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ABSTRACT 
Damage detection and localization remain challenging 

research areas in structural health monitoring. Guided wave-

based methods that utilize signal processing tools (e.g., matched 

field processing and delay-and-sum localization) have enjoyed 

success in damage detection. To locate damage, such techniques 

rely on a model of wave propagation through materials. 

Measured data is then compared with these models to determine 

the origin of a wave. As a result, the analytical model and actual 

data may have a mismatch due to environmental variations or a 

lack of knowledge about the material. Deep neural networks are 

a class of machine learning algorithms that learn a non-linear 

functional mapping. The paper presents a deep neural network-

based approach to damage localization. We use simulated data 

to assess the performance of localization frameworks under 

varying levels of noise and other uncertainty in our ultrasonic 

signals. 
Keywords: Structural health monitoring, damage 

localization, matched field processing, deep neural network. 

NOMENCLATURE 
SHM Structural Health Monitoring 

MFP              Matched Field Processing 

ML                Machine Learning 

ANN             Artificial Neural Network 

RF  Random Forest 

DNN             Deep Neural Network 

 

1. INTRODUCTION 
Damage detection and localization is a central theme in the 

non-destructive evaluation and monitoring methods to assess the 

fidelity of structures. To remotely detect and locate damage, 

guided waves-based systems have been implemented for a 

number of structures. Data obtained from such systems is highly 

dispersive and complex owing to the interaction of waves with  

the complex propagation media.   
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Damage localization in a complex medium can be seen as a 

source localization problem. Multiple methods have been 

proposed in signal processing literature for the same. These 

include array processing and beamforming methodologies [1]. In 

guided waves literature, these concepts are often realized as 

delay-and-sum algorithms [2]. A generalization of delay-and-

sum, known as matched field processing (MFP), is also 

extensively used in radar and underwater acoustics [1].  

MFP is a model-based framework. It compares a known 

model with experimental data to find the location of maximum 

correlation between model and data. The localization 

performance of MFP is limited by the ability of the analytical 

model to capture the variability due to environmental conditions 

and the complexity due to the dispersive nature of waves.  

Damage localization can also be set up as a problem of 

learning a non-linear mapping from wave data to a target location 

in the propagation media. This is similar to multilateration 

approaches based on time of arrival measurements [3].  

Neural networks, a class of machine learning technique, has 

seen a recent resurgence in popularity. Recently, neural network-

based methods have been able to improve underwater acoustics 

source localization [4]. 

We briefly discuss the theory behind MFP and its challenges 

in Section 2. In Section 3, we introduce neural networks followed 

by our proposed deep neural network-based framework for 

damage localization that is robust under noisy and uncertain 

conditions. In Section 4, we outline our experiments and results. 

In Section 5, we conclude our work. 

  
2. MATCHED FIELD PROCESSING 

A matched field processor compares a mathematical model 

for wave propagation against experimental data at every target 

location in the grid. The target point giving maximum correlation 

with the data is the predicted location of the source or damage. 

The ability to build a model makes the MFP approach flexible. 

As guided waves are dispersive, the ability of MFP to deal with 
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broadband signals makes the approach more suitable for SHM 

applications than traditional delay-and-sum localization [5]. 

Consider a grid of dimensions L × W populated with sensors 

and damage at some location. The damage is considered as a 

scatterer. Sensors placed on the grid act as transmitters or 

receivers. Consider we have M sensor pairs. The experimental 

data is a Q × M matrix across Q frequencies and M 

measurements. We denote the data as X(ωq, rm) for frequency ‘q’ 

and measurement from sensor pair m. Let  𝑍̅(ωq , rm) be our 

analytical model.  A signal bp is calculated for every point ‘p’ in 

our grid such that 

 

 b𝑝 =
| ∑ ∑ X(ωq , rm)

Q
q=1

M
m=1 Z̅∗(ωq, rm, p) |

𝟐

∑ ∑ |
Q
q=1

M
m=1 Z̅(ωq, rm, p)|𝟐

 (1) 

where (.)* represents the complex conjugate. The estimated 

location from the processor is given by the maxima of Eq. 1 over 

all of the points.  

     MFP is likely to suffer from model mismatch due to 

environmental variations. Researchers have proposed methods to 

create data-driven models from baseline guided wave data using 

sparse signal processing methods [6]. MFP performance is 

further limited by the robustness of each matched field processor 

to environmental variations and uncertainties. This leads us to 

explore novel localization techniques that can achieve greater 

robustness to experimental variations. 

 

3. MACHINE LEARNING 
A central theme of machine learning algorithms is to learn a 

mapping from input to output using functional transformations. 

ML algorithms have been successfully applied to a variety of 

problems ranging from image recognition [7] to underwater 

acoustic source localization [4]. 

 

3.1 Deep neural network-based framework 
 

 
 

FIGURE 1: NEURAL NETWORK WITH ONE HIDDEN LAYER 

 

        Artificial neural networks consist of hidden layer(s) with 

nodes. The interconnections between subsequent hidden layers 

have unique, trainable parameters known as weights. Every node 

sums up the incoming signals and applies an activation function 

to get the output. This signal is passed on to subsequent hidden 

layers and ultimately to the output layer. At the output layer, a 

suitable loss function is optimized to make the predicted output 

go as close as possible to the actual output. The optimization 

process updates the trainable parameters (weights) of the neural 

network. An illustration of ANN is shown in Fig 1. 
       Deep neural networks are neural networks with multiple 

hidden layers. DNN’s can learn complex non-linear functions 

due to multiple hidden layers. DNN’s also provide the advantage 
of directly feeding input data to the model with the need for less 

feature engineering (input transformation). This sets apart 

DNN’s from other ML techniques [8]. 

To train our network, we simulate a Q (time samples) × M 

(sensor pair measurements) matrix of the wave data. We refer to 

this matrix as one “sample” in our dataset. We flatten the sample 

(Q × M matrix) into a 1D vector to be fed as input to the DNN. 

Our DNN framework has 2 hidden layers. The 1st hidden layer 

has n1 = 500 nodes and second hidden layer has n2 = 60 nodes.  

At the output, we have 2 nodes, one each for the horizontal and 

vertical grid location. Loss function at the output is the mean 

squared error between the DNN prediction and the target output. 

We then test our network with additional simulation data with 

previously untrained parameters and compare the results. 

 

4.   VALIDATION SIMULATION 
We assume an L × W grid. We simulate damage as a point 

non-uniformity at a random location which leads to the scattering 

of waves. The simulated waves are measured at various locations 

by randomly placed point sensors. Each sensor can act as a 

transmitter or receiver. We do not incorporate reflection at 

structure boundaries in this initial research. With this 

assumption, we generate simulated data using the general 

solution to the wave equation. Later, we add white Gaussian 

noise to our signal to simulate noisy conditions.  

 
FIGURE 2: DAMAGE LOCALIZATION SIMULATION SETUP 

 

An illustrative simulation setup is shown in Fig 2. 

Simulation data is generated for Q = 500 frequencies in the range 

of 0 to 1000 KHz. We simulate m = 15 sensors at random 

locations thereby giving M = 210 sensor pair measurements. 

While the optimum placement of sensor arrays is a widely 

studied research problem [9], the focus of our research is to 

demonstrate the usability of DNN in the context of damage 

localization. Hence, we use a random placement of sensors. 
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We perform t = 2000 Monte Carlo simulations for wave 

data, thereby giving t = 2000 samples to separately train and test 

our DNN. Recall that each sample is Q × M matrix. In every 

simulation, a random location is chosen for damage. The 

measurement of simulated wave data at sensor locations is the 

input to the DNN framework and the random damage location is 

the output from DNN. The hyperparameters of the DNN as 

discussed in Section 3.1, are critical to the performance of the 

DNN [10]. We experiment with multiple parameter values to 

find an optimal structure. To assess the DNN, we use a 

localization error performance metric defined by 

 
error =

1

T
∑| target location − predicted location|

𝑇

𝑡=1

 (2) 

where T is the total number of samples in the dataset. 

       We add noise of varying levels to test the robustness of 

different localization frameworks.  Signal to noise ratio is 

defined by  

 
SNRdB = 10 log10 (

SIGNAL

NOISE
) (3) 

 where SIGNAL is signal power and NOISE is noise power. 

        For completeness, we compare our DNN framework with 

another supervised ML technique known as random forests. RF 

is a statistical supervised ML technique that provides 

competitive performance on a variety of supervised learning 

problems [11]. RF consists of multiple predictors, each of which 

learns rules to map input to output from training data. 

 
FIGURE 3: ERROR AT VARYING NOISE LEVELS 

 

        Fig 3 shows the performance of three methods: matched 

field processing, deep neural networks, and random forest. We 

observe that our DNN based framework performs better than the        

other two methods for high noise levels (low SNR) while MFP 

is better at low noise levels (high SNR). 

 

5.   CONCLUSION 
We proposed a deep neural network based-framework for 

damage localization in structures. Using simulated data, we 

compared our framework with the traditional matched field 

processing technique. The performance of MFP was observed to 

be slightly better than DNN for high signal-to-noise ratios but 

DNN significantly outperformed MFP when the signal-to-noise 

ratio was low. The results show a huge promise from DNN’s for 

damage characterization in SHM. 
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