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ABSTRACT 
Pipe infrastructure systems in service are aging and 

continue to degrade with passage of time. As the defects grow 

with time, for safety of mankind they have to be introspected 

continuously. Due to regular usage the inner surfaces can be 

inundated with tiny cavities which are not harmful and do-not 

need immediate repair. However, due to continuous usage these 

defects have to be monitored continuously so that whenever they 

are about to reach the pre-fixed threshold of being harmful we 

can repair them without delay. Here, we have developed a novel 

method for identification of large obtrusive defects using 

magnetic flux leakage (MFL) based nondestructive evaluation 

(NDE) technique and dynamically updated transfer learning. 

Running the pipeline inspection gauge (PIG) within the pipeline 

to collect very accurate, low noise readings for defect detection 

is expensive and time-consuming. The objective is to 

automatically detect the defective areas at the beginning and 

data obtained via fast inspection full of noise is estimated by 

mixture regression which produces posterior probabilities of the 

defects at each scan point. We can use transfer learning 

perspectives by leveraging the defect probabilities and location 

from the previous days, and then consequently update those 

probabilities based on current data by applying a dynamically 

updated transfer learning for properly detecting the size of the 

defect.  

Keywords: Nondestructive Evaluation, Magnetic flux 

leakage, Pipeline inspection tool, Bivariate Function Estimation, 

Dynamically Updated Transfer Learning. 

 

1. INTRODUCTION 
Monitoring the condition and performing effective 

diagnosis of the defects within the pipeline has become absolute 

necessary as the structural integrity of the pipelines decreases 

due to various loading conditions with time. Over the years, 

various studies have been done for defect detection [1], 

especially using inline magnetic flux leakage (MFL) inspection 

technique as it provides a high resolution of the interior of the 

pipe from which the anomalies can be detected effectively [2].  

However, there can be different kinds and shapes of defects 

within the pipeline, most of them are minor scratches due to 

passage of gas or fluids within the pipeline. Hence running the 

PIG every time slowly within the pipeline for continuous 

inspection and monitoring is time consuming and not cost 

effective. Our goal is to raise a flag of caution when the defect 

size exceeds a pre-fixed threshold beyond which they can be 

detrimental for usage and the pipe-sector needs to be 

immediately subjected to higher level manual inspection or 

maintenance services. In our preliminary study, defects of 

various sizes and shapes are simulated by a 3D finite element 

methods (FEM) model in ANSYS. Variation in geometrical 

parameters can be well simulated and understood [3].  

Based on the intensity matrices, we fit a mixture regression 

model. The number of mixtures in the model is not fixed but 

determined by a data driven procedure. This allows up to well 

model and determine scenarios with multiple defects for 

intensity filed in areas with defects behaving much differently 

than non-defects. Here, we are running the accurate slow scan 

during a time when there is less or no usage of the pipeline, i.e. 

during regular maintenance period, from where we can detect the 

position of the defects with accuracy. We are referring to this day 

as Day 0 when the noiseless data are captured. On performing 

function estimation over the data received from Day 0, we can 

recognize the defect area accurately with ease. With that 

accomplished, we then run a more economic daily inspection or 

monitoring on the pipeline every day and data obtained is 

contaminated with noise. Thus, less noisy data collected once in 

a month is served as a transfer learning to predict the growth of 

the defects with time from noise prone daily scans. Since simply 

fitting function estimation cannot recognize the defect properly, 

for this reason we propose to perform dynamically updated 

transfer learning for defect detection under noisy condition [4].  
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2. EXPERIMENT  
In our ANSYS model, the magnetic circuit consists of a 

ferromagnetic yoke, two ferromagnetic couplings and two 

permanent magnets [5]. Corresponding ANSYS model is 

presented in Figure 1. We have used the following benchmark 

setting as discussed in [6] to construct our model detailed 

description of which is given in Table 1. 

 
 
   FIGURE 1: Design of the implemented Maxwell 3D model. 

 
2.1 Transfer Learning and Data Processing 

For setting up the regression model we consider the response 

𝑦 from 412 points as a vector, i.e, 

𝑦𝑖 = 𝑓(𝑥𝑖 , 𝑦𝑖) 𝑤ℎ𝑒𝑟𝑒 𝑖 = 1, … . , 𝑁2    (1) 

 

and 𝑁 = 41. 𝑥𝑖 , 𝑦𝑖 denotes the co-ordinates of the point for the 

daily probes. 

Now the function 𝑓 is modelled as: 

𝑓(𝑥𝑖 , 𝑦𝑖) =  ∑ 𝑃𝑘 . 𝑁(𝛽0
(𝑘)

+ 𝛽1
(𝑘)

𝑥𝑖 + 𝛽2
(𝑘)

𝑦𝑖 , 𝜎𝑘
2)

𝐾

𝑘=1

  (2) 

The number of mixtures is 𝐾. For each mixture model, the 

intensity is modeled by a linear surface 𝛽0
(𝑘)

+ 𝛽1
(𝑘)

𝑥𝑖 + 𝛽2
(𝑘)

𝑦𝑖  

with aberrations having variability 𝜎𝑘
2. For areas near defects, the 

average intensity 𝛽0
(𝑘)

+ 𝛽1
(𝑘)

𝑥𝑖 + 𝛽2
(𝑘)

𝑦𝑖  will be different and 

leading to the points in those areas being from other mixing 

densities [7]. The mixing weight 𝑃𝑘 can be made to depend 

on(𝑥𝑖 , 𝑦𝑖). While computing, for each points (𝑥𝑖 , 𝑦𝑖) we find out 

the posterior probabilities �̂�𝑘  (𝑥𝑖 , 𝑦𝑖) and based on their value 

can classify each point to either defective or non-defective areas.  

In all these cases we have observed that our function estimation 

matches well with the intensity plots and the defective areas can 

be recognized when we are applying the function estimation on 

the data provided by Day 0 when it is un-affected by noise.  But 

when are adding noise to large defects as in Case 2, where we 

have added Gaussian noise of strength 80% to the intensity 

matrix of large defects then the results of the algorithm become 

bad. However, in this case if we can tell the algorithm the 

location of the defects as well as the mixing proportions then the 

algorithm does better. Let 𝐼𝑗 be the intensity matrix from the Day 

𝑗 data. For simplicity, consider that new defects have not cropped 

up in between and we are connected with finding and updating 

the sizes of the existing defects based on 𝐼0 as the beginning of 

the week or month. 𝐼0 from slow scan informed most information 

about defect and location of defect will be invariant over time, 

while size of defect grows with time. We update the probabilities 

of the defects based on  𝐼𝑗 for every 𝑗. 

The algorithm is as follows: 

For the daily probes for each point (𝑥𝑖 , 𝑦𝑖) do the following: 

1> Mark the points in the defected area on Day 0 based on the 

posterior probability 

𝐷0 = {(𝑥𝑖 , 𝑦𝑖) ∶   𝜋0(𝑥𝑖 , 𝑦𝑖)  ≥ 0.8} (3) 

Note that the defect area based on the probe of Day 0   𝐼0 are 

points with posterior probability greater than 80% for the 

defective component mixture in the fitted mixture regression.  

2> Note as 𝑗 ≥ 1 for the daily probes, the defective area can only 

grow. So the posterior probability 𝜋0 of the points (𝑥𝑖 , 𝑦𝑖)  in  𝐷0 

will not decrease. 

3> For all the points in 𝐷0 we do not change 𝜋0. 

4> For all other points at day 𝑗 = 1 we look at points in the 

neighborhood of 𝐷0. We will call a point (𝑥𝑖 , 𝑦𝑖) as a neighbor 

of 𝐷0 if and only if its distance from 𝐷0 is less than 0.1 (say). 

The distance of (𝑥𝑖 , 𝑦𝑖) from 𝐷0 is  

= 𝑚𝑖𝑛(𝑥,𝑦)𝜀𝐷0
|𝑥𝑖 − 𝑥| + |𝑦𝑖 − 𝑦| = 𝜌1(𝑥𝑖 , 𝑦𝑖)  (4) 

 We define 𝐷0
̅̅ ̅ = {all points in the neighborhood of 𝐷0 as defined 

above.} 

Similarly, we can define, 

                    𝐷�̅�  = {(𝑥𝑖 , 𝑦𝑖) ∶   𝜌𝑗(𝑥𝑖 , 𝑦𝑖)  ≤ 0.1} (5) 

where 𝜌𝑗(𝑥𝑖 , 𝑦𝑖) =  𝑚𝑖𝑛(𝑥,𝑦)𝜀𝐷𝑗−1
|𝑥𝑖 − 𝑥| + |𝑦𝑖 − 𝑦| 

5> Update the posterior probability as follows: 

Consider the scan point (𝑥𝑖 , 𝑦𝑖) which is a neighbor of 𝐷0. For 

simplicity consider only one defective area with mean 

µ𝑀(𝑥𝑖 , 𝑦𝑖) =  𝛽0
(𝑘)

+ 𝛽1
(𝑘)

𝑥𝑖 + 𝛽2
(𝑘)

𝑦𝑖  and standard deviation 𝜎𝑀. 

The posterior probability for defect on Day 0 is 𝜋0(𝑥𝑖 , 𝑦𝑖). Let 

on day 𝑗, the reading at (𝑥𝑖 , 𝑦𝑖) is 𝐼𝑗(𝑥𝑖 , 𝑦𝑖). Then update the 

posterior probabilities on day 1 by, Bayes rule as follows: 

 

�̂�𝐷  [𝑗](𝑥𝑖 , 𝑦𝑖) =  
𝑝 ∗ 𝛷(

𝑎 − µ1

𝜎1 
)

𝑝 ∗ 𝛷 (
𝑎 − µ1

𝜎1 
) + (1 − 𝑝) ∗  𝛷(

𝑎 − µ2

𝜎2 
)

 (6)  

where, 𝑝 =  𝑃𝐷[𝑗 − 1] = 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑜𝑓 𝑑𝑒𝑓𝑒𝑐𝑡 𝑜𝑛 𝑑𝑎𝑦 𝑗 − 1 

           𝑎 =  𝐼𝑗(𝑥𝑖 , 𝑦𝑖) ,µ1 =  𝛽0
(𝑑)

+ 𝛽1
(𝑑)

𝑥𝑖 + 𝛽2
(𝑑)

𝑦𝑖  

           µ2 =  𝛽0
(𝑛𝑑)

+ 𝛽1
(𝑛𝑑)

𝑥𝑖 + 𝛽2
(𝑛𝑑)

𝑦𝑖  

           𝜎1 = standard deviation of defect. 

           𝜎2 = standard deviation of non-defect. 

Update, 

 𝜋𝐷[𝑗](𝑥𝑖 , 𝑦𝑖) = max (𝜋𝐷[𝑗 − 1](𝑥𝑖 , 𝑦𝑖), �̂�𝐷  [𝑗](𝑥𝑖 , 𝑦𝑖) ) (7) 

Thus, 𝜋𝐷[𝑗] =  𝜋𝐷[𝑗 − 1] if the scan point is inside 𝐷𝑗  or is not a 

neighbor of 𝐷𝑗 . It is only changed by the above formula for the 

points in the neighborhood of 𝐷𝑗 .The above formula is written 

for general 𝑗 and can be used iteratively. 

 6> Finally, iterate with the new posterior probability, µ𝑀 and 𝜎𝑀 

as 𝑗 increases and the mixing probabilities as: 

𝑃𝐷 =  ∑ 𝜋𝐷[𝑗](𝑥𝑖 , 𝑦𝑖)
𝑁2 

𝑖=1
 (8) 

𝑃𝑁𝐷 =  1 − 𝑃𝐷   (9) 
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where, 𝑃𝑁𝐷 is the probability of mixture corresponding to non-

defect.  

Update the defect area as: 

𝐷𝑗 = {(𝑥𝑖 , 𝑦𝑖) ∶   𝜋𝐷(𝑥𝑖 , 𝑦𝑖)  ≥ 0.8}   (10) 

In this way we can update the grid of the daily noisy scans with 

the aid of transfer learning from the scan of Day 0. 

3. PRELIMINARY RESULTS AND DISCUSSION 
At first we have done our case studies on the data obtained 

from Day 0 i.e. when the scan is done accurately and is un-

affected by noise.  Since this is the most pivotal step of our 

analysis, we have concentrated on function estimation and 

recovery of the defects’ location and size on day 0 as precisely 

as possible. For the process, we have considered three kinds of 

defects and has shown good recovery based on mixture 

regression technique for those defects sizes and locations. 

Thereafter, we show that the mixture regression method is not 

useful when we have noisy data, in which case using the updated 

algorithm for day 1 has produced encouraging results. 

 

Case 1: Very Small Defect 
Here we obtain the data from Day 0 which comprised of a 

very small defect which is benign. From the intensity plot, fitted 

function, training error the defect can be easily recognized.  

  
FIGURE 2: Intensity Plot of very small defect from Day 0. 

 
FIGURE 3: Fitted function of very small defect from Day 0. 

 
FIGURE 5: Defect area recognition of very small defect from 

                       Day 0. 

 

From the Figure 5. we can see a very few red dots within the 

black dots which represent the minor scratches. Hence we can 

easily consider it as a non-defect. 

       Next, we have considered cases where the data from Day 0 

consists of small and large defects. There also from the intensity 

plots, fitted function and training error like previous we can 

easily identify the growth of defect with time. Here we obtain the 

data from Day 0 which comprised of a small defect (say). From 

the intensity plot, fitted function, training error we can easily 

notice the defect. 

Case 2: Large Defect under noisy condition 
Here on Case 3 we have added Gaussian noise. This is 

similar to the scenario of implementing fast cheap scans within 

the pipeline, as fast scans are prone to be affected by noise. 

 
FIGURE 17: Failure of Defect detection in presence of noise        

4. CONCLUSION 
Hence by applying the bi-variate function estimation to the noisy 

data obtained from the days when the fast cheap scanning are 

done, then the defect size can-not be properly estimated. So to 

properly recognize the defect under noisy condition we are 

dynamically updating the grid by the auxiliary information 

obtained from Day 0 where the location and the size of the defect 

is used as a transfer learning to update the size of the defect with 

time. We have used R software to develop the above plots using 

mixtools R package. 
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