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ABSTRACT 
Polymer O-rings are an essential part of many designs, 

including mission and safety critical systems. Currently, there 

are no accurate destructive tests for measuring the polymer 

properties of O-rings (e.g. durometer) let alone nondestructive 

methods. As such, it is difficult to identify substandard, 

nonconforming, or counterfeit O-rings. This work combines 

resonant ultrasound spectroscopy (RUS) with machine learning 

and predictive analytics to sort O-rings based on material and 

durometer (multinomial classification) and to accurately 

estimate the mass and durometer with an ultrasonic examination 

that takes less than 10 seconds. Results from a population 

including eight materials and six durometers are presented and 

discussed. 
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1. INTRODUCTION 
Detecting substandard, nonconforming, improperly 

processed, or counterfeit parts become an increasingly important 

topic for private companies and government agencies alike. 

Polymer O-rings are essential to many mission and safety critical 

systems. Yet, there are little to no nondestructive evaluation 

methods available. A fast, accurate, and reliable NDE method for 

O-rings is needed to guarantee safety and mission success. 

Currently, there are no accurate and reliable methods to 

measure the durometer of an O-ring or to nondestructively 

characterize its material [1, 2]. The standard durometer 

measurement method is a semi-destructive Shore hardness A test, 

which is not applicable to O-rings. The semi-destructive Shore 

micro-harness M test is not accurate or reliable due to the 

deformation of the O-ring during testing. Existing material 

characterization methods, like Fourier Transform Infrared 

Spectroscopy (FTIR), are destructive, slow, and labor-intensive. 

An alternative approach to material characterization and 

durometer measurement in O-rings is needed. By characterizing 

the filtering effects of O-rings on a resonance spectrum, 

extracting signal features, and analyzing with machine learning, 

differences between O-rings can be distinguished. 

This paper presents a novel nondestructive method for 

determining the material and durometer of polymer O-rings 

using RUS and a Random Forest machine learning algorithm. 

Using this approach, O-rings were accurately sorted by 

classification into eleven groups and their durometer was 

accurately estimated to within the standard tolerance. 

 

2. MATERIALS AND METHODS 
The materials used in this study can be grouped into eleven 

distinct classes (not including age and batch) combining eight 

polymer materials and six durometers. Table 1 provides a list of 

materials and durometers. 

Since this study focused on detecting substandard, 

nonconforming improperly processed, or counterfeit parts the 

form factor of the O-rings was kept constant. O-ring material, 

durometer, age, and batch were allowed to vary. The term 

“nominal durometer” is used in this paper since the durometer of 

each O-ring has not been measured and cannot be accurately 

determined. Nominal durometers of each population were 

determined by the manufacturer by collecting Shore hardness A 

measurements from witness coupon(s) fabricated with each 

batch. A standard tolerance of ±5 is allowed when vendors report 

the durometer of their products [2]. Thus, a whole batch of O-

rings may have durometers that are more than five points off 

from their declared durometer due to the standard tolerance and 

the differences between O-rings and coupons. 

 

TABLE 1: LIST OF MATERIAL AND DUROMETER GROUPS. 

Material Groups Durometer Groups (±5) 

1 BunaN 1 65A 

2 CRBunaN 2 70A 

3 EPDM 3 75A 

4 Florosilicone 4 80A 

5 Polyurethane 5 90A 

6 PTFE 6 98.5A 

7 Silicone   

8 Viton   

A – Shore hardness A A – Shore hardness A 
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Several environmental and operational factors affect the 

durometer of the individual O-rings. These include variations 

due to temperature fluctuations, degradation from fluid and 

chemical attack, as well as operational condition. These increase 

the uncertainty in the actual durometer of each O-ring. The 

measurements used in this study were collected at near constant 

temperature (±1°C). 

 

2.1 Linear System Approach 
Soft polymers are attenuative and viscoelastic in nature 

which presents difficulties for standard ultrasonic inspections 

and for resonance inspection in particular. Soft, rubber-like 

materials are difficult to drive to resonance and usually produce 

signals with very low amplitude, broad peaks that prevent a 

reliable, accurate resonance inspection. An alternative approach 

is needed to inspect polymer O-rings. 

The RUS system used in this study could be characterized 

as a linear system since it followed the homogeneity, additivity, 

and shift invariance rules of linear systems. Thus, the ultrasonic 

linear system model popularized by Schmerr & Song [3] was 

applicable. The portion of the received signal due to the O-rings 

(and the variances therein) were determined by deconvolving the 

system transfer function out of the signal. The resultant signal 

was then the transfer function for each individual O-ring, which 

in this case was acting like a filter. The system transfer function 

was determined by replacing the O-ring with water. 

 

2.2 Experimental Configuration 
The experimental configuration for this study included two 

specially fabricated piezoelectric transducers, a combination 

function generator and spectrum analyzer (Vibrant Corp., 

Albuquerque, NM), and a 20dB attenuator (CATTEN-0100-

BNC, Crystek Corp., Fort Myers, FL). A diagram of the 

configuration is given in Figure 1. The transducers (designed to 

act as resonating bodies) were fabricated out of brass and 

employed PZT crystals with center frequencies of ~125kHz. A 

stepped frequency sine wave within the range of 20-200kHz was 

used to excite resonances.  

Full sweeps were collected for several parts and frequency 

windows of interest were identified. For each window, the raw 

signals were collected, the system transfer function deconvolved, 

and signal features extracted. For this work, the extracted signal 

features include max amplitude, skew, kurtosis, and spectral 

energy. These, along with other features, were fed into a machine 

learning algorithm. 

 

2.1 Machine Learning 
After collecting the spectra from the O-rings and extracting the 

signal features, a subset of the O-rings was fed into a machine 

learning algorithm along with classification information and 

properties. This subset is called the “training set” and changes 

based on the analysis. The algorithm identified which 

combination of features yielded the best sort or produced the best  

estimate of properties. This work utilized a Random Forest 

algorithm from Python’s Scikit-learn library [4]. 

 
FIGURE 1: BLOCK DIAGRAM OF THE ULTRASONIC SYSTEM 

CONFIGURATION. 

 

3. RESULTS AND DISCUSSION 
Typical signals collected from the O-ring population are 

shown in Figure 2 for a single collection window. The colors 

represent different polymer materials. It is clear from this figure 

that significant behavioral differences exist between the different 

polymers in this window. Take Viton (blue) and BunaN (red) for 

example. These two exhibited significantly different amplitudes 

and shapes. Although some polymers may have exhibited similar 

behavior in any given window, that did not hold true for all 

windows. 

A Random Forest model was trained to sort the O-rings 

based on material type and durometer. Combinations of eight 

material types and six durometers yielded eleven distinct 

classifications. The likelihood of randomly selecting the correct 

classification for each part was therefore ~9%. Table 2 presents 

the results of the multinomial classification. The Random Forest 

Model trained on resonance signal features was able to correctly 

 

 
FIGURE 2: EXAMPLE OVERLAY OF A SMALL SECTION OF 

THE SPECTRA FOR O-RINGS. COLORS INDICATE MATERIAL 

TYPE. 
 

 
FIGURE 3: DUROMETER ESTIMATES FOR POPULATIONS OF 

O-RINGS USING ULTRASONIC SIGNAL FEATURES. 
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TABLE 2: RESULTS OF O-RING MULTINOMIAL CLASSIFICATION SORTING USING A RANDOM FOREST ALGORITHM. THE 

HIGHLIGHTED CELLS INDICATED THE FRACTION OF PARTS CORRECTLY SORTED FOR EACH CLASSIFICATION. 
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65A BunaN 0.89 0.09 0 0 0 0 0 0.02 0 0 0 97 

70A BunaN 0.02 0.91 0 0.01 0.05 0 0.01 0 0 0 0 224 

90A BunaN 0 0 0.95 0 0 0 0 0 0.05 0 0 21 

70A CRBunaN 0.10 0.06 0 0.84 0 0 0 0 0 0 0 31 

70A EPDM 0 0.11 0 0 0.89 0 0 0 0 0 0 129 

80A EPDM 0 0 0 0 0 1.00 0 0 0 0 0 19 

70A Florosilicone 0.03 0 0 0 0 0 0.94 0.03 0 0 0 32 

70A Polyurethane 0.19 0 0 0 0 0 0 0.81 0 0 0 31 

98.5A (55D) PTFE 0 0 0.06 0.03 0 0 0 0 0.88 0 0.03 33 

70A Silicone 0 0 0 0 0 0 0 0 0 1.00 0 130 

75A Viton 0 0 0 0 0 0 0 0 0.01 0 0.99 143 

#Samples per Sorted Class 101 229 22 29 125 20 32 28 31 130 143 890 

 

 

identify the material and durometer of 890 O-rings with and 

accuracy of ~93%, which is excellent for a preliminary 

examination. Silicone-70A and Polyurethane-70A were the best 

and worst performers respectively. Similar materials and similar 

durometers were the main source of confusion in sorting, which 

was expected given the uncertainty in the durometer of each 

individual O-ring. 

Additional Random Forest Models were trained to estimate 

part mass and durometer. Part mass was measured and the 

durometer was taken to be the nominal durometer of the batch. 

The Random Forest then estimated both parameters for all 890 

O-rings with an accuracy of ~±2g for the mass and ~±5 for the 

durometer (Figure 3). Recall that the uncertainty in the O-ring 

durometer from the manufacturer was ≥ ±5. These results are 

excellent for a preliminary examination of this method. It is 

likely that the results could be improved with more accurate 

measurements of O-ring durometer. 

 
4. CONCLUSION 

Polymer O-rings comprise an entire class of components 

(with the potential to be safety/mission critical) that is currently 

underserved by NDT&E. This paper demonstrates that 

resonance methods are sensitive to material differences for 

polymer O-rings. A preliminary study used RUS and machine 

learning to sort O-rings based on material and durometer into 

eleven distinct classifications with 93% accuracy using a test that 

took less than 10s per part. In addition to the multinomial sort, 

this work was able to correctly estimate both the mass (to within 

a few grams) and durometer (to within manufacturer tolerance) 

using a test that took less than 5s. 

Given the standard method for determining durometer of O-

rings, the results presented in this paper are limited in scope due 

to the uncertainty of the durometer. The scope of these results is 

also limited by holding O-ring sizes constant. Future work 

should focus on verification and validation of the relationship 

between resonance signal features and polymer material 

properties. Using Shore A coupons would greatly assist in that 

effort. Additional topics for future work include identifying the 

minimum training set required and detecting polymer 

degradation and age. 
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