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ABSTRACT 
Model-assisted probability of detection (MAPOD) is the key 

metric for reliability analysis of nondestructive testing (NDT) 

systems. Fast metamodeling techniques advances the MAPOD 

process by efficiently capturing the physics and then largely 

reducing the number of physics-based model evaluations.  This 

work presents the MAPOD analysis through the polynomial 

chaos-based Kriging (PCKriging) metamodel. In particular, the 

proposed PCKriging approach is demonstrated on an analytical 

function and an ultrasonic testing benchmark case and 

compared against the current state-of-the-art metamodels. 

Preliminary results in this work show that the PCKriging is 

capable of reducing the training cost by two to four times fewer 

than the current state of the art. 

Keywords: nondestructive testing, metamodeling, model-

assisted probability of detection, polynomial chaos-based 

Kriging. 

 

1. INTRODUCTION 
Model-assisted probability of detection (MAPOD) [1] is the 

key metric of checking the reliability of the nondestructive 

testing (NDT) systems. “Model-assisted” refers that the 

MAPOD analysis relies on physics-based simulation models. On 

one hand, MAPOD advances the original probability of detection 

(POD) by reducing experimental budgets. On the other hand, a 

large number of computationally intensive physics-based model 

evaluations are typically required for MAPOD analysis. 

Metamodel-based MAPOD analysis save the computational 

cost by using fast and accurate metamodel representing physics 

information in lieu of computational expensive physics-based 
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models. Kriging interpolation [2] has been commonly used for 

MAPOD analysis. Least angle regression (LARS)-based 

polynomial chaos expansion (PCE) [3] introduced by the 

authors’ prior work show outstanding performance in this 

themed topic. Moreover, Cokriging multifidelity metamodeling 

[4], first introduced into MAPOD analysis by the authors, also is 

promising when multifidelity models are available. 

This work assumes that only one level of physics-based 

model is available. In particular, the polynomial chaos-based 

Kriging (PCKriging) is introduced and compared against the 

commonly used Kriging interpolation and the LARS-based PCE. 

This paper is organized as follows. Section 2 describes the 

metamodeling approaches, including Kriging, PCE and the 

proposed PCKriging. Section 3 demonstrates the PCKriging 

metamodel on analytical function and MAPOD analysis of 

benchmark ultrasonic testing case. The paper ends with 

conclusion and suggestions of future work. 

 
2. UNCERTAINTY PROPAGATION VIA META-

MODELING 
This section provides detailed description of Kriging and 

PCE metamodeling methods as the benchmarking approaches 

and the proposed PCKriging method in this work. 

 

2.1 Sampling 
Sampling is an iterative process of generating parameter 

values based on corresponding pre-set probabilistic density 

functions. Monte Carlo sampling (MCS) [5] and Latin 

Hypercube sampling (LHS) [5] are the sampling tools in this 
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work. In particular, MCS is used for generating testing data set 

while LHS is used for training data set. 

 

2.1 Kriging Interpolation 
Kriging interpolation [6] has the generalized formula 
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where mX , f(X) = [f0(X), …, fp-1(X)]T  ℝp is defined with a 

set of the regression basis functions,  = [ꞵ0(X), …, ꞵp-1(X)]T  

ℝp denotes the vector of the corresponding coefficients, and Z(X) 

denotes a stationary random process with zero mean, variance 

and nonzero covariance. In this work, Gaussian exponential 

correlation function is adopted, thus the nonzero covariance is of 

the form 
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where θ = [θ1, θ2, …, θm]T, denote the vectors of unknown hyper 

model parameters to be tuned. Further derivation gives the 

Kriging predictor 𝑦̂(𝐗) for any untried X as follows 
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where ytr is the observations of training data. 

 
2.2 Polynomial Chaos Expansion 

PCE [7] metamodel has the generalized formula 
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where X∈ℝm is a vector with random independent components, 

described by a probability density function fX, i is the index of 

ith polynomial term, Ψ is multivariate polynomial basis, and α is 

corresponding coefficient of basis function, ɛ is the residual 

between the observations and the PCE predictions, P has the 

following formula 
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where p is the required order of PCE, and n is the total number 

of random variables. 

To solve for the unknown parameters, LARS [7] method is 

used to minimize the ɛ in Eqn. (4) 
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where λ is a scale parameter, ||*||1 is L1 norm to favor low-rank 

solutions.  

 

2.3 Polynomial Chaos-Based Kriging 
The proposed PCKriging [8] metamodeling method is 

constructed based the afore-mentioned Kriging and PCE 

metamodels. The general process is summarized as follows 

(1) construct a LARS-based PCE model first on training data 

(2) use the orthogonal polynomial bases selected by LARS 

as trend function terms of Kriging interpolation, 

(3) construct the Kriging metamodel based on Step 2, 

(4) once all unknown parameters are determined, predictor 

is set up in the same way as conventional Kriging. 

 

3. NUMERICAL EXAMPLES 
This section demonstrates the proposed PCKriging 

metamodeling method on an analytical short column case and 

MAPOD analysis of an ultrasonic benchmark problem. 

 

3.1 Analytical Function 
The short column function models a structural column as 
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where b is the width of the cross section and equals 5 mm, h is 

the depth of the cross section and equals 15 mm, Y, M and P are 

the uncertain parameters in this case and Y ~ LogN(5, 0.5) MPa 

is the yield stress, M ~ N(2,000, 400) MNm is the bending 

moment, and P ~ Nl(500, 100) MPa is the axial force. 

Results are given in Fig. 1. The root mean squared error is 

targeted at 1% of standard deviation of testing points (1%σtesting). 

PCKriging takes only 70 training points, while PCE both need 

120 and Kriging needs 1200. 

 

 

FIGURE 1: METAMODELING SETUP. 

 



 3 © 2019 by ASME 

3.2 Ultrasonic Benchmark Case 
The setup of the ultrasonic benchmark case is given in Fig.2. 

In this work, the probe angle, θ, and the probe x location, x, are 

considered as uncertain, with normal N(0, 1) deg, and uniform 

U(0, 1) mm distributions, respectively. 

Comparison plots of the root mean squared error (RMSE) is 

shown in Fig. 3. To reach 1%σtesting, PCKriging needs 50 HF 

training points, while PCE needs around 200, and Kriging needs 

more than 300. The POD curve is generated and shown in Fig. 

4. 

 
FIGURE 2: SETUP OF ULTRASONIC BENCHMARK CASE. 

 
FIGURE 3: COMPARISON OF METAMODELING. 

 
FIGURE 4: PCKRIGING-BASED POD CURVE. 

4.  CONCLUSION 
This work presents the PCKriging metamodel on analytical 

function and MAPOD analysis of an ultrasonic benchmark case. 

The advantage of PCKriging over the current state-of-the-art 

metamodels in terms of training sample cost is promising. The 

full paper will show several more UT test cases. 
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