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ABSTRACT
The standard and multi-view total focusing methods are in-

creasingly popular ultrasonic array imaging techniques which
post-process the full matrix array data by summing in-phase sig-
nals. This work proposes to replace the summation by the more
robust geometric median to reduce the effect of detrimental high
intensity signals, which is shown to result in artefact suppres-
sion.
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1 INTRODUCTION
The total focusing method (TFM) [1] and the multi-view

TFM [2] are increasingly popular ultrasonic array imaging tech-
niques which post-process the full matrix array data by summing
in-phase signals. Under this approach, the amplitude of an im-
age point may be dramatically affected by the presence of a small
number of high intensity signals such as wall echoes, resulting in
large artefacts in the image. This paper proposes to replace the
summation by the more robust geometric median to reduce the
effect of these detrimental signals. This novel method removes
the artefact from the image and recovers the signal of interest
underneath, whilst leaving the uncontaminated area almost unaf-
fected. Experimental results from the inspection of an aluminium
block with a side-drilled hole are provided.

2 CONTEXT
Consider an ultrasonic array of N elements. The continuous-

time signal transmitted by element i and recorded by element j
is denoted fi j(t); it can be obtained from its discrete-time equiv-
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alent with any interpolation technique, such as Lanczos interpo-
lation as used in this work [3]. A full matrix capture (FMC)
consists in acquiring the N2 time signals { fi j(t) : i = 1 . .N, j =
1 . .N}. An image can be formed from the FMC data as a post-
processing step using the total focusing method algorithm [1, 2]

I0(r) =
N

∑
i=1

N

∑
j=1

f̃i j(τi j(r)), (1)

where |I0(r)| is the pixel intensity at position r, f̃i j(t) is the an-
alytic (complex) signal obtained through the Hilbert transform,
and τi j(r) is the time delay corresponding to the ray path from
the transmitter i to the position r and finally to the receiver j.
With the reduced notation Fk = f̃i j(τi j(r)) with k = i+N j and
with n = N2, one can define

I1(r) =
1
n

n

∑
k=1

Fk. (2)

I1(r) and I0(r) are equal up to a multiplicative factor 1/n; as
an image is generally rescaled by an arbitrary image point,
this factor has no practical consequence. However, it becomes
clear in Eq. (2) that I1(r) is the (complex) arithmetical mean of
{Fk : k = 1 . .n}. Interpreting a complex number as a point in the
complex plane, I1(r) is equivalently the centroid of the points
{Fk : k = 1 . .n}.

Let us introduce a basic probabilistic model of the signal
and the noise to justify the total focusing method. Interpreting
the complex quantities as vectors of R2, let us assume the mea-
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FIGURE 1: INSPECTION CONFIGURATION. THE SHOWN
RAYS CORRESPOND TO THE VIEW T–T, WHERE L
STANDS FOR LONGITUDINAL AND T FOR TRANS-
VERSE.

surements {Fk} are normally distributed

Fk ∼ Norm(µ,Σ) (3)

where µ is the signal of interest, µ 6= 0 for a scatterer or µ =
0 in the absence of a scatterer, and Σ is the 2× 2 covariance
matrix accounting for the grain noise. Assuming the {Fk} are
independent, then

I1(r)∼ Norm(µ,
1
n

Σ) (4)

which provides a theoretical signal-to-noise (SNR) enhancement
of a factor n for TFM imaging. Remark: in practice, the SNR
improvement is lower because the scatterer signal depends on
the angles of insonification, i.e. µ = µk; we stick to the simpler
model (3) as it is sufficient to illustrate our point.

The departure of {Fk} from normality may have detrimen-
tal effects on the image. Consider the inspection configuration
shown in Fig. 1 (detailed experimental apparatus given later).
Figure 2a, the experimental TFM T–T image (I1(r)) of the spec-
imen, exhibits a large high-intensity artefact near location A cre-
ated by the second reflection of the front wall. The wall echo has
two essential properties: (i) its amplitude is significantly higher
than the signal of interest µ , (ii) it overlaps with the scatterer
in some but not all timetraces fi j(t) due to the geometry of the
inspection. In other words, its time of arrival may or may not co-
incide with the time of arrival of the scatterer, therefore at a given
point, the wall echo contaminates a limited number of points of
{Fk}. To illustrate this, Fig. 3 shows {Fk} at the scatterer-free
image point A: most points are seemingly normally distributed
around (0,0), which corresponds to the grain noise, but some are
significantly further away from the centre, which corresponds to
the wall echo. The presence of these high-intensity signals has
a dramatic effect on the centroid of the points {Fk}, which is as
said previously the TFM result I1(r): the centroid is pushed away
from the signal of interest µ = 0 (Fig. 3b). This is an illustration
of well-known lack of robustness of the arithmetical mean [4].

3 GEOMETRIC MEDIAN

As the mean of the signals used to form a TFM image is sen-
sitive to outliers, we consider using the more statistically robust
median instead [4]. In 1D, the (not necessarily unique) median m
of a real-valued random variable X is such that P(X ≤ m) = 0.5
and P(X ≥ m) = 0.5, where P(·) denotes the probability. Equiv-
alently, m is defined as

m = argmin
c∈R

E(|X− c|), (5)

where E(·) denotes the expected value and c is the argument of
the function to minimise. The geometric median extends the me-
dian in 2D [5]

m = argmin
c∈R2

E(‖X− c‖2), (6)

where ‖·‖2 denotes the Euclidean norm. A natural estimate of
the geometric median of X using the independent and identically
distributed samples X1, . . . ,Xn is

m̂ = argmin
c∈R2

n

∑
k=1
‖Xk− c‖2 . (7)

Replacing the arithmetical mean by the geometric median in
Eq. (2) leads to the new imaging algorithm

I2(r) = argmin
c∈R2

n

∑
k=1
‖Fk− c‖2 . (8)

Geometrically, I2(r) is the point which minimises the sum of the
Euclidean distances to the {Fk}. There is no closed formula for
I2(r) in the general case (Fermat-Weber problem); however it can
be calculated iteratively with Weiszfeld’s algorithm [6, 7].

4 RESULTS

The inspection configuration is shown in Fig. 1. The 64-
element 5-MHz ultrasonic linear array (pitch 0.3 mm) is held at
a distance of 30 mm to the top surface and with an angle of 12◦.
The specimen is an aluminium block ( vL = 4730ms−1, vT =
2280ms−1 ) with a side-drilled hole (SDH) of diameter 2 mm.
Figure 2 shows the TFM images using respectively the mean and
the median for the view T–T: the front wall artefact present in
Fig. 2a is effectively removed by the use of the median in Fig. 2b,
which makes the scatterer signal clearly visible. The rest of the
image is unaffected, except minor changes near the wall echoes
(x≤ 20mm), which is outside the area of interest. Figure 3 shows
the geometric median of {Fk} at point A is significantly closer
to (0,0) than the centroid, which explains why the artefact is
removed.
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FIGURE 2: TFM VIEW T–T USING (a) THE ARITHMETICAL MEAN I1(r), (b) THE GEOMETRIC MEDIAN I2(r). POINT A
IS PART OF THE ARTEFACT CAUSED BY THE SECOND FRONT WALL REFLECTION. THE IMAGES ARE ON THE SAME
DECIBEL SCALE; 0 dB IS THE SCATTERER SIGNAL IN (b).
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FIGURE 3: {Fk : k = 1 . .n} AT POINT A FOR THE VIEW T–T.
(a) FULL RANGE. (b) ZOOM IN.
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