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ABSTRACT 
Compressive Sensing and Wavelet Thresholding are 

techniques that can allow data to be represented with much fewer 

values that the Nyquist sampling criterion would suggest. This 

paper explores using these techniques to affect lossy 

compression on phased array ultrasound data while retaining 

the ability to detect defects once imaged. 
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1. INTRODUCTION 
Advances in ultrasonic phased array imaging algorithms are 

allowing for more and more accurate defect characterization but 

the associated increase in transducer number requires large 

amounts of data to be stored. Coupled with the high sampling 

rate needed to satisfy the Nyquist sampling criterion for high 

frequency sound one can quickly run into data storage issues. 

This is especially true in applications such as inline pipe 

inspection and structural health monitoring where hours’ or even 

days’ worth of recorded data need be stored on a relatively small 

device. 

This paper compares two compression methods: Wavelet 

Thresholding (WT) and Compressive Sensing (CS) that both rely 

on sparse representations. Their ability to provide lossy 

compression of ultrasonic phased array data is explored by 

comparing the resulting images using two common algorithms: 

Plane Wave Imaging (PWI) and the Total Focussing Method 

(TFM). Images are assessed using Normalized Cross-Correlation 

(NCC) and Signal to Noise Ratio (SNR).  The impact of multiple 

defects is considered as well as the trade-offs in compression and 

decompression computational complexity.  

The results describe the ways these two compression 

methods affect defect detection and their relative advantages and 

disadvantages. Both methods show promise in achieving large 

amounts of compression but CS is able to better minimize 

computation during compression while WT is shown to 
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outperform its reconstruction accuracy in terms of both SNR and 

NCC. 

 
2. MATERIALS AND METHODS 

The compression and decompression methodology used 

here is displayed in Fig. 1. Both CS and WT rely on data to be 

sparsely represented, achieved in this case with the Discrete 

Wavelet Transform (DWT). Simulation has been used to create 

data with varying numbers of artifacts after validating it against 

representative experimental results. 

 

FIGURE 1: FLOW CHART DESCRIBING COMPRESSION AND 

RECOVERY STAGES. 

 

2.1 Compressive Sensing 
 The general CS model is based around recovering an 𝑁 

length signal 𝑋 from 𝑀 (𝑀 < 𝑁) random measurements. This 

signal must have a suitably sparse representation 

 

𝑋 = 𝜓𝐹                       (1) 

 
given by the 𝑆 sparse vector 𝐹 and described using the 𝑁 × 𝐾 

dictionary 𝜓.  
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Compression is achieved by linear measurements taken from 𝑋 

 

𝑌 = 𝜙𝑋                            (2) 
 

where 𝜙 is an 𝑀 × 𝑁 sensing matrix. Given that 𝑋 is sparse there 

is only one more condition needed for satisfactory recovery of 𝑋 

(providing 𝑌 and 𝜙 are available). This is called the Restricted 

Isometry Property (RIP) and requires that a constant 𝛿𝑆 (0 <
𝛿𝑆 < 1) exists such that 

 

√1 − 𝛿𝑆 ≤
‖𝜙𝜓𝐹‖2

‖𝐹‖2
≤ √1 + 𝛿𝑆               (3) 

 

meaning that 𝜙𝜓 preserves the ℓ2 norm of all 𝑆-sparse vectors. 

Throughout this paper 𝜙 is produced by drawing values 

from a Gaussian distribution, modelling analogue random 

sensing whilst also guaranteeing satisfaction of the RIP [1,2].  

Recovery is achieved by solving 

 

𝑚𝑖𝑛‖𝐹‖0  𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 ‖𝜙𝑋̅ − 𝑌‖2 < 𝜀             (4) 
 

for 𝑥̅, where 𝜀 (often assumed to be negligible) is a function of 

the amount of noise and/or deviation from exact sparsity in 𝑋. 

Finding the true minimum for Eq. 4 is NP-hard but when 𝜙𝜓 

satisfies the RIP it can be approximated accurately by 

 

𝑚𝑖𝑛‖𝐹‖1  𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 ‖𝜙𝑋̅ − 𝑌‖2 < 𝜀             (4) 
 

which is a solvable convex problem. In this paper Orthogonal 

Matching Pursuit (OMP) is used to find the solution to Eq. 4. 

OMP is an iterative ‘greedy’ algorithm that sequentially 

estimates the 𝑆 largest values in 𝑋 while attempting to obtain the 

fastest reduction in residual error, ‖𝜙𝑋̅ − 𝑌‖2 [3]. 

 
2.2 Wavelet Thresholding 
Thresholding of data can be done in both soft and hard 

regimes [4,5]. In this paper only hard thresholding is considered 

as it gives a direct comparison to the 
𝑀

𝑁
 compression via CS. This 

involves setting all DWT co-efficients below the largest 𝑀 

values to zero for each A-Scan. The resulting sparse matrix is 

represented efficiently using Compressed Sparse Column or 

Row (CSC or CSR) storage. [6] 
 
2.3 Simulating Data 
A simulation of the linear acoustic response from point 

scatterers has been used in this paper [7]. The simulation 

assumes the response at receiver 𝑖 from transmitter 𝑗 due to any 

given point scatterer can be calculated as 

 

𝑓
𝑖𝑗

(𝑡) = 𝑓
0
(𝑡 − 𝜏)

1

√𝑅𝑇𝑅𝑅
𝐷𝑇𝐷𝑅𝛫𝑇𝛫𝑅𝑉    (5) 

 

where 𝑓
0
 is the pulse input at time 𝜏, delayed by 𝑡 time, 𝑅𝑇, 𝑅𝑅 

are the distances from the transmit and receiver elements to the 

reflector, 𝐷𝑇 , 𝐷𝑅  are the directivity of the transmit and receive 

elements, Κ𝑇 , Κ𝑅 factors for coupling of transducer to medium 

movement [8] and 𝑉 is the scattering coefficient (assumed angle 

and frequency independent). Directivity and coupling factors are 

functions of transmit/receive angle and angular frequency.  

Satisfactory agreement with the response from a single 

1mm side drilled hole has been found and the simulated set up 

used for CS and WT comparison is shown in Fig. 2.  

 

FIGURE 2: (a) SET UP FOR SIMULATED DATA AND 

RESULTING UNCOMPRESSED (b) PWI AND (c) TFM OVER A 

20dB RANGE. 
 

3. RESULTS AND DISCUSSION 
The compression performance of WT and CS has been 

compared by analyzing the SNR of individual defects and the 

maximum NCC of resulting images against an uncompressed 

counterpart. There are several interesting trends that can be 

drawn from the results and an outline of them are as follows.  

Firstly, WT achieves higher NCC than CS at every 

compression ratio. This is perhaps intuitive as CS is attempting 

to reconstruct the dominant wavelet coefficients from a reduced 

data set whereas WT directly stores them.  

Secondly, whether CS is applied to wavelet coefficients or 

time domain signals the result is the same. This acquisition basis 

independence is an advantage of CS because it means the DWT 

need not be implemented alongside data acquisition, where 

computational power is often limited. It also means that if at a 

later date the results are found to be sparser in a different domain 

this can be implemented in the recovery stage to provide more 

accurate reconstruction.  
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Finally, with respect to SNR the two methods behave quite 

differently. As shown in Fig. 3 both methods maintain near 

lossless compression for longer when fewer defects are present 

but the way they affect SNR beyond this point differs. WT causes 

sudden drops in SNR when the wavelet coefficients relating to 

those defects are thresholded out where as CS causes a much 

more gradual decrease in SNR as less information is available to 

the recovery process. These trends in SNR demonstrate that the 

dominant features in a signal will be reconstructed at the 

detriment of others, especially with WT. This means care must 

be taken to reduce any strong but unwanted artifacts, such as 

back wall reflections, before compressing data. 

 

FIGURE 3: SNR FOR SIMULATIONS OF BOTH FOUR AND 

TWO DEFECTS IMAGED WITH TFM AFTER COMPRESSION 

WITH (a) CS AND (b) WT.

4.  CONCLUSION 
This paper has explored the usefulness of Compressive 

Sensing and Wavelet Thresholding as lossy compression tools 

for ultrasonic phased array data. At this stage WT has been found 

to be the more generally effective of the two but CS is able to 

perform extremely computationally simple compression and has 

more potential for adaption to a specific situation. In summary, 

both methods show promise in helping to reduce the amount of 

data phased arrays need to store in situations where data storage 

pressure is currently a barrier to phased array imaging. 

 

ACKNOWLEDGEMENTS 
This research is funded by the Engineering and Physical 

Sciences Research Council (EPSRC, grant number 

EP/L015587/1) via the Research Centre for Non-Destructive 

Evaluation (RCNDE), with additional funding provided by 

Baker Hughes, a GE Company 

 

REFERENCES 

 [1] M. A. Davenport and M. B. Wakin, “Compressive 

sensing of analog signals using discrete prolate spheroidal 

sequences,” Appl. Comput. Harmon. Anal., vol. 33, no. 3, pp. 

438–472, 2012. 

[2] H. Liu and J. Zhang, “On the ℓ1/ℓ𝑞  Regularized 

Regression,” arXiv Prepr. arXiv0802.1517, 2008. 

[3] T. T. Cai and L. Wang, “Orthogonal matching pursuit 

for sparse signal recovery with noise,” IEEE, 2011. 

[4] D. L. Donoho and I. M. Johnstone, “Adapting to 

unknown smoothness via wavelet shrinkage,” J. Am. Stat. 

Assoc., vol. 90, no. 432, pp. 1200–1224, 1995. 

[5] D. L. Donoho, “De-noising by soft-thresholding,” IEEE 

Trans. Inf. theory, vol. 41, no. 3, pp. 613–627, 1995. 

[6] Y. Saad, “SPARSKIT: A basic tool kit for sparse matrix 

computations,” 1990. 

[7] H. A. Bloxham, A. Velichko, and P. D. Wilcox, 

“Combining simulated and experimental data to simulate 

ultrasonic array data from defects in materials with high 

structural noise,” IEEE Trans. Ultrason. Ferroelectr. Freq. 

Control, vol. 63, no. 12, pp. 2198–2206, 2016. 

[8] G. F. Miller and H. Pursey, “The field and radiation 

impedance of mechanical radiators on the free surface of a semi-

infinite isotropic solid,” Proc. R. Soc. London. Ser. A. Math. 

Phys. Sci., vol. 223, no. 1155, pp. 521–541, 1954. 

 

 

 

 

 

 


