of gulches．Around high peaks some yellow pine which straggles sparcely down about 800 ft in places．Trees not full size．Below this pinyon \＆arid，stony hills with yucca，sotol，scrub oak \＆c． The prevalent shrub is a small leaved one Some preserved．

Below，steep＊＊＊\｛illegible word mesa with yucca \＆cacti．Below it a zone of creosote bush，then grass or mostly bare earth．Gypsum beds further out．The stra－ ta slope steeply（ca 30° ）on W．side． Slopes often steeper．

Nov．3，4，5．Laid out．\＆explored fol－ lowing stations

238．Stony ridge on E side of park just at the left of where PX trail crosses rid－ ge．Bulimulus among yuccas and sumac（？） －－a fine leaved，currant－like kind．

239．Stony hills on Eside of park and southward．

240．Upper side of terraced butte on
dry canyon，not far above bed in steep rock slide and around base of cliff．

Nov．7．At Orange．Cleaned up catch．
Nov．8．Went around southern foothill and up Guadalupe canyon（immediately east of high cliff peaks（Guadalupe Peak），to ranch of Walter Glover，Pine Spring Cn．\＆ camped about halfamilew．of ranch house， nearly same distance below large spring； just outside themouth of Pine Canyon．［35］

Nov．9．Went up Cn．as far as the Gate－ way．［36］Found Holo roemeri \＆n ．sp． 1Holospira montivaga breviara \＆Ashmun－ ella．

Nov．10．F．and I went up to just above the box above the gateway．I got one liv－ ing Lysinoe I＇Humboldtiana ultima＇has seemingly been written inlater］They were hybernating in stony slopes，under leaves only，in oak and maple groves．There is a good deal of a chestnut leavedoak a small maple．（gorgously［sig red），manzanita with ripe berries，\＆throughout the can： yon rather sparce yellow pine．The best place is about half a mile above box．From here up the sides are mainly cliffs，lit－ tle talus anywhere．Half a mile further up the canyon forks．［37］This part has many fine spruce．Extremely windy－－cold． Mts．are all limestone，strata slope east， but not so steeply as they slope west on the other side．Top cliffs soft yellow． limestone not noticeably stratified－－a different＇formation．＇IAll the collections of Nov．9－11 were included in＇Sta．241＇

Nov．12．Left for Orange about noon． Camped in a cabin on w．side of foothills． Worst camp of the trip．Wind very high and cold．

Nov．13．Reached Orange about n ．Left for Sierra Blanca Hudspeth Co．；Texas at 2：30 and arrived about 7 ．

Nov．14．F．and 8 tried hills south of town．Found a few minutiae and Succinea． Sta．242〕 Left for Van Horn－－camping a－ bout 8 miles out from latter．Snowed a little．

Nov．15．Drove into Van Horn．Very windy and dusty．One thing worse than a hot dust storm is a coldone．In p．m．went out to Mts．about 6 miles north：Sta．243， probably located in the Beach Mts．$工$ Found Holo roemeri．Rocky hills are limestone，
covered with Selaginella \& ferns-extremely dry. Wind high, dust. Camped in camp-ground--Rain--snow in the night.

Nov. 16. Wind subsided. Cloudy. In pm Jim and I walked out south of town on the desert, which is rather thickly covered with a fine leaved mesquite, creosote bush, crucifixion tree, \&c. few cacti found Succinea in soil around bushes and in shallow washes. Sta. 244. Photo of tank.

Nov. 17. Started early for Marfa. Had 4 punctures, \& finally camped about 10 miles out.

Nov. 18. Went into Marfa, where we stayed all day. Miss Jane Towne left for East. We left town about $6 \&$ ran out some 10-12 miles where we camped near Toronto Sta.

Nov. 19. The rock here is volcanic, country very hilly and craggy, with live oaks on the hills and in groves in the valleys. Grass good. Very beautiful country. Drove into Alpine, where we got a few things and left at 11 for Chisos Mts. The same volcanic, hilly country continues south of Alpine. We go through a succession of valleys, separated by rather steep hills, one about a mile long. These valleys and hills are sometimes grassy, often sparcely covered with live oaks. Photo teamsters, 8 mule team

Monday, 20 th Nov.limestone 4 punctures, made about 20 miles \& camped 15 m . N. of Terlingua. Found Succinea in bank of Terlingua Ck, which has a small stream (2671 ft USGS elev. bench mark) [38I

21 st Nov: Arrived Terlingua about noon \& left soon after. Route was to Mine, then up creek bed for 5 or 6 miles, then eastward across mesa 39] to Oak Canyon and house of Mr. Naill (Nov. 22) [40] There is abundant water in a fine grove of oak with some willows and a few walnuts. Garden. The canyon runs about half a mile or more and terminates in abox with vertical walls of 200 ft height. Above it the canyon is walled in steeply for half a mile or more, then opens into alarge basin with several branches, leading toward cliffs around the margin on all sides. The bed of canyon is forested, chiefly oaks, also buckeye, a large madrone also the small one we had in the Guadalupes. Slopes everywhere with many big agaves, beargrass with very sharp edges, large yuccas, a few pinyons \& cedars (orjunipers with stringy bark). On the N. side, high up, are small
grove of stunted aspens. All the slopes below cliffs have numerous long slides of coarse or fine rock, very steep. Found Lysinoe \& Polygyra in long slides N.E. of Oak Canyon, Sta. 245, outside. Also about 2 miles further N.E., Sta. 246, in narrow wooded ravines in the upper cliff wall. Also a small slaty Philomycus here, all in rock among leaves. Sta. 247 inside canyon

Nov. 23 and 24. Collected. Left at noon Nov. 25. Arr. Terlingua about 5 and pulled out northward, where we camped on bank of Terlingua Ck.. a mile or two below the ford. [4]

Nov. 26, Sunday. Took photo of 2 cottonwoods at the ford. Collected some drift with Pupae \&c. along road near the little white school house with a red roof--just north of the rough ridge where I had photo a red dome \& serrate rocks on the way down. [42I Also a few Bulimulus among low mesquites. Also found Bulimulus some 5 miles further north. Stations 248 and 249

In 1934 and 1935, Pilsbry made extensive collections in Mexico on the 'Penrose-Philosophical Society Expedition.' In 1935, he and Cyril Harvey also made some collections in parts of southern New Mexico and western Texas. In the notebooks pertaining to this expedition, Pilsbry kept a separate log of stations. This log is placed at the end of this section.

June 16. Cyril Harvey \& I left Phila. at 1:05 p.m.

June 17. Arr. Chicago 7 a.m.
June 19. Wed. arr. El Paso 8:30. Went to Hotel Paso del Norte. Then to Baily *** Iillegible wordI Co. I saw Mr. Brown. Held up pending ari of immigration permits. Got out car \& had it tuned up \&c. Called up by a Mr. Conklin who was a friend of Howard.

June 20. Thursday. Called on Brown. No message yet from Phila. Had name put on car. Very hot. 900 inside. In p.m. drove out to Hueco tanks [now a Texas State Park] about 36 miles from El. Paso \& 8 miles N. of Carlsbad road. The tanks are in an andesitichill. Rock very massive․-no small stone. There are 2 tanks, the one used being largely formed by a short dam. Water extremely low.

[^1]171．Dam a small shallow pool contained thousands of Apus．They swim inverted．A large pool still lower had no snails or Apus．

Hill l m．south of Tanks was gone over to the cliff at top．No trace of shells． There is an adobe house at the tanks－－not inhabited just now．About 25 cattle stood around．Very bony，as it is extremely dry \＆practically no feed．On the hill south of tanks found l spirifer\＆crinoid stems． 172 Got back about 7 ．

June 23．Sunday．At Columbus，N，M．Left El Paso about ll，came via Las Cruces \＆ Deming，dirt road 31 miles to Columbus． Passed Floridas \＆Tres Hermanas Mts．At S．peak of latter turned in road of T ．H ． Mining Co．which runs to base of Mt．where one of the owners of the prospect has a shack $\cdots 2 \mathrm{~m}$ ．from main road．Around the mine found bones of Oreohelix［43］（Elev． about 4700 ft ．estimated）\＆ 3 Thys．hornii〔sicI a couple of hundred fthigher．The Mts are a sort of granite－porphyry，with limestone outcrops．Above，mostly massive granite（？）with no small slide rock．A few old cedars \＆fewer scrub obas，Fou－ quierıa，cacti，\＆c．Arr．Columbus about 6．Town largely deserted．Lives on mem－ ory of Villa＇s raid，when 67 persons were killed．

June 26．Left Deming June 25 pm. \＆ stayed at Columbus overnight Met Mr．Reed \＆family．Morning of 26 th crossed line．

Pilsbry and Harvey remained in Chi－ huahua，Mexico，until July 8.

July 8．Monday．Arr；Deming about 4 pm．
July 8 Tuesday：To Diamond A（Victoria Cattle Co．）via Lordsburg．Arr．about 4. Entertained at ranch house．〔4ף

July 10，Wednesday．Left for Black Bill Spring above tank about 7 am［45I Drove to tank spring about $1 / 2$ mile further up． Some distance above spring found tiger rattler，and at 6500 ft ．Sonorella．They were under andesite ？mostly not sealed on．Though one big stone had 8 seal．ed on \＆many rings．Photo．Went up to 7000 ft ． \＆found only Sonorella．Pines begin there． No other snails：

July 11．Thurs．Drove 50 m ．over to Hacheta［sicI around south endAnimas ran－ ge．Went in to Robeson＇s ranch \＆took． road to the Mt．Sheep Corrall \｛sicy．There ascended canyon \＆up to peak on far rim， 6000 ft ．Got only Holospira．Exhausting hot \＆steep．I46I

July 12．Friday，Drove to Douglas， Ariz．「A brief visit was made to Rucker Canyon in the Chiricahua Mts．I

$$
\begin{array}{ll}
\text { July } 13 . & \text { Drove to Deming. } \\
\text { July } 14 . & \text { Drove to El Paso. } \\
\text { July } 15 . & \text { Drove to Carlsbad. }
\end{array}
$$

July 16．Tuesday．Went through Cavern． No shells found．Drove to filling station just east of Guadalupe Mts．Tx．〔4な

July 18．Went up southern flank of Sen－ tinal Sin the ANSP catalog，＇Sentinal＇has been corrected to＇Signal＇I Peak to 6500 $f t$ ．Found Bulimulus \＆Holospira roemeri， \＆a couple of zonitids in ledges of cliffs， among scryb oak \＆c．None alive．Drove to Ft ．Davis．SDate should，perhaps be July lit

July 19．Thursday．Tried cliffs back of town \＆a canyon，little Aguja Cn．，al－ so known as Nation，about 4 m ．NW of Ob－ servatory I 48 I where wewere guided by Mr ． Roach Got plants but no bones．About 5500 to 6000 ft ．spotted frog．SDate，July 18？

July 19．Friday．Drove about 10 miles west（road to Valentine）\＆then north to ranch in valley at west end of Blue Mt． ［49］Then up very steep stony road to 5900 ft ，where we left the car \＆walked about 2 miles to Mt．over a broad foothill butress［sic］．Ascent very steep \＆stony， but everywhere aregoat trails，\＆the whole mountain is covered with their droppings． At summit there is a rocky bluff west \＆a slightly higher，rounded top a few hundred yards eastward．On the N ．side of the westward summit in coarse，angular igneous rock found Humboldtiana \＆c．Two live ones only，\＆most of the bones very dead（eaten by rats or chipmunks）．Harvey moved sev－ eral tons of rock．

July 20．Left Ft．Davis about． 7 am． Stopped at Phantom Lake．I 50 I Collected a few small gastropods but no Sphatium or Pisidium Lake issues fromacleftinlime－ stone，is quite small．The stream running and is abciut $10-12 \mathrm{ft}$ ．across \＆ 3 or 4 deep．Very clear water．Many kinds of fish－－saw some up to a foot long．Canght a few small minnows，No． 196

Arrived in El Paso about 4
July 21．Sunday．El Paso，went to bullfight．

July 22．．Met Pennell Dr．Francis W Pennell，botanist，ANS保 about 9 a．m．

July 23. Started west about noon. Stopped at Deming. Dust storm.

July 24. To Nogales 〔Arizona】 via Bis bee \& Tombstone. TThe party then proceeded into Mexico. 7

The following stations in New Mexico and west Texas were visited during the expedition of 1935 .

170. Hueco Tanks. El Paso Co., Texas. June 20, '35. Pilsbry \& Harvey.

171. Shallow pond below Hueco Tanks, El Paso Co., Tx. JJune 20)
172. Hill about mile S of Hueco Tanks, El Paso Co., Tx. June 20)
173. Southern Peak of Tres Hermanas Mts., at about 4700 ft . Luna Co., N.M. June 23, ' 35.
174. Animas range above Black Bill Spring. 6500 ft to 7000 ft . Hidalgo Co., N. M. Suly 10)
175. Peak at head of mountain-sheep corral canyon. West side of Big Hatchet Mts., 6000 ft . Hidalgo Co., N. M. JJuly 11)
176. Signal Peak, Guadalupe Mts., Culbertson Co., Tx. Small slender snake 6500 ft . Horned toad about 5500 ft . Shells about 6500 ft . July 17 or 18 g
177. Nation Canyon, NW of Observatory, Davis Mts., Texas. 5500-6000 ft. SJuly 18 or 19]
178. Northern side of summit of Blue Mt., Davis Mts., Texas at 7300 ft. July 19: 1935.
179. Stream out of Phantom Lake, Jeff Davis Co., Texas. Picked from floating plants. 9 fish. \{July 20)

ANNOTATIONS

The following annotations refering to Pilsbry's notes, above, are indicated by numbers in brackets in the notes.

A number of U.S. Geological Survey topographic map quadrangles are referred to by the following designations:

Q-1. Gym Peak, N, M, ${ }^{2} 7.5$, 1964 ed.
Q-2. Deming, N.M. $15^{\prime}, 1915 \mathrm{ed}$.
Q-3. South Peak, N.M. , 7.5, 1965 ed.
Q-4. El Paso, Tex., 7.5', 1955 ed.
Q-5. Big Hatchet Peak, N.M., 15', 1937 ed.
Q-6. Bear Peak, N.M., 15', 1948 ed.
Q-7. Organ Peak, N.M. 7.5', 1955 ed.
Q-8. Three Rivers, N.M., 7.'', 1950 ed.
Q-9. Sierra Blanca Peak, N.M., 15', 1950 ed.
Q-10. Carrizozo, N.M., 15', 1950 ed.

Q-11. Guadalupe Peak, Tex., 15', 1933 ed.
Q-12. Terlingua, Tex., 30', 1904 ed.
Q-13. Chisos Mts., Tex., $30^{\prime}, 1905$ ed.
Q-14. Terlingua-ChisosMts., Tex., 1 : 130,000, eds. of 1904-1005, revised in 1969 by Big Bend Nat. Hist. Assn.
Q-15. Columbus, N.M., 15', 1917 ed.

1. Pilsbry seems almost certainly to be referring to Baldy Peak near the center of Sec. 36, T. 25 S , R. $8 \mathrm{~W}(\mathrm{Q}-1)$. In his published account (1915: 347)hesuggested. from memory, that he had collected in the vicinity of Arco del Diablo $21 / 2$ milesfarther north. However, there are no limestone cliffs near Arco del Diablo (Q-2) like those described, whereas Baldy Peak seems perfectly to fit the description given. Below the cliffon the north side of Baldy Peak, I collected, on Jan. 25, 1970, most of the species taken by Pilsbry and Ferriss (1915: 346-349), including Ashmunella walkeri Ferriss, Oreohelix metcalfei florida Pilsbry, and Sonorellahachitana flora Pilsbry. Easy access to the west side of Baldy Peak is gained by the road leading into 'The Park' ($\mathrm{Q}-2$) or 'Mahoney Park' (Q-3). Ruins of old cabins remain in Mahoney Park.
2. Pilsbry's observations concerning the flora still appertain. Quercus gambelii Nutt. his 'scrub, with white oak leaf' still occurs high up below Baldy Peak.
3. The author of this quotation is not known to me.
4. Duran is village in southeastern Torrance Co. Duran Mesa (T. 3 N , R. 14 E) begins one mile $S W$ of Duran and attains a height of ca. 600 ft .
5. Probably Pilsbry was referring to Carizo Peak, an isolated peak seven miles NE of Carrizozo rather than to the Capitan Mts., which begin ca. 18 miles to the east and are not visible from Carrizozo.
6. Probably Altura Blvd, terminating westwardagainst Comanche Peak at the south end of the Franklin Mountains (Q - 4). Presumably Pilsbry and Daniels ascended Comanche Peak. from the east and then descended its nose southward towards the city, after which they went to inspect the Rio Grande. Holospira roemeri and Bulimulus pasonis Pilsbry still occur in the southern Franklin Mountains.
7. Seemingly 'New Mexico' is meant instead of 'Mexico.' In 1910, the El Paso and Southwestern Railroad, nowdefunct and its tracks disassembled, extended from El Paso to the village of Hachita in south. easternmost Grant County
8. Probably the Dallas Hatchet Ranch (Q-5), ca. 15 miles south of Hachita.
9. Pilsbry (1915: Fig. 1) published a map of the localities visited in the Big Hatchet Mountains and mentioned some of them in text. Four rough, preliminary sketches are found in his notes showing various parts of the range. One sketch seems. to have served as the basis for his published map. On it is written 'General view of Hachita Grande sketched from summit of highest Peak.' Below I have attempted tocorrelate notes, rough sketches, and published map with the Big Hatchet Peak 15، Quadrangle, Edition of 1937 (Q5). All sections are located in T .31 S , R. 15 W .

Station 1. 'Teocalli Ridge,' of the notes and sketches, seems to refer to the entire mountain at the head of the southwestern tributaries of Sheridan Canyon in SE ${ }^{1 / 4}$, Sec. $21 ;$ SW/6. Sec. 22; $E^{1 / 2}, \mathrm{Sec} .28 ;$ and W1/, Sec. 27. 'Teocalli Peak' or 'Teocalli Butte, around which Sta. 1 was located, seemingly referred to the highest peak on the ridge, the 6413.ft. peak centered around the center of eastern section boundary of Sec. 28. Hoff (1961) concurs in locating 'Teocalli Butte' here.

Station 2. Pilsbry and Dwniels camped near the Sheridan Mine, probably the mine indicated (Q-5) in Sheridan Canyon (NE1/4, Sec. 22). If Sta. 2 was one-third the distance between Teocalli Peak and the mine, it was probably in the $\mathrm{NW}^{\prime} / 4$, Sec. 27 or extreme southwestern corner of Sec. 22 or one of the eastern hogbacks of Teocalli Ridge.

Station 3. Probably located in the vicinity of the 6328 ft . ridge and associated cliffs in NWK, Sec. 30.

Stations 4, 5. 'Daniels Mountain' sems to be the elongate 6829 ft . mountain in $N^{1 / 2}$, Sec. 16 , between tributaries of Sheridan and Thompson canyons. Sta. 4 seems to have been on its southeastern and Sta. 5 on its north or northeastern slopes. In his notes, Pilsbry originally called this peak 'Thompson Mountain.'

Stations 6-11. In ascending Big Hatchet Peak on Aug. 24 and 25, Pilsbry and Daniels seemingly first ascended the branch of Sheridan Canyon that cuts diagonally across NEX, Sec. 21 , and SWK/ Sec. 16 , proceeded over the 'col' and then entered the
head of a westeard-draining canyon, termed 'Western cañon' in Pilsbry's published map, but indicated as 'Antithompson Canyon' on his sketches and in his notes. This tributary extends diagonally, SE to NW across Sec. 17, and does give the appearance, as suggested by Pilsbry; of having caplured the upper part of the tributary of Sheridan Canyon that they had ascended.

According to the published map and the sketches, Sta. 6 was located in the south eastern part of the mountain bordering the head of 'Western Cañon' on its southwest side. Probably, then, the station was somewhere near thecenter of Sec. 17. Pilsbry and Daniels then seem tohave ascended the peak to the northeast of the head of Western Cafon in $\mathrm{SW} / 4, \mathrm{Sec} .8$, around the summit of which was located Sta. 7. They probably proceeded across the narrow col directly north of this peak and on to the eastern slope of BigHatchet Peak. Sta. 8 was probably in the $N W / 4$, Sec. 8. The sketch map indicates thatitwas on a prominent ridge between two canyons tributary to Sheridan Canyon; probably this is the ridge near the ' 7 ' in '7500.' Probably the overnight campinis site was in the shelter of the ridge beginning in $S W 1 / 4$, Sec. 5 and extending diagonally across NE1/4, Sec. 8. Sta. 9 was probably at the campsite, as the notation '9. Camp' appears on the sketch map. The sketch map indicates that Sta. 10 was on a peak between Big Hatchet Peak and one labelled 'Probably next to highest peak,' to the northeast. Probably this latter peak was the 7822 ft . peak (second highest in the range) near the center of Sec. 5 and Sta. 10 was probably on the 7700 ft peak. 4 mi . to the southwest in SW/4, Sec. 5.

Station 12. The mountains 'opp. and S. of Teocalli' are probably the two peaks in the SE1/4, Sec. 27 and SW1/4, Sec. 26. The published map suggests that the collection was made on the eastern peak in Sec. 26 , but the sketch map shows ' 12 ' on the higher, western peak in Sec. 27.
10. To the south, are the arid Alamo Hueco Mountains; to the west the higher, better-watered and forested Animas Mountains.
11. The name 'La Bajada,' seemingly meant here, was applied to a mesa, the descent from the mesa, and a nearby village, all ca. 19 miles southwest of Santa Fe on the road to Albuquerque (Pearce, 1965: 80).
12. Six miles west of San Antonio, Socorro Co., in the Chupadera Mountains.
13. Now Truth or Consequences, Sierra County.
14. Probably the Jornada Ranch headquarters were at the present-day headquarters (Sec. 33, T. 19 S, R. 2 E , see Q-6) of the Jornada Experimental Range of the U.S. Department of Agriculture. A road leads sou theast from these headquarters to Burke Spring (Sec. 17, T. $20 \mathrm{~S}, \mathrm{R} .4 \mathrm{E}$), a distance of 12 miles.
15. Another road leads northeast and east from the Jornada Range headquarters to Ropes Spring, named for the Ropes family, whose ranchhouse was located just below the spring and is still standing.
16. Sonorella hachitana Dall, Ashmunella kochi Clapp, Holospira roemeri (Pfeiffer), and Bulimulus dealbatus neomexicanus Pilsbry were taken in two ravines $3 / 4$ and 7/8 mile east-southeast of Ropes Spring (NW1/4, Sec. 9, T. 19 S, R, 4 E) on June 23, 1970.
17. Center of Sec. 7, T. 23 S, R. 4 E (Q-7).
18. Probably Pilsbry and Ferriss collected in the extreme northwest corner of Sec. 8 or the extreme northeast corner of Sec. 7, T. 23 S, R. 4 E (Q-7).
19. The 'Cerro Magdelana' must be the Robledo Mountains, opposite thevillage of Doña Ana, Dolla Ana Co., on the west side of the Rio Grande. Fossiliferous Pennsylvanian and Permian strata are found in these mountains.
20. The northern part of the Organ Mountains (Baylor Peak area) south of San Augustin Pass.
21. A large canyon of the eastern part of the Sacramento Mountains, debouching 3 miles southeast of Alamogordo.
22. Village located on U.S. Huy. 54, 17 miles north of Tularosa.
23. Ranch developed by Albert B. Fall, Secretary of the Interior, 1921-1923, during the Harding administration; E1/2. Sec. 25, T. 11 S, R. 9 E (Q-8).
24. At present, the national forest boundary passes between sections 34 and 35, T. $10 \mathrm{~S}, \mathrm{R} .10 \mathrm{E}(\mathrm{Q}-9)$.
25. Ashmunella rhyssa trifluviorum Pilsbry is still abundant in such habitat here at its type locality.
26. The next two major canyons south of Three Rivers Canyon are those along Indian Creek ($2^{1 / 2} \mathrm{mi}$. south) and Golondrina Draw ($41 / 2 \mathrm{mi}$. south). However, a drive of at least seven miles wouldhavebeen required to reach the mouth of Golondrina Canyon. It seems more likely that Pilsbry refers to Indian Creek Canyon, on the Mescalero Apache Indian Reservation. A cluster of houses ca. one mile WNW of the mouth of this canyon is indicated on map Q-9.
27. Spelled 'Oscura' on U.S. Geological Survey topographic maps and in Pearce (1965: 114) but 'Oscuro' on commercial road maps. Located 17 miles south of Carrizozo on U.S. Hwy. 54.
28. It is not clear whether the party. camped along Cottonwood Creek at the mouth of Elder Canyon on Oct. 19 and then ascended a branch of Spring Canyon on Oct. 20 or whether they camped on Spring Canyon and ascended a branch of Tanner Canyon (canyons in T. 9 and 5. $10 \mathrm{~S}, \mathrm{R} .10 \mathrm{E}$, see Q-9).
29. Probably the party drove over the primitive road just east of the Hogback in Sec. 26, T. 9 S, R. 10 E, from Cottonwood Creek around to the mouth of Water Canyon, which debouches in Sec. 19. T. 9 S, R. 11 E (Q-9 and Q-10).
30. Probably the trail shown in Secs28 and 32 , T. 9 S, R. 11 E (Q-9).
31. Bulimulus pasonis Pilsbry and Holospira roemeri (Pfeiffer) are common in the deep canyons in the southwestern part of the Sacramento Mts.
32. The party seemingly followed primitive roads around the southern end of the Sacramento Mts. and southeastward to Orange, Otero Co., N.M., described as follows by Pearce (1965: 114): 'Former trading point in SE part of county, 5 mi SW of Cienaga and $3 \mathrm{mi} N$ of Texas border. Post office, 1904-25.' Hoff (1961) erred in supposing that Pilsbry had collected in this area before 1899.
33. Possibly this campsite was at or near the 'Old PX Ranch' indicated on Map Q-11.
34. A rough sketch included in the notes leads me to the following interpretation of Stations 236-240. Landmarks noted are on Map Q-11. The 'Park' of the sketch and 'Meadow' of the notes seem to be PX Flat at the head of the Old PX Trail. The sketch map suggests that Sta. 239 was on
the west, rather than the east (as stated in the notes) side of PX Flat. Sta. 239, however, must have been in the hills bounding PX Flat on the east. No. 237 was probably in the deep canyon that bounds PX Flat on the south (heading near the word 'Ridge' in 'Blue Ridge' on $\mathrm{Q}-11$). If, on Nov. 1 , the party went up a canyon towards the 'Highest Peak' in the area, this was probably Bush Mountain, which, at $8676 \mathrm{ft} .$, is the highest peak north of Guadalupe Peak. Map Q-1l indicates four branches at the head of the canyon draining the western slope of Bush Mountain which accords with Pilsbry's description. Sta. $2 \$ 6$ was presumably on the southeasternmost of these branches. The 'terraced butte' of Sta. 240 is possibly between two northeastern arms of this canyon complex west of Bush Mountain. As pointed out by Hoff (1961), all these localities were in Texas rather than in New Mexico as supposed by Pilsbry.
35. Guadalupe Canyon appears on Map Q11 and is followed by the present U. S. Hwy, 62.180. The tiny village of Pine Springs still exists and Mr. and Mrs. Walter Glover operate a service station there: They have resided in Pine Springs since 1914. Mrs. Glover, contacted on June 10, 1970, was vague concerning any memory of Pilsbry's visit. Pine Spring Canyon is part of the newly created Guadalupe Mountains National Park. The spring mentioned no longer flows.
36. Approximately one mile above its mouth and directly south of the letter ' g ' in 'Spring' on Map Q-11, Pine Spring Canyon makes a right-angled turn to the north. The 'Gateway' described (and photographed) by Pilsbry is located ca. $1 / 4 \mathrm{mile}$ beyond this turn, to the north, and consists of salient rock ramparts that extend medially from both walls of the canyon, allowing only a narrow defile for passage of the arroyo at base of the canyon.
37. The 'Box' seems to be the feature designated 'Devil's Hall' on Map Q-11. Above it, the canyon forks into northern and southern arms embracing Shumard Peak.
38. This bench mark is located (Q-12) on the 'old' road from Terlingua to Adobe Walls (west of the present Texas Hwy. 118) and ca. $33 / \mathrm{mi}$ Nof the present junction of this road with Texas Ranch Rd. 170, which passes through Terlingua
39. Dr. Clifford Casey (Pers. Comm.) suggested that the road taken was probably along Rough Run and then up Cottonwood

Creek. Map Q-13 indicates such a road following these two arroyos, in part. It seems probable that by 'Mesa' Pilsbry was not referring to high, rough Burro Mesa west of Cottonwood Creek but rather to the flat area between Cottonwoodand Oak creeks.
40. Pilsbry seems to have erred here. According to Dr. Barton Warnock and Dr. Clifford Casey (Pers. Comm.) the ranch at Oak Springs ($\mathrm{Q}-13, \mathrm{Q}-14$) never belonged to a member of theNail (rather than Naill, as spelled by Pilsbry) family. Dr. Casey suggested that the ranch probably was occupied hy Mr. Charlie Burnham (a relative of Mrs. Sam Nail) in 1922. A part of one building at the Oak Spring Ranch is still standing. The Sam Nail Ranch was at the foot of Burro Mesa, two miles due west of Oak Springat the site now designated 'Old Ranch by the National Park Service (Q-14). Warnock (1970: Fig. 21) mentions the Sam Nail Ranch and illustrates a part of the site.

The 'Box' above Oak Spring noted by Pilsbry surely refers to the box canyon and cliffs of Oak Creek Canyon as it plunges through the Window (Maxwell, 1968: 79, Fig. 74) of the Chisos Mts. It is unclear whether Pilsbry and Ferriss actually climbed up through the Window and into Chisos Ba\sin (Maxwell, 1968. 72). Al though Pilsbry describes the topography of the area surrounding the Chisos Basin, his information could have been gained from what could be seen from outside the Window and from accounts by local residents. Of the three collections made, two (245 and 246) seem definitely to have been from the northwest-facing slopes of Vernon Bailey Peak and Pulliam Bluff (Q-14). It is not clear which of these is the type locality of Polygyra chisosensis Pilsbry and Humboldtiana chisosensis Pilsbry. The talus slide of Loc. 245 is probably one of those seen in Warnock (1970: Fig. 21) in the extreme left part of the photograph. Locality 247, where only Polygyra chisosensis seemingly was collected, is described as being inside canyon:' Whether this refers to a collection made in Oak Canyon below or above the Window is not clear but the former seems more likely. The observation of aspens occurring! On the N. side, high up is also confusing. According to Dr. Warnock and Mr. Roland Wauer (Pers. Comms.). aspens occur only on Emory Peak to the south of Oak Creek and Chisos Basin.
41. According to Map Q-12, the only crossing of Terlingua Creek on the Terlin-gua-Adobe Walls road wasnear 'Peed Ranch' and 'Rock Corral,' six miles north of the junction of that road with Ranch Rd. 170.
42. This locality was not identified. no schoolhouse is shown on maps consulted. Dr. Clifford Casey (Pers. Comm.) \$uggested that the schoolhouse was near a ranch formerly owned by the Fulcher family, located ca. six miles north of Terlingua near the 'Rock Corral' (Q-12).
43. These specimens are probably from sediments of probable Pleistocene age, found along the eastern flank of the mountains near an abandoned mine in $\mathrm{SE}^{1 / 4}, ~ \mathrm{SW}^{1 / 4}$, Sec. $31, \mathrm{~T} .27, \mathrm{~S}, \mathrm{R} .8 \mathrm{~W}(\mathrm{Q}-15)$. The shells are much heavier than fresh shells and seem to have undergone some permineralization. I have taken similar shells of Sonorella from the deposits noted.
44. In southwestern part of T. 16 S , R. 17 W .
45. Hoff (1961) suggested that Black Bill Spring might have been located in Black Bill Canyon on the west slope of Animas Peak, Hidalgo Co.
46. The localities mentioned here have not been identified. Possibly Robeson's ranch' is actually the 'Robertsons Ranch' (Sec. 34, T. 31 S, R. 16 W) of Map Q-5. From this ranch atrail is indicated (Q-5) as leading eastward to the Big Ilatchet Mts.
47. Presumably this filling station was the one in Pine Springs, Texas, probably the one still being operated by $M r$ and Mrs. Walter Glover (see annotation 35, above.)
48. McDonald Observatory.
49. Blue Mountain is ca. 8 mi . WSW of Fort Davis and attains an elevation of 7331 ft .
50. Phantom Lake is ca. 13.5 mi . southwest of Toyahvale, Reeves Co., in the foothills of the Davis Mts. (Texas State Highway Comm., 1940: 642)

ANSP CATALOGUE NUMBERS OF SPECIMENS FROM LOCALITIES DESCRIBED

EXPEDITION OF 1906

Florida Mts. Loc. (Probably below Baldy Peak): 97338. 97393 , 97452 ; 97455 . 97456 , 97527, 97530.) 03243 (type of Oreoheiix metcalfei florida Pilsbry), 112087(type of Sonorella hachitana flera Pilsbry \& Fertiss), 112088. 112289

EXPEDITION OF 1910

Duran Butte, N.M. Loc.: 112023 to ll2027, 104005 (type of Pupilia muscorum xerobia. Pilsbry.)

Mt. Franklin at El Paso, Tex. Loc.: 111994, 111995.

Localities in the Big Hatchet Mts.
Sta. 1. 112265 (type of Holospira bilamellata heliophila Pilsbry), 112278.

Sta. 2. 112266
Sta. 3. 111980, 111986, 111992, 112078, 112268 (type of Holospira bilamellatamedia Pilsbry), 112275, 112276 (type of Oreohelix ferrissi Pilsbry), lil2279.

Sta. 4. 112269 (type of Holospira lamellata longa Pilsbry).

Sta. 5. 111979. TT1987, 111991, 112086, 112270. 112277 (typeoforeohelix ferrissi morticina Pilsbry), 112283 (type of Oreohelix hachetana cadaver Pilsbry), 112284.

Sta. 6. 112272 (type of Holospira bilamellata insolata Pilsbry), 112281.

Sta. 7. 112085; 112285.
Sta. 8, 11978, 111983 111984, 111988,
111989. 111993. 112084. 112271. 112286.

Sta. 9. No entries located.
Sta. 10. 112280. 112287.
Sta. 11. 111981. 111982, 111985, 111990,
112012 (type of Vallonia sonorana Pilsbry),
112075. 112077. 112083, 112273. 112274,
1.12282 (type of Oreohelix hachetana Pilsbry), 112288.

Sta. 12. 112267
EXPEDITION OF 1922

Sta. 217. 157976 to 157995,158142 to 158143165914.

Sta. 218. 165911 (type of Ashmunella rhyssa trifluviorum Pilsbry).

Sta. 219. 165915.
Sta. 220. 158070 158071. 158131 . to 158141165916166948.

Sta. 221. 165917.
Sta. 222. 165918.
Sta. 223. No entries located.
Sta. 224. 165919.
Sta: 225. 158122, 158124 to 158130 .
Sta. 226. 165927165937.
Sta. 227. 165926. 165941.
Sta. 228. 165928166262.
Sta. 229: 157928 to 157940, 158121 165929. 166901.

Sta. 230. 158101 to 158104, 165920, (type of Oreohelix strigosa nogalensis Pilsbry), 166064 Itype of Ashmunella townsendi nogalensis Pilsbry -- the ANSP catalogue does not list a station number for this type; however, Pilsbry (1940: 933)
indicated that it was taken half a mile above the mouth of. Water Canyon, presumably at the lowermost of the three stations at which Ferriss collected on Oct. 21.I

Sta. 231. 165924.
Sta. 232. 165925.165942.
Sta. 233. 158072 to 158073.158085 to 158091. 165921. 165939

Sta. 234. '158074, 158079, 165922. 166923, 165938.

Sta. 235. 158159 166936. 176114
Sta. 236. 164666. 175844. 175849.
Sta. 237. 164663, 164665,164667 . 175912, 176117.

Sta. 238. 158154. 158160(?) 158162.
Sta. 239. 158153, $158158,158161.176113$.
Sta. 240. 158113 to 158120,164662 ,
16466 (?). 254988 (type of Holospiramontivaga Pilsbry).
Sta. 241. Seemingly all collections from Pine Spring Canyon were combined under this single number, although the notes indicate that they were made at several different places. 142330 (type of Humboldtiana ultima Pilsbry), 157896157897 (type of Holospira montivaga breviarapilsbry), 158092 to 158100 . 158152164659 (type of Ashmunella kochi amblya (Pilsbry), 164660. 164661. 176121

Sta. 243. 176121.
Sta. 244. Notes indicate this station as south of Van Horn. The only catalogue entry found (166902) is, however, from 15 mi. N of Terlingua.

Sta. 245 and Sta. 246. The catalogue does not indicate atation numbers for collections from the Chisos Mis. 132385 (type of Humboldtiana chisosensis Pilsbry), 166097 (type of Polygyra chisosensis Pilsbry. Pilsbry, 1940:621, incorrectly listed
this specimen as ANSP 166077), 166098 to 166100, 166944 to 166947.

Sta. 247. 166101.
Sta. 248 and Sta. 249. A number of catalogued specimens seem to have come from the vicinity of these two stations. 157892 to 157895,158155 to 158157 , 166954 to 166956.

EXPEDITION OF 1935

Sta 170-166258
Sta. 173. 166172166173.
Sta. 189. 166153 (type of Sonorella a-
nimasensis Pilsbry)
Sta. 190. 166334, 166335
Sta. 193. 166345 to 166349.
Sta. 195. 166353 to 166356168049.
Sta. 196. 165982. 165983.

LI TERATURE CITED

HOFF. C. C. (1961) Place names used by Pilsbry in his monograph of the Land Mollusca of North America. - Bull. New Mexico Acad. Sci., 2: 50-57.

MAXWELL, R. A. (1968) The Big Bend of the Rio Grande. -- Bur. Econ. Geol. Univ. Texas at Austin, Guidebook 7: 1-138.

PEARCE, T. M. (1965) New Mexico place names, ageographical dictionary. -- Univ. of New Mexico Press; Al buquerque, xvi + 187.

PILSBRY, H. A. (1906) (No title). -Nautilus, 20: 84.

```
            ---- (1910) (No title). -- Nautilus,
24: 84.
```

---- (1915) Mollusca of the southwestern states, VI: The Hacheta Grande, Florida, and Peloncillo Mountains, New Mexico. -Proc. Acad. Nat. Sci. Philadelphia, 1915: 323-350
--- (1926) James H. Ferriss, November 181849 - March 17, 1926. -- Nautilus, 40: 1-6.
--- (1940) Land Mollusca of North America (North of Mexico). -- Acad. Nat. Sci. Philadelphia, Monogr. III, l(2): viii + 575-994.

TEXAS STATE HIGWWAY COMMISSION (1940) Texas, a guide to the Lone Star State. Hastings House, New York, xxxiii +718.

WARNOCK, B. H. (1970) Wildflowers of the Big Bend Country, Texas. -- Sul Ross State University, Alpine, Texas, xix +157 .

JEAN-JACQUES VAN MOLL (Service de Zoologie systématique, Université Libre de Bruxelles, 1050 Bruxelles, Bel gium) Anatomical studies in the families Urocyclidae and Helicarionidae.
W. LLOYD PRATT, Jr. (Fort Worth Museum of Science and History, Fort Worth, Tex.) Land snails of the Greer Islands Nature Center, Fort Worth, Texas
C. J. BAYNE (Museum of Zoology, University of Michigan, Ann Arbor Mich.) The inovements of spermatozoa in basommatopho. ran snails.

GALE SPHON (Los Angeles County Museum of Natural History, Los Angeles, Calif.) Nudibranchs and their allies-a 45 minute color movie.

THOMAS BORKOWSKI (School for Marine and Atmospheric Sciences, University of Miami, Miami, Fla:) Reproductive biology of some South Florida Littorinids.

IDENTIFICATION SEMINAR

(Moderator, William Old)
(The following four papers were pesented at this seminar-).

HARALD A. REHDER (Division of Mollusks; U.S. National Museum, Washington, D. C.) The species of Harpa.
R. TUCKER ABBOTT (Delaware Museum of Natural History, Greenville, Del.) Hel. met shells of the World.

WILLIAM E. OLD, Jr. \& JOHN HOLEMAN, AMerican Museum of Natural History, New Ýork, N.Y.) Fossil shells under ultra-violet light.

WILLIAM E. OLD, Jr. Confuaing species groups of Conus.

SYMPOSIUM ON BIOLOGICAL SYSTEMATICS OF MARINE BI VALVES AND GASTROPODS

Convener: Robert Rebertson
(The follcwing nine papers were tobe pre. sented at this symposium)

DOROTHY RAEIHLE (5346 82 ND St., Elmhurst, N.Y.) Maintaining Florida marine mollusks in a New York City Apartment

RUTH D. TURNER \& J. L. CULLINEY (Museum of Comparative Zoology, Cambridge, Mass.) Some anatomical and life history studies related to bivalve systematics.

LARRY G. HARRIS (Department of Zoology, University of New Hampshire, Durham, N.H.) Comparative biology of two coral-eating nudibranchs of the genis Phestilla Bergh, 1874.

DAVIDR. FRANZ (Department of Biological Sciences, University of Connecticut, Storrs, Conn.) Possible variability in larval development between populations of the cephalaspid opisthobranch Acteocina canaliculata (Say).

VIRGINIA O. MAES (Academy of Natural Sciences, Philadelphia, Pa.) Evolution of the toxoglossate radula andmethods of envenomation.

BFIUCE A. MILLER (45 Monroe St., Hyde Park, Reading, Pa.) Feeding mechanisms in the family Terebridae.

LANGLEY WOOD (Zoology Department, University of New Hampshire, Durham, N. H.) An integrated study of selected populations of Urosalpinx cinerea.

JEANNETTE W. STRUHSAKER (c/o Hawaii Institute of Marine Biology, Box 1067, Kaneohe, Hawaii) Population ecology of Littorina.

ROBERT ROBERTSON (Academy of Natural Sciences, Philadelphia, Pa.) Sexually dimorphic Archaeogastropods.

CONTRI BUTED PAPERS

DONALD R. MOORE (Institute of Marine Sciences, University of Miami, Miami, Fla.) Cochliolepis parasitica, a non-parasitic marine gastropod.

DAVID H. STANSBERY (Ohio State Museum, Columbus, Ohio) Growth of the naiad Amblema plicata (Say, 1817) in Lake Erie as related to habitat.

ANNUAL BUSINESS MEETING

The annual business meeting of the Union was held at the conclusion of the presentation of papers. In the evening of July 20, a cocktail party was followed by the annual banquet. The after dinner program included an address: 'Living Cephalopods' by Edward T. LaRoe, University of Miami, Miami, Florida.

Your editor regrets that hewas unavoidably prevented from attending this meeting of the AMU, hence the paucity of detail concerning the various features of the meeting. No doubt this will be corrected in the annual report of the Union later this year.

The account of this (thirty-sixth) annual meeting of the American Malacological Union begins on page 8 of this issue of Sterkiana, is continued on page 16 , and concluded on this page.

Plavorbis lientus Say.

Fischer and Crosse (38, p. 65) restrict this species to the New Orleans form described by Say and do not consider that the figures given by dould, Haldeman, Dunker and others represent the species. Dall (32, pi 86) refers it to glabratus.

Planorbis liebmanni Dunker.
Is referred to orbiculits by Fischer and Crosse (38, p. 71) , but is stated by Pilsbry (9 , p. 322) to the distinct. It is the type of section Troplror. bis Brown and Pilsbry.

Planorbis magnificus Pilsbry.
Planorbis majnificus Pilsbry, Naut., 1903, XVII, p. 75; Bartsch, Pr. U. S. Nat: Mus., XXXIII, 1908, p. 697, pl. 57, figs. 7-9.
Type locality: Cape Fear River, Wilmington, N. C.
Panorbis mutituluis Case.
Is a valid species and has been rediscovered at Howe Lake, Marquette Co., Mich. See Walker, 149, p. 6r. Earlier citations of this species from Michigan, except the original one, and Newfoundland refer to P. campanulatus rudentis.

Planorbis n.theorstio Westerlund

Planorbis nathorsti Westerlund, Vega Exp., IV, 1887, p. 168.
T'ype locality! Aulatsivik, West Greenland.
Plánorbis occidentalis Cooper.
Planorbis occidentalis Cooper, Pr. Cal. Acad. Sci., IV, 1870, p. 99.
Type locality: Not given. Range: Washington Terr. to San José, Cal.
See trivolvis. Is the mature form of tumens according to Cooper (af, p. 89).

Planorbis opercularis Gould.
Plannrbis Ienticularis Sowerby, Con. Icon., Planorbis, 1876, Sp. 110, pl. 13, fig. 110.
Includes planulatus Cooper, centervillensis Tryon and multilineatus Van. (oregonensis Van.) as varieties according to Dall (32, p. 92), with callioglyplus Van. as a synonym of planulatus.

Plafordis offrcularis mulitilineatus Vanata.
Planorbis opercularis oregonensis Vanatta, Naut., IX, 1895; p. 54; mon Tryon, 1865:
Planorbis opercularis multilineatius Vanatta, Naut., XIII, 1899, p. 48. Type locality: Salem and Portland, Oregon.

Planorbis orbiculus Motelet.
Planorbis orbiculus Morelet, Test Noviss., 1849, I, p. 17.
Inclides haldemani Dunker (1850) non haldemani C. B. Adams (18Ag) Fischer and Crosse also include liebmanni, but Pilsbry (1. c.) sonsidero it to be distinct.

Planorris orbconensis Tryon.
Picnorbis oregonensis Tryon, Am. J, of Con., I, 1865; p. 231, p! 22, fic. 17. I'ype locality: Pueblo Valley, Oregon. See trivolixs.

Pianormis pirvus Say.
Includes billingsii Tea according to Vanntta (136, p. 54) and Dall (32, j. 95) and circumetriatus Tryon according to Vanatta (1. ©)

Planorbis paryus walkeri Vanatta
Planorbis parzus wolkeri Vanatta; Naut, XVI, 1902, r. 58.
Type locality: Hartand, Vt. Also Michigan.
Plasormis perforatus "Could ?" Sowerby.
Planorbis perforates Sowerby, Con, Ifon, Planorbis, $787 \mathrm{~S}, \mathrm{Se}$:05, M. 13, fig 105.
Type locality: United States.
Goubd never described a Planorbis under this name Clemsin (20; p. 227) suggests that the species is perhaps from Fast Asia

Pranormis pramulapits Cooper.
 p. 100).

Planormis plexata Ingersoll.
 text-figy
Type locality: St. Mary's Lake, Antelope Co., Coi.
Is a var. of trivolnic acording to Stearns (ars p. Ios) and Cooper (26, p. 85).

Phanordis RUbelius Sterkis

Platiorbis harmi Pilsbry, Natut., IV, 1891, p. 137, sine desc.
Planorbis exacutus rabellics Sterki, I. and F. W. Moll., New Phila., 18na, p. 7.

Planorbis rubellus, Pilsbry. Naut., XIII, 1800, P. 5. 1.
Type locality: Stone Creek Valley, Odbert's Station, O.

Planoribis sampsonr Ancey.
 1885: p. 10, 1ext-xin
Type localiy: Flot Creek, Gedalia, Mo.

Planomeis scataris: (Jay).
Podudita scalaris Jay, Cat., zrd ed., 1839 , p. 112, pl. 1, figs. 8-9.
Physd scalaris Haldeman, Mon., I842, p. 34, pl. IV, fig. 9; W. G. Binney, L. and F. W. Shells, Pt. II, i865, p. 96, fig. 164.

Ameria scalaris Tryon, Mon.; 1870, p. ı68; Dall, Ann. N. Y. Lyc., N. H., IX, 1870, p. 35^{6}; Naut., III, I889, p. 8.
Planorbis scalaris Pilsbry, Con. Ex., II, 1888, p. II3.
Plivsa (Thomsonia) carinifera Ancey, Le Nat., 1886 , p. 358.
Type locality: Everglades of Florida.
Pilsbry (86, p. 287) states that this species is a Planorbis.

Pianorbis sinuosus Boinet.
Planorbis sinuosus Bonnet, Rev. \& Mag. Zool., 1864, p. 28o, pl. XXII, fig. 3.
Type locality: Néw Mexico.
Is referred to glabratus Say by Tryon (129, p. 183). Fischer and Crosse (38, p. 67) question this approximation, but as their opinion is based on Binney's figure (II, fig. 179), which does not represent Say's species, it is not of much value. However as glabratus is not known to occur cutside of Florida, Tryon's suggestion is varorgg anyway. Dr. Pilsbry informs me that it is P. iumidus Pfr.

Pranorbis sumcrenatus disybctug Cooper.
Planorbis subcrenatus disjectus Cooper, Pr. Cal. Acad. Sci., (2) ILI, 18go, p. $84, \mathrm{pl}$. E_{y} fig. 30.

Type locality: Tuolumne Meadows, Cal.

Planorbis tenuis Phil.

Listed from the drift of the Santa Cruz River, Tucson, Ariz., by Pilsbry and Ferriss (109, p. 400).

Planorbis traskiy Lea.

Planorbis trnskii Jea, Jour. A. N. S. P., VI, r866, p. 157, pl. XXII, fig. 7c; Obs., XI, 1866, p. 113, pl. XXILI, fig. 70.
Type locality: Kern Lake, Cal.
Dall (32, p. 83) considers this specifically distinct fron P. amonon.

Prisnormis trivolvis Say.
Includes subcrenatus Cpr., with orcgonensis Tryon, occidentalis Cooper, and tumens Cooper, non Cpr., as synonyms and probably hornii Tryon according to. Dall (32, p. 89). Pilsbry also (95, p. 65) lists hornii as a variety.
Planorbis trivoi,ius binneyi Tryon.
Planorbis corpulentus Gould, U. S. Expl. Exp., 1852, p. 114, fig. 130: Haldeman, Mon., 1844, p. 19, ph. III, figs. 7-9; W. G. Binney, L. \& F. W. Shells, pt. II, 1865, p. 114. Fgs. 191-2; Sowerby, Con. Icon., I877, Sp. 4; pl. I, fig. 4 ; pl. $\overline{\mathrm{X}}$, fig. 4 b .
Planorbis binneyi Tryon, Am. I. of Con., III, 1867, p. 197.
Type locality : West Coast.
Planorbis umbilicameidus Cockerell.
Planorbis untbilictuts Taylor, J: of Con., IV, 1885, p. 35r, text-fig. non Müller (1774).
Planorbis umbilicatcilus Cockerell, Con. Ex., 1885 , II, p. $68.182, ?$ To Type locality: Brandon and Birtle, Manitoba. Ranges from New York to South Dakota. See also Vanatta (137, p. II7).
Planorbis vermicularis Gouid.
Is referred to parzus by Vanatta (36, p. 55) , but is considered diṣtinct by Dall (32, p. 95).

Genus SEGMENTINA Fleming, 1817.
Subgenus PLANORBULA Haldeman, 1842.
Segmentina armigera (Say).
Dr. Pilsbry informs me that he has seen the type of Planorbis lautus H. Ads. and that it is a young specimen of this species.

Segmpntina armigera campfstris Dawson.
Segmentina armigera campestris Dawson, Rep. Brit. N. A. Boundary Com., 1875, p. 349.
Type locality: Red River Valley, Canada.
Segmentina cirisistyi Dall.
Segmentina christyi Dall, Rep. Harriman Exp. XIII, I905, p. 99, pl. IT, figs. Io-ri.
Type locality: High Bluff, Manitoba; Fort Smith, Mackenzie River. Reported from South Dakota by Walker (ij1, p. II).

Secmentina crassilabris Walker.

Type locality: Hamtramck, Wayne Co., Mich.

Type locility: San Argetstin, Acoyapa, Nicaragha.
Cited by Dall (32, p. 98) from Umpqua River, Oregon.
Ilanibal ($53, \mathrm{p} .158$) states that it has not been found by any of the local collectors in that region and questions the authenticity of the locality. of Dall's specimens.

Segmentina obstructa (Morelet)
Planorbis obstructus Morelet, Test. Noviss. I, 1849, p. 17.
Plakorbis berendti Tryon, Am. J. of Con., II, 1866, p. ro, pl. 2, figs. 14-16.
Type locality: Carmen Island, Yucatan.
"Occurs abundantly in Texas as far north as Austin." (Pilsbry 91, p. 322. See also Pilsbry and Ferris, 106, p. 166.) In the absence of a figure of this species in any American publication, I have quoted that of berendti Tryon from Mexico, which is considered a synonym by Fischer and Crosse (38, p. 78) and von Martens (73, p. 398).

Segmentina wieftleyi (Lea).

Planorbis wheatleyi Lea, Jour. A. N. S. P. VI, 1866, p. 158, pl. 23, fig. 71 ; Obs. XI, 1866, p. 113 , pl. 23, fig. 71.
Segmentina wheatleyi Walker, Naut. XX, 1907, p. 123, pl. VII, figs. 7-9.
Dall (32, p. 97) has proposed a new section, Haldemanisa, for this species, based on the "complex, dentiform and ridgelike" lamellæ, but these differ from those of the other species (armigera and crassiabris) only in degree. See Pilsbry and Ferriss (106, p. 166) and Walker (1. c.).

Subfarnily POMPHOLIGIN圧 Dall, 1866.
Genus POMPHOLYX Lea; 1856.
Pompholyx leana H. and A. Adams.
Pompholy. leana H. and A. Adams, Pr. Zool. Soc. London, 1863, p. 434. Type locality: West Columbia:

Pompholyx solide Dall.
Pompholy: var. soída Dall, Ann. N. Y. Lyc. Nat. Hist., IX, 187o, p. 335, pl. II, fir.

 ve rolumbia it sull rentain douberol whether it belongs to the later

Genus CARINIFEX W. G. Binney, 1863 .
 Megastropha Lea, 1866

Carinifex newnerryi minor Cooper.

 Type locality not stated.

Cariniffx ponsonhyi E. A. Smith.
Carinifer ponsonbyi g. A. Smith, F. Z. S. Lond., 1875, p. 536, text-figi Planerbis potsonbyi Sowerby, Con, Icon., Planorbis $\mathbf{1 6 \%} \%$, Sg. so, pla \mathbf{X}, figs. 80a-b.
Type locality: California.
Call (16, p. 140) states that the figure in the P. Z.S. is interchanged with that of Diala lcithii described at the same time.

Family PHYSIDE.
Genus PHYSA Draparnaud.
Dall (32, p. 1on) has proposed the following arrangement:
Section physes. s.
Type $P_{\text {I }}$ fontinalis L.
Section costatella Dall.
Type P. costata Newcomb.
For an excellent revision of the Eastern American species, see Crandal!, No. 27.

Von Martens (73, p. 368) has proposed the subgenus Alampetis for the North American and Mexican species with a dull, not glossy, surface and (often) thickened lip. 'He gives no type, but mentions P. ancillaria as an example.

Physa alpofilata Ancey.

Physa albofileta Ancey, in Sampson, Rep. Geol. Surv. Ark., II, i8gI, p. 194: Type locality: West Leathetwood Creek, Eureka Spungs, Carroll Co., Ark, See gytina.

Physia altonensis Lea.

Physa altonensis I.ea, Pr. A. N. S. P., i864, p. 114; 1our. A. N. S. P., VI; 1866, p. 164, pl. 24, fig. 82; Ots, XI. 186, p. 120, ple 24, fig. \%2.
Type locality: Alton, Mlls.
Is elliptica according to Tryon ($132, \mathrm{p} .160$) and an abnoman averata according to Crandall (27, p. 71).

- Preysa Amprelacea Gould.

Includes P. lordi Bd., propinqua Try. and cowiformis Try. as varieties according to Cooper ($25 ;$ p. 98).

According to Henderson and Dathels (56, p. 5\%) it is possible that tea's P. Whetallit miay be this species. If so it would have priority.

Physa ampulidacea contumbiana Hemphill.
Phyisa ampullacea rolmibiona Hempliill. Nant., IV, i\&o, pi 27 .
Tyje lochlity: Columbia River, Astotia, Oregon.

Prysa amygdalus Sowerby.
Physa amygdalits Sowerhy, Con. Tcon., Physa, 1873. Sp. 65, pl. 8. fig. Gy. Type locality: Texas.

Puysa Anatina I, ea.
Physáa ahatina Lea, Pr. A. N. S. P., 1864, p. 115 ; Jour. A. N. S. P., VI, 1866, \therefore p. 171, pl. 24, fig. 94; Obs.. XI, 1866, p. 127, pl. 24, fig. 94.
Type locality: Northern tributary of the Arkansas River, Kans.

- Pitysa ancillaria Say.

According to von Martens (73, p. 374) Plysa subcrata Mke. belongs to this species and not to P. heterostropha Say as supposed by Binesey and is represented by fig. r, pl. III of Haldeman's Nonegraph.

Physa fincitichitia céassa Walket:
Physa ancillarid crassa Walker, Naut.; XIV, 1901, p. 98.
Type locality: Higgins Lake, Roscotmmon Co.. Mich.
Types No. $147 \ddagger$ Coll. Walker.

Physa ancillaria magnalacustris Walker.
Fhysa ancilloria magnalaciustris Walker, Naut., KIV, 1901; p. 97.
Type locality: Frarilfort, Benzie Co.; Mich.
Types No. 9214 Coll. Walker:

Physa aplectónes Sterki.
Physc aplectoides Sterki, Pr. O. St. Acad. Sci., IV, 1907, p. 38 r.
Type locality: Portage and Tuscawaras Co's.; O. Also Isle Royale and Schoolcraft County, Michigan.

Pifysa aurma Lea.
Is a synonym of elliptica and not of lecterostropha according to tryon (132, p. 163) and Cratidall (27 ; p. 55).

Physa minindsif Heron.
Physa billingsit Heron, Tr. Ott. F. Nat. Club, I, 1880, p. 62; pl. 2, fig. Si
Type locality: Billings' Bridge, Ottawa, Ont.
Is a var. of integra according to Crandáll (27, p. 15).
Physa binnerfana Áncey.
Physa diaphana Tryon, Am. J. of Con. I, 1865, p. 224, pl. 23. fig. 11, non Krauss (1848).
Physe himevam Ancey, Le Nat., I886, p. 358.
Type locality: Oakland, Cal.
Physa blínín Lea.
Physa blandi Lea, Pr. A. N. S. P., 1864, p. i16; Jour. A. N. S. P., VI, 186\%,
p: 168, pl. 24; fig. 88 ; Obs., XI, 1866, p. 124, pl. 24, fig. 88 .
Type locality: California.
Includes distinguenda Try. and "?" is the same as grosvernori Lea and nuttallii Jea according to Cooper (25, p. 97). Both of the butter names have priority.

Physá brevispira Lea.
Phisa brecispira Lea, Pr. A. N. S. P., 1864, p. 16; Jour. A. N. S. P., VI. 1866; p. 173: pl:24, fig. 98 ; Obs., XI, i866, p. i20, pl. 24, fig. 98.
Type locality! Ottawa River, Ont.
Phyśa carltonit Lea.
Physa carltomii Lea, Pr. A. N. S. P., 1869, p. 125; Jour. A. N. S. P., VIII, 1874, p. 63, pl. 21, fig. 19; Obs., XIII, 1874, p. 67, pl. 21, fig. 19.
Type locality: Mount Diablo, Cal:
Physa coniformis Tryon.
Physa conifoormis Tryon. Am. J. of Con., II, sE66, p. 6, pl. II, fig. 5. Type locality: Humboldt River, Oregon.

Physa coopert Tryoh.
Physa coopeti Trybn, Am. J. of Coni,, I, 1865, p. 224, pl. 23, fig. 9.
Type locality: Crane Lake Valley, Cal.
Is a variety of P. triticea Lea according to Cooper (25, p. 97).

Pirysa cranditid Baker.

Physa riomboidra Crandall, Naut., XV, 1901, p. 44, pl. H1, figs. 6\%, 4on Meek and Haydèi (I856).

Type locality: Cedar and Muldy Creeks, Sedalia. Mo. Also Dardendeles and Sulphtur Springs, Ark.; and las Vegas, N. M.
Types No. 40775 Coll: Walker.
According to Springer ($\mathbf{1 2 0}, \mathrm{p} .5 \mathbf{5}$) is a synonym of P. humerosa.
Pifysa croccata Lea.
 p. ifg, pl. 24, fig. 90; Obs., XI, 1866, p. 125, pl. 24, fig. 90:

Type lochlity: tafayette, Walker Co., Ga.
Is closely allied to microstomi Hald. according to Crandall (27, p. po).
Physa cupreonitens Cockerell.
Physe cuprconitens Cockerell, J. of Con., VI. 1889, p. 63.
Type locality: Hot Spring, Wellsville, Colo.
Though deskribed as a distinct species, in the text it is called a suhspecies of heterostrophi:

Physa cubinsis Pfeiffer.
Physa ciubensis Pfeiffer; Wiegm. Archiv., I, 1839, p. 354.
Physa heterostropha peninsula Filshry, Nant., XIII, 1899; p. 48 ; ibid, XIIT, 1899, p. 70,
Type locally: Cuba. Also Miami and elsewhere in Florida. See Rhoads, (113, p. 48).

Puysa derormis Currier

Physa deformis Currier S4m. J. of Con., III, 186\%, p. 1 Yz , pl. 6, fis. t.
Type locality: Grand Kapids, Mich.
Is elliptica Lea accoording to Crandall (27, p. 54).
Physa distinguenda Tryon.
Physa distinguenda Tryon, Am. J. of Con., 1, 1865, p. 325, pl. 23, fig. 6.
Type locality: Marysville and Stockton, Cal.

Physa dorbighyana léa.

Physa striata Lea, Pr: A. N. S, P. 1864, p. 115, non d'Orbigyy (1853), nec Menke (i830).
Physa dorbignyand Leea; Jotr. A. N. S. P., V1, 1866, p. 166, pl: 24, fig. 35; Obs., XI, 18666 , p. 123, pl. 24, fig. 85 .
Type locality Monterey, Cal.
Is a synonym of P. virgatic Gld, according to Pitsbry and Peryiss (res. p. x 98) .

Physa fillipmca Lea.
Is a valid species according to Crandall (27, p. 54) and includes troostiana Lea and minor Crandall as varieties and aurea,.febigeri and nicklinii - Lea and deformis Currier as synonyms. Baker's figures (4, pl. 34, fig. 5), copied by Blatchley and Daniels (I4, pl. I, fig. 118) do not represent the true elliptica.

Physa mlliptica minok Crandall.
, Physa elliptica minor Crandall; Naut., XV, 190í, p. 55.
Type locality: Grand Rapids, Mich.
Types No. 14469 Coii. Walker.
Physa febigeri Lea.
Plyysa febigeri L.ea, Pr. A. N. S. P., 1864, p. 114; Jour. A. N. S. P., VI, 1866, p. 174, pl. 24, fig. 99; Obs., XI, 1866, p. 130, pl. 24, fig. 99.

Type locality: Logan Co., O.
Is clliptica according to Tryon (132, p. 163) and Crandall (27, p. 55).

Physa forsheyi Lea.
Physa forsheyi Lea, Pr. A. N. S. P.; 1864, p. II4; Jour. A. N. S. P., VI, 1866, p. 172, pl. 24, fig. 95 ; Obs., XI, 1866, p. 128, pl. 24, fig. 95.
Type locality: Rutersville, Texas.
Includes zuhitei Lea according to Crandall (27, p. 67).
Physa fragilis Mighels.
Is a pathologic form of ancillaria according to Morse (75, p. 43).

Pifysa grosvernori Lea.

Physa groswernori Lea, Pr. A. N. S. P., 186.t, p. II4; Jour. A. N. S. P', VI, 1866, p. 175, pl. 24, fig. 100; Obs., XI, 1866, p. 131, pl. 24, fig. 100.
According to Cooper (25, p. 97) includes P. traskii Jen, occidentalis
Try., dorbignyana Lea and sparsestriata Try. as varieties.
Type locality: Santa Rita Valley.
Is a var. of forsheyi according to Craindall ($27, \mathrm{p} .69$).

- Pifysa gyrina Say.

Includes cylindrica Newc., altoncusis, hawnii and smithsoniana Lea as synonyms and albofilata Ancey, hildrothiana Lea and oleacea Tryon as varieties according to Crandall (27, p. 45).

Parsa halia lea.
Physa halci Lea, Pr. A. N. S. P., 1864, p. 114; Jour. A. N. S. P., VI, 1866, p. 165 ; pi. 24, fig 83 ; Obs.; XI ; 1866; p. 121, pl. 24 ; fig. 83 i

Type locality: Alexandria, La.
Physa hawnit Lea.
Physa huturii Lea; Pr. A. N. S. P:, 1864, p. ing; Jour. A. N. S. P., VI; 1866; p. 165 , pl. 24, fig. 84 ; Obs., XI, 1866 , p. 1211 pl. 24, fig. 84 .

Type locality: Verdigris River, Kans.
Is gyrina according to Tryon ($132 ;$ p. 162) and Crandall ($27, \dot{p}, 84$).

- Phosa heterostropha Say.

Includes lata and primeana Tryon according to Crandall (27, p. 2g).
Puysa heterobtropha alba Ctandall.
Physa lieterostropha alba Crándall, Naut., XV, rgoi; p. z̈g.
Type locality: Cedar Lake, Capachet, N. Y.
Types No. 40747 Coll. Walker. tmecifur unc Tin C. $1 / 27 / 9$

- Physa humerosa Gotild.

Includes rhoinboidea Crandall (crandali Baker), actording to Springer ($120, \mathrm{p} .513$).

- Puiga intecia Haldeman.

Includes killingsil is a veri according to Crandall (27, p. 56).
Phyda iata ityon.
Physb lesed Tryon, Am. J. of Con., 1, 1865, p. 2z7, pl. 23, fig. 7. .
Type locality: Juniata River, Hallidaysburg, Pa .
See hetcrostropha.

- Phirsa sord Baird.

Physe parkeri Currier, Kent Sci. Inst., Misc. Pub.; 1868, p. 7 (no desc.) ; DeCamp, Kent Sci. Itst., Misc. Pub., No. 5, 188r, p. 15, pl. 1, fig. 3. Type locality (parkeri): Houghton Lake, Mich.
Types (parkeri) No: 11097 Coll. Walker.
Henderson and Daniels (56, p. 75) suggest that the Michigan and Canadian forms differ markedly from the typical western form.

Physa madieata Tryon.
Physt malleate Tryon, Am. J. of Con, 1, 1865, pl zis, pl. 23, fig. IA.
Type lacality: Hell Gete River, Oregon.

Phisa margidriti I.esson.
Physa morgarita Lesson, Rev. Zool., 1840 , p. 356.
Type locality: Nevfotmandand.

- Pifysa mexicana conoméa Fischer and Crosse.

Physa mexicana conoided Fischer and Crosse; Moll. Mex., It, 1886, pi 10t; pl. 39; figs. 8-8á.
Type locality: Mehedini, Mexico.
Alsó MéLeniatr Có., Texas, see Strecker, i26, p: 64.
Physa nachamesis. Lea.
 1866, pı 168, pl. 24, fige 97; OLs., XI; i866, p. 124, p1. 24, fig. 97.
Type locality: Niagara River, N. Y:
Is referted to integra by Tryon; (32, p. 167), bit Crandall (27 ; p. 55) considets it distinct.

Physa nicklinit Lea.

Physa nicklinii Lea, Pr. A. N. S. P., 1864, p. 114; Jour. A. N. S. P., VI, 186斤, p. 175, pl. 24, fig. Ior ; Obs., XI, 1866, p: 13r, pl. 24, fig: Ior.
Type incality: Callaghan's, Alleghainy Co., Va.
Is elliptica according to Tryoii (132, p. 163) and Crathdall (27, p. 55) ,
Physa nurtralia Lea,
Physa nuttallit t, ea, Pr. A. N. S. P., 1864, p. ir6; Jour. A. N. S. F., VI, 1866, p. 171, pl. 24, fig: 93; Obs:; XI, 1866; p. 127, pl. 24, fig. 93. Type locality: Lewis River, Oregon.

See amputlatea.
Phyea occinentalits Tryon.
Physa occidentalis Tryon, Amı. J. bf Conn, I, 1865, p. 226, pl. 2, fig. 8.
Type locality: San Francisè́o and numerous other localities in California and Oregon.

Pifysa olencea T'tyoh.
Physa oleacea Tryon, Am. Ji of Con., II, 1866, p. 6, pl. II, fig. 6.
Type locality: Bridgeport, Ala., and íake Superior.
Is elliptica according to Tryon (132, p. 163). Crandall states (27, p. 45) that Tryon himself admitted this obvious error and considers it to be a var. of gyrina. Baker (5, p. 492) considets it to be simply an immature stage of typical gyrina.

UNITAS MALACOLOGICA EUROPAEA

IV EUROPEAN MALACOLOGICAL CONGRESS

The Fourth European Malacological Congress will be held in Geneva Switzerland from September 7 to 11 , 1971 It will follow a one-day meeting of museum curators in charge of Mollusca, devoted to the discussion of curatiorial problems and collaboration. The meetings will take place in the new Museum of Natural Historyand eventually also in the University buildings. All malacologists are cordially invited.

Accommodation will be arranged by the Tourist office in hotels and the Student hostel.

Congress fee isS.Fr. 30 .- (about $\$ 7.00$) for members and corresponding members of U.M.E.; S.Fr. 40.- (about \$9.00) for non members; S Fr, 15 (about $\$ 3.50$) for students and accompanying persons.

If you are interested and have not received the circulars, please contact the Organizing Committee formore detailed information.

ADDRESS:

IV European Malacological Congress Museum of Natural History
CH - 1211 Geneva 6, Switzerland

ORGANIZING COMMITTEE:
Dr. Eugène Binder, president
Dr. Norbert Schönenberger, secretary
Dr. Louisette Zaninetti, treasurer

[^0]: FIG. 1. Lampilis ventricosa (Barnes); a female with a well developedmantleflap showing its fish-like characteristics.

[^1]: 170. contained Physa only Below the
