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ABSTRACT 
Anisotropic laminated materials such as composite 

structures is an important class of materials intensively used in 

high-end industrial contexts. Analyzing ultrasonic testing 

experiments of these materials through numerical modeling 

remains an important task, especially in the presence of complex 

phenomena such as visco-elastic behavior and structural noise 

emanating from intermediate epoxy layers. This communication 

is dedicated to recent advances aiming at representing these 

phenomena into a finite element solver in transient regime. 

Concerning the visco-elasticity we consider the standard models 

of Kelvin-Voigt, Maxwell and Zener. After recapping their 

corresponding attenuation behaviors, we propose an efficient 

calibration strategy for these models, valid for 2D and 3D 

anisotropic solids. We analyze relevant time discretization 

strategies for each model, leading to an efficient explicit 

numerical scheme. Concerning the structural noise, we propose 

to incorporate the effect of epoxy layers using spring-mass 

transmission conditions between plies. These transmission 

conditions are adequately embedded in the finite element 

formulation using the mortar element method. Illustrations of 

our combined numerical tools are given in a 2D context.  
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1. INTRODUCTION 
Modeling ultrasonic testing experiments of laminate 

composites requires simulating the propagation of elastic bulk 

waves in a medium with varying anisotropic directions, i.e. per 

stratum and following the potential curvature of the specimen. 

We focus our attention to numerical approaches in order to 

represent accurately complex geometrical features (stiffeners, 

cracks, specimen curvatures …). Additionally, in the context of 

laminate composite structures, at least two important aspects 

should be addressed: (1) attenuation of the ultrasonic beam due 
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to both resin viscosity and multiple diffractions at the fiber scale; 

(2) thin intermediate epoxy layers (from 5 to 15 µm) inducing a 

structural noise around specific cutting frequencies. 

In previous communications [1] we have detailed a 

numerical approach in time domain and based upon a 

decomposition of the configuration into macro-elements (MEs). 

In this approach, each ME bears capital information concerning 

both the geometry and the physical characteristics (fluid, solid, 

stratified, absorbing layers …) of a sub-domain. The MEs are 

sub-discretized in a structured fashion depending on an a priori 

estimation of the wavelengths of interest and a high-order 

explicit numerical scheme is applied leading to significantly 

enhanced performances of the overall numerical solver. The 

different physical formulations assigned to each macro-element 

are linked together using the mortar element method [2], which 

conserves, in the case of conform interface meshes, the explicit 

nature of the numerical scheme. This strategy has been 

successfully used in the context of immersed curved composite 

laminates in a 3D context. 

In this communication, we detail improvements of the finite 

element solver, which are twofold. First, we propose to calibrate 

and incorporate standard visco-elasticity models [3] in order to 

take into account attenuation phenomena and we replace thin 

intermediate epoxy layers by effective transmission conditions 

based upon a spring-mass rheological model [4]. The related 

explicit numerical scheme are presented along with their 

corresponding stability condition on the time step (so-called CFL 

condition) and practical considerations on the performances of 

the numerical solver are discussed. We propose illustrations on a 

simple case of a 2D laminate composite specimen.  

 
2. MODELLING ATTENUATION PHENOMENA 

 
2.1 Anisotropic visco-elasticity 

Let us denote by 𝑢 the particle displacement field emanating 

from the ultrasonic perturbation, and satisfying the field equation 
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𝜌𝜕𝑡𝑡
2 𝑢 = ∇ ⋅ 𝜎, where 𝜌 is the mass density of the solid and 𝜎 is 

the stress tensor. In the inviscid case, the constitutive law simply 

reads 𝜎 = 𝒞𝜀, where 𝜀 is the strain tensor and 𝒞 is the fourth-

order symmetric and positive elasticity tensor. This standard 

modeling setup naturally leads to a conservative dynamical 

system, which limits its application, especially in the case of 

laminate composite structures where attenuation phenomena 

cannot be neglected. To account for these phenomena we resort 

to the class of visco-elastic models in which the constitutive law 

is expressed as the convolution between a relaxation function 𝜓 

and the strain rate 
𝜎 = 𝜓 ∗ 𝜕𝑡𝜀 = 𝜕𝑡𝜓 ∗ 𝜀. 

Traditionally, see e.g. [3], a visco-elastic law is characterized 

through its complex modulus ℱ(𝜕𝑡𝜓)(𝜔) = 𝒞(𝜔) + 𝜄𝒟(𝜔), 

where the ratio 𝒬(𝜔) =  𝒟(𝜔)−1𝐶(𝜔) is the so-called quality 

factor. From a practical standpoint, experiments aiming at 

characterizing the material at hand may lead to measured phase 

velocity and attenuation factors for different incident angles and 

various frequencies. From these measures it is possible [5] to 

identify relevant real and imaginary parts of the complex 

modulus with a description of their dependences w.r.t. the 

frequency. In the perspective of transient numerical modelling, 

we often resort to using standard visco-elastic models having 

local-in-time (without convolution) expression of their 

constitutive laws. These models entail specific dependences of 

the corresponding attenuation laws and, in any case, need to be 

calibrate in order to fit with the identified mechanical 

parameters. 

 

2.2 Calibration of standard visco-elastic models  
We consider in the following three standard visco-elastic 

models [3]: the model of Kelvin-Voigt (KV) defined by 𝜎 =
𝒞𝐾𝑉 𝜀 + 𝒟𝐾𝑉 𝜕𝑡𝜀, the model of Maxwell (MX) where 

(𝒟𝑀𝑋)−1𝜎 + (𝒞𝑀𝑋)−1𝜕𝑡𝜎 = 𝜕𝑡𝜀, and the model of Zener (ZN) 

with 𝜎 + 𝜏𝑍𝑁𝜕𝑡𝜎 = 𝒞 𝑍𝑁 𝜀 + 𝜏𝑍𝑁𝒟𝑍𝑁 𝜕𝑡𝜀, where 𝜏𝑍𝑁 is a scalar 

value corresponding to a relaxation time. We propose a 

calibration strategy aiming at satisfying the real part 𝒞∗ and 

imaginary part 𝒟∗ of a target identified complex modulus at a 

specific target angular frequency 𝜔∗. This calibration strategy, 

based upon a so-called “low loss” assumption is simple enough 

to be applied in a 2D and 3D setting, with generally anisotropic 

target complex modulus. Furthermore, it corresponds to practical 

NDT configurations where the mechanical parameters of the 

specimen at hand are often known on a restricted frequency 

bandwidth. The choice of a specific visco-elastic model is 

performed according to their corresponding attenuation law 

which are quadratic, constant or locally linear (w.r.t. to the 

frequency) for the KV, MX and ZN models respectively. 

 

2.3 Explicit time discretization  
In order to keep the performances of the numerical solver 

available in the inviscid case, we consider explicit time 

discretization for the three models, thus avoiding the resolution 

of a linear system at each iteration. This class of discretization 

procedure leads to stable algorithm upon a so-called CFL 

condition on the time-step. In our work, we follow the energy 

arguments [6] in order to present the CFL condition for the 

standard visco-elastic models. In particular, we can express the 

specific difficulties underlying the KV model, which requires a 

decentered treatment of the viscous term in order to remain 

explicit. This particular aspect gives a more restrictive stability 

condition compared to the MX and ZN time schemes, whose 

CFL conditions are only slightly modified by the introduction of 

the viscosity. 

 

2.4 Illustration on a 2D visco-elastic laminate  
As an illustration, we consider a simple 2D configuration of 

20 orthotropic plies of 250µm thickness staggered together to 

form a 10mm thick specimen. The fiber orientation in each ply 

vary from 0° to 90°, the latter corresponding to an out-of-plane 

fiber direction. The various target parameters, considered at a 

target frequency 𝑓∗ = 6 MHz, are given in Table 1. 

 

Angle 𝑪∗𝟏𝟏 (GPa) 𝑪∗𝟏𝟐 𝑪∗𝟐𝟐 𝑪∗𝟑𝟑 

0° 143.2 7.5 15.8 7.0 

90° 15.8 8.2 15.8 3.8 

     

Angle 𝑫∗𝟏𝟏 (GPa) 𝑫∗𝟏𝟐 𝑫∗𝟐𝟐 𝑫∗𝟑𝟑 

0° 15.1 0.75 1.5 0.56 

90° 1.5 0.75 1.5 0.56 

 

TABLE 1: TARGET MECHANICAL PROPERTIES. MASS 

DENSITY AT 𝜌 = 1.6 𝑔 ∙ 𝑐𝑚−3. 
 

We show in Figure 1 the snapshot of the solution obtained 

in the inviscid case compared to the snapshots obtained with the 

KV, MX and ZN models. The very good agreement between 

these snapshots illustrate the validity of our calibration approach. 

A closer look at the solution obtained in the viscous cases shows 

slight changes in the wave fronts due to the different nature of 

the attenuation law of each visco-elastic model.   

 

 
FIGURE 1: COMPARING THE MAGNITUDE OF THE 

DISPLACEMENT FIELD AFTER 2µs. 

 

In Table 2 we compare the number of time-steps required for 

each model to reach the same final simulation time. Choosing 

the inviscid case as a reference, we observe the effect of the 

significantly more restrictive stability condition of the KV model 

compared to MX and ZN. 

ZN MX 

KV Inviscid 
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 Inviscid KV MX ZN 

∆𝒕 (µs) 19 ∙ 10−4 7 ∙ 10−4 19 ∙ 10−4 18 ∙ 10−4 

# steps 1024 2841 1029 1073 

 

TABLE 2: COMPARING TIME-STEPS FOR 2µs TIME WINDOW. 

 

3. MODELING THIN INTERMEDIATE LAYERS 
A specific characteristic of ultrasonic testing of laminates is 

their potential cutting bandwidth due to the resonance of the plies 

interfaces media. This phenomenon is modeled by considering 

thin (typically from 5µm to 15µm) intermediate layers usually of 

epoxy material [7]. Dedicated numerical strategy, such as 

“anisotropic order” of approximation [1], may be employed in 

this context. However, it often entails significant deformations 

of mesh elements, penalizing in term the CFL stability condition.  

To alleviate completely the difficulty we propose to model 

these thin epoxy layers using a spring-mass model [4]. In 

essence, this model consists in perturbing the displacement field 

and normal stress continuity relations at the interface by 

incorporating compliance terms and inertial terms respectively. 

In our approach, the spring-mass model between each 

neighboring plies are incorporated within the numerical solver 

using the mortar element method [2]. By doing so, we can prove 

that for every model considered, namely Inviscid, KV, MX and 

ZN, the CFL stability condition is not modified by the 

compliance and inertial parameters of the “imperfect” interface. 

To illustrate this aspect of our modeling strategy, we 

consider a configuration of 20 plies of 242.5µm, separated by 19 

epoxy layers of 7.5µm. The epoxy layers are assumed to be 

inviscid isotropic materials, with a density of 𝜌 = 1.6 𝑔 ∙ 𝑐𝑚−3 

and Lamé coefficients of 𝜆 = 4.4 GPa and 𝜇 = 1.6 GPa.  

In Figure 2 we compare two numerical approaches in the 

purely elastic case. In the first one, as proposed in [1], each 

intermediate layers are meshed bearing a reduced order 

discretization in the thickness direction. In the second one, we 

use our new strategy using a spring-mass model within the 

mortar element approach. We observe a very good agreement 

between the two numerical solutions, and most importantly, the 

ability of the “imperfect” interfaces strategy to render accurately 

the structural noise appearing in this configuration. 

 

 

 

 

FIGURE 2: MESHED VS. SPRING-MASS MODEL FOR 

REPRESENTING INTERMEDIATE EPOXY LAYERS. 

 

In Table 3, we obtain a significant gain in the number of 

time-steps required to reach the same simulation time. This gain 

grows larger as the thickness of the epoxy layers decreases. 

  

 Meshed Spring-Mass 

∆𝒕 (µs) 6 ∙ 10−4 12 ∙ 10−4 

# steps 3316 1598 

 

TABLE 3: COMPARING TIME-STEPS FOR MESHED VS. 

SPRING MASS MODEL. 

 

Finally, we can illustrate the combined effect of visco-

elasticity for the KV, MX and ZN cases with intermediate epoxy 

layers incorporated using a spring-mass model.  

 

4.  CONCLUSION AND PERSPECTIVES 
In our work we propose a calibration strategy for standard 

visco-elasticity models and we analyze their corresponding 

explicit time-discretization in a finite element procedure. We also 

consider spring-mass models to represent thin intermediate 

epoxy layers between plies and we use the flexibility of the 

mortar element method to incorporate this approach adequately, 

without perturbing the stability of the time-discretization. It 

should be noted that the presented work naturally extends to 3D 

configurations. Ongoing work and perspectives are the use of 

inhomogeneous spring mass model to represent complex 

delamination flaws or the application of visco-elastic models in 

other UT configuration such as weld inspection simulation. 
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