P16

Pathologic diagnosis of zoonotic parasitosis in slaughter pigs in Brazil

Morés M.A.Z.¹, Morés N.¹, Albuquerque E.R.², Kich J.D.¹

¹Embrapa Suínos e Aves, Concórdia, Brazil, ²Ministério da Agricultura e Abatecimento, Departamento de Inspeção de Produtos de Origem Animal, Brasília, Brazil

Introduction

Brazil is the fourth largest swine producer and pork exporter in the world, the slaughter under the federal meat inspection service achieved 37 million pigs in 2017 (https://sidra.ibge.gov.br). Brazilian meat inspection system is under a modernization process and new procedures are just standardized and regulated for pigs reared in farms submitted to health animal service rules. In order to supply the risk analysis for meat inspection modernization, several studies on zoonotic hazards were conducted in Brazil last years. This one was focused on zoonotic parasitosis once that in sanitary post mortem examination, the inspectors can identify lesions compatible with cysticercosis (Satyaprakash et al., 2018), hydatidosis (De La Rue, 2008) and sarcosporidiosis (Zainalabidin, et al., 2017).

Cysticercosis is caused by metacestodes of *Taenia solium*. Primarily, cysticercosis is an infection of pigs that act as an intermediate host of *T. solium*. Pigs are infected by ingestion of contaminated water, soil or feed with the eggs of *Taenia solium* expelled from tapeworm carriers. The eggs develop into cysticerci in various organs and musculature causing porcine cysticercosis characterized by small round whitish viscous cyst (7 to 15 mm), located mainly in the lingual muscles, masseters, heart and diaphragm (Satyaprakash et al. 2018).

Cystic echinococcosis is a zoonotic disease caused by the genus *Echinococcus* (*Cestoda: Taeniidae*). Pigs are considered important intermediate hosts of the larval stage by eggs ingestion from contaminated environment with feces of definitive host. The intermediated host develops hydatid cysts in the liver and the parasite cycle can be complete if a definitive host ingest this organ without a heat treatment (De La Rue, 2008).

Sarcosporidiosis is a disease caused by cyst forming coccidian, namely, *Sarcocystis* spp. Pigs can be infected when consuming food contaminated with fecal material of carnivores containing the sporocysts of *Sarcocystis* spp. The whitish filamentous, spindle-shaped, rice-grain-like, macrocyst-forming sarcocyst has been observed in the muscles of pigs, mainly in the heart, tongue and diaphragm (Zainalabidin, et al., 2017). The aim of this study was to validate the

macroscopic diagnosis of these lesions detected by veterinary inspection service using histopathology analysis.

Material and Methods

From May 2017 to May 2018 was performed a prospective study with the collaboration of federal meat inspectors, which were asked to collect all lesions suspected of cysticercosis, hydatidosis and sarcosporidiosis found during routine of meat inspection. These samples were sent to animal pathology laboratory of Embrapa Swine and Poultry Research Center. It was analyzed a total of 361 samples, 296 were muscle samples suspected of sarcosporidiosis, 64 cystic livers suspected of hydatidosis and 1 heart sample suspected of cysticercosis. The tissue samples were collected in 10% buffered formalin and sent to the laboratory for processing by the routine histopathology technique.

Results

In 34 (53.1%) liver samples, Cysticercus tenuicollis, the larval form of Taenia hydatigena, was identified. The macroscopic characteristics of these lesions were single or multiple cysts, colorless fluid, thin membrane and a cephalic invagination corresponding to the scolex (Figure 1A). In the histopathology analysis it was observed that the cysts have a membrane that invaginates in only one scolex (Figure 1B), which has suckers and many hooks. In the other 30 liver samples, there were no parasites inside the cysts and it was not possible to identify the cause of the lesions. Echinococcus spp. was not identified. No sarcosporidiosis suspect lesion was found in the finishing pigs. All muscle samples analyzed were from culling sows. In 163 (55%) of these samples, granulomatous myositis (Figure 1C) compatible with Sarcosporidium spp. infection was observed. Intact sarcocysts were also observed in some of these samples (Figure 1D). No parasitic lesion was identified in the remaining 45% of the samples. Histopathology was not conclusive in the heart sample suspected of Cysticerccus spp. infection. The histologic lesion consisted of a circumscribed area of granulomatous inflammation on the surface of the myocardium.

Discussion and Conclusion

The reports of Brazilian Federal Meat Inspection System in swine slaughterhouses (Coldebella et al., 2017), have shown results of carcass condemnation and trimming data on more than 97 million pigs slaughtered between 2012 and 2014. The zoonosis injuries condemnations/trimming were reported in very low frequency. Among the total of organs and carcass inspected cysticercosis was registered in 0.00092%, sarcosporidiosis in 0.00051% of the cases.

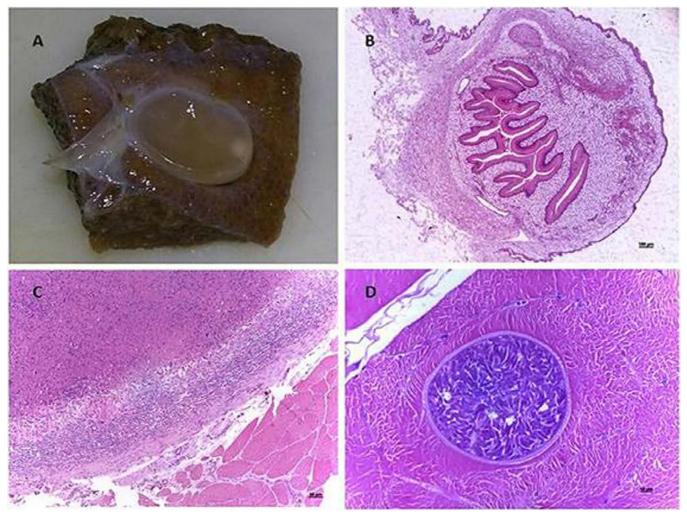


Photo 1: A- C. tenuicollis/liver; B- C. tenuicollis scolex; C- myositis/Sarcocystis; D- sarcocyst/tongue

The hydatidosis frequency was not noteworthy. The results show that most of cystic livers found in finisher pigs was related with *Cysticercus tenuicollis* infection, a non-zoonotic parasite. Pigs can be intermediate hosts of *Taenia hydatigena* (Monteiro et al., 2015). Pigs can be infected by coming in contact with feces of canids or felines contaminated with the infecting eggs (Rojas et al, 2018). Even though this parasite is not a threat for consumers, it is a critical indicator of biosecurity failure in pig farms. This information should be provided to field professionals to improve farm biosecurity procedures.

Sarcosporidiosis was not identified in finishing pigs, but was a prevalent infection in culling sows, probably due to the longer life cycle of these animals. The results show the importance of the carcasses inspection in culling sows, owing to the zoonotic potential of the disease.

Cysticercosis seems not to be a problem in Brazilian swine industry, since just one suspect lesion was detected in about 37 million slaughtered pigs. All these results are useful for meat inspection modernization based on risk analysis.

References

Coldebella, A. et al. (2017): Reports of Brazilian Federal Meat Inspection System in Swine Slaughterhouses. 12th Intern. Symp. on the Epidem. and Cont. of Biol., Chem. and Phys. Hazards in Pigs and Pork Foz do Iguaçu - Brazil August 21-24.

De la Rue M.L. (2008): Cystic echinococcosis in southern Brazil. Rev Inst Med Trop Sao Paulo, 50(1), 53-56

Monteiro, D. U. et al. (2015): Echinococcus granulosus sensu lato and Taenia hydatigena in pig in Southern Brazil, Braz. J. Vet. Parasitol., 24 (2), 227 - 229. Rojas, G. et al. (2018): Taenia hydatigena en cerdo procedente de uma zona rural del Estado Yaracuy, Venezuela, Saber, Universidad de Oriente, Venezuela, 30, 636-641.

Satyaprakash, K, et al. (2018): Pathological and molecular identification of porcine cysticercosis in Maharashtra, India, Acta Parasitologica, 63(4), 784 - 790. Zainalabidin, F. A., et al. (2017): Prevalence of Muscular Sarcosporidiosis in Slaughtered Domestic Pigs in Perak, Peninsular Malaysia, Tropical Life Sciences Research, 28(1), 161-166.