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ABSTRACT 
Deep Learning Neural Network (DLNN) algorithms are 

introduced in this work to detect the occurrence of MMOD 
impacts, determine the location of the impact site, and classify 
the severity of consequent damage. To address the challenges of 
limited empirical training data and ensuring robustness to 
varying test conditions, training DLNN is explored using a 
mixture of simulated and experimental data.  Even with a 
relatively small training data set, the effectiveness of this 
approach was demonstrated for characterizing low velocity 
impacts on representative Whipple shielding structures. 
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1. INTRODUCTION 

Micrometeoroid and Orbital Debris (MMOD) impacts on 
spacecraft and large space structures are a significant hazard that 
can compromise mission success and endanger the lives of crew 
[1]. Acoustic emission (AE) signals and impact shocks generated 
by MMOD impacts can be detected by an array of inexpensive, 
replaceable, wireless surface sensor units affixed to the external 
surfaces of the spacecraft or space structure [2-3]. Through 
accurate estimation of the severity of damage, appropriate 
maintenance actions can be performed. However, the 
interpretation of AE signals can be complex.  Determining 
impact location and the severity of consequent damage is also 
complicated by variations in structure geometry, sensor location, 
and sensor operational state. 

Deep Learning Neural Network (DLNN) algorithms are 
introduced in this work to detect the occurrence of MMOD 
impacts, determine the location of the impact site, and classify 

the severity of consequent damage. Specific challenges exist 
with transitioning emerging DLNN algorithms directly for 
nondestructive evaluation (NDE) applications. Prior successful 
NDE applications of neural networks have been dependent on 
taking care to reduce the dimensionality of the data and provide 
reliable features as inputs for classification [4-5]. Alternatively, 
training deep learning neural networks requires very large, well-
understood data sets. Relative to many problem spaces like 
image, voice, and text recognition, NDE is considered ‘data 
starved’. To address the challenges of limited empirical training 
data and ensuring robustness to varying test conditions, a novel 
design approach for training DLNN algorithms is proposed for 
impact damage classification. The classifier is split into three 
sub-classifiers that address (1) damage detection (2) damage 
localization and (3) damage severity. To address the need for a 
very large training data set, a hybrid approach is introduced that 
incorporates a mixture of experimental and model-generated 
data.  
 
2. MATERIALS AND METHODS 

 
2.1 Experimental and Simulated Studies 

An impact generation apparatus and acquisition software 
were constructed to collect experimental impact event data from 
multiple sensors along with relevant metadata. For the single 
sensor study, a small 24” x 24” representative Whipple shield 
served as the acoustic medium. Using steel spheres with 
diameters of 0.125”, 0.25” and 0.5”, five drop heights, and 24 
impact locations, 3,600 waveforms were captured. For the multi-
sensor study, a large 36” x 48” representative Whipple shield was 
used as the acoustic medium. Using steel spheres with diameters 
of 0.25” and 0.5”, 24 impact locations, and three drop heights, a 
total of 1,440 waveforms were captured. 

Initial simulated studies using FEM (COMSOL) were 
performed to demonstrate agreement with experimental AE tests, 
and begin to investigate the use of simulated data in DLNN 
training. Simulated results for a pencil-lead break were first 
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considered at 5 locations. These few simulated results were 
enhanced by a factor of 1000x by varying the calibration level of 
the sensor (over 10 levels) and adding more than 100 randomized 
samples of noise.   

 
2.2 Time-Frequency Signal Pre-processing    

During this ball drop study, the signal from the single sensor 
was split into two channels to capture different features of the 
waveform. The first channel was used to acquire a high gain 
sample of the early transient response while a second low gain 
channel (2) was also acquired to measure the full magnitude of 
the transient response of the impact. The high gain channel 
provides improved signal to noise of the early transient signals, 
for example the S0 mode features. While these high frequency 
components are lacking in channel 2, this low gain measurement 
does avoid serious truncation artifacts found in the high gain 
spectrogram. An option considered in this study was the mixing 
of features from the high gain and low gain spectrogram. Figure 
1 shows how the left portion of the high gain spectrogram and 
the right portion of the low gain spectrogram can be mixed to 
provide an improved feature map of both the S0 and A0 response 
for classification purposes.  These 2D spectrograms were used as 
inputs to the DLNN based classifiers. 

 

 
FIGURE 1: EXAMPLE OF MIXED TWO CHANNEL 
SPECTROGRAM FOR A 0.5” DIA. STEEL BALL DROP 
FROM 50 cm, DISTANCE FROM SENSOR = 31 cm. 

 
3. RESULTS AND DISCUSSION  

An initial classification problem was to estimate the distance 
from an impact event to a single transducer.  The DLNN design 
incorporated an initial convolution neural network, several small 
hidden layers, and final regression layer, trained to output an 
estimate of the distance between the impact and transducer. 
Training was performed using 67% of the sample set. Results are 
present in Figure 20 [left] using a remaining subset (33%) of the 
original data points [valid. set 1] and a collection of hybrid data 
samples at three independent locations [valid. set 2].  For the 
pencil-lead break shown in Figure 2(a), there was good 
agreement between the known and estimated values, for both 
validation test sets.  Results are presented in Figure 2(b) showing 
localization of the ball drop test. Results were generally good, 
but more spread was observed in the results relative to the 

simulated pencil-lead break results. This error trend is likely 
associated with some variability in the drop location and the lack 
of an S0 mode feature in the measured ball drop data, which is 
helpful for distance classification. A few outliers were noted, but 
these were discovered during post-analysis to be a result of an 
ambient ‘noise’ trigger event.   

(a) 

(b) 
 
FIGURE 2: DLNN RESULTS FOR IMPACT DISTANCE 
LOCALIZATION (a) USING HYBRID SIMULATED DATA 
SET WITH NOISE ENHANCEMENT, AND (b) AN 
EXPERIMENTAL DATA SET WITH VARYING DROP 
DISTANCES AND HEIGHTS. 
 
4.  CONCLUSION 

Deep Learning Neural Network (DLNN) algorithms are 
introduced in this work to detect the occurrence of MMOD 
impacts, determine the location of the impact site, and classify 
the severity of consequent damage. A series of DLNN classifier 
demonstrations were achieved addressing damage detection, 1D 
and 2D localization, and impact energy.  Even with a relatively 
small training data set, the effectiveness of this approach was 
demonstrated for characterizing low velocity impacts on 
representative Whipple shielding structures. Through these 
studies, insight was also gained into ways to improve the sensing 
scheme, signal processing and DLNN algorithm design for 
improved classifier performance for future efforts. 
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