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ABSTRACT 
Estimations of probability of detection (POD) for 

examinations performed in the nuclear power industry are 
derived from empirical studies performed in laboratory-like 
environments on test blocks that simulate relevant component 
geometries in the field. The data generated by these studies 
provide technical bases to inform regulatory decision making. 
However, due to the physical size of many components, the 
resources required to manufacture test blocks and to perform a 
study can be extensive. As a result, sample sizes are often 
determined by feasibility and confidence bounds for resulting 
POD estimates can be large. Further, because the data are 
collected under well-controlled laboratory conditions, it is 
possible that these studies provide non-conservative estimations 
of POD relative to examinations performed in the field. Model-
Assisted POD (MAPOD) concepts can potentially enhance 
existing POD estimations without requiring additional empirical 
testing. This work provides an overview of MAPOD in the 
context of nuclear power applications and presents existing POD 
estimations for dissimilar weld components that have been 
obtained by empirical testing. Finally, discussion is provided 
regarding how MAPOD concepts may enhance the existing POD 
estimates for reducing uncertainty or to more accurately reflect 
field POD. 
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1. INTRODUCTION 

Estimations of probability of detection (POD) for 
examinations performed in the nuclear power industry are 
derived from empirical studies performed in laboratory-like 
environments on test blocks that simulate relevant component 
geometries in the field. The data generated by these studies 
provide technical bases to inform regulatory decision making. 
However, due to the physical size of many components, the 
resources required to manufacture test blocks and to perform a 
study can be extensive. As a result, sample sizes are often 
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constrained by feasibility and confidence bounds for resulting 
POD estimates can be large. Further, the techniques for 
simulating flaws in physical test blocks are usually only able to 
provide an approximate representation of the complex 
geometries and morphologies of actual field defects. The 
responses from simulated flaws may not accurately represent the 
response from field flaws contributing additional uncertainty to 
relevancy of results obtained from simulated flaws. Finally, 
because the data are collected under well-controlled laboratory 
conditions, it is possible that these studies provide non-
conservative estimations of POD relative to examinations 
performed in the field. Model-Assisted POD (MAPOD) 
concepts can potentially enhance existing POD estimations 
without requiring additional empirical testing. 

The most extensive source of empirical data from which 
estimates of POD can be obtained come from the data 
accumulated as part of the industry’s Performance 
Demonstration Initiative (PDI). A description of the analysis 
performed to develop POD estimates from the industry PDI 
database is provided in report MRP-262 Rev. 3 [1], which 
provides these estimates for several component types. In addition 
to the PDI data, empirical POD data has been generated for 
dissimilar metal weld (DMW) components as part of the U.S. 
Nuclear Regulatory Commission (NRC)-supported round robin 
studies—Program for Inspection of Nickel Alloy Components 
[PINC; 2] and Program to Assess the Reliability of Emerging 
Nondestructive Techniques [PARENT; 3]. 

Section 2 of this paper provides some background on the 
empirical POD data collected in PINC and PARENT studies 
while Section 3 provides an overview of MAPOD concepts. 
“Virtual flaw” tools are introduced and briefly described Section 
4 and this is followed, in Section 5, by a discussion of future 
efforts under the Program for Investigation Of NDE by 
International Collaboration (PIONIC), which is a follow-on to 
PINC and PARENT. 
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2. BACKGROUND 
POD curves resulting from binary nondestructive evaluation 

(NDE) responses can be represented mathematically by a logistic 
function [4], 
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This model includes two parameters, β1, and β2, to be 
determined from curve fitting with empirical data. This model 
has been used to curve fit binary NDE data to estimate POD for 
NDE performance studies involving nuclear power plant 
components [5]. In this equation, the parameters β1 and β2 are 
determined using maximum likelihood estimation (MLE) [6]. In 
the analysis of data from PINC and PARENT, the flaw size, a, is 
represented by the flaw depth x (normalized as a fraction of 
component through-wall [TW] thickness).  

 
2.1 False Call Probability 

In the PINC and the PARENT round-robin studies, the 
model represented by Eq. (1) is applied over a range of x that 
includes 0 TW using data collected from false calls to define 
POD at 0 TW. The formula for converting false call rate (# of 
false calls per length of examined material) to false call 
probability (FCP) is described in NUREG reports documenting 
the results from the PINC [2] and PARENT studies [3]. A false 
call is defined as a call that does not intersect with a flawed 
grading unit. These false calls were used to estimate a false call 
rate, λfc (false calls per meter),  

 #False Calls
Length of Material Inspected

λ =fc  (2) 

Using this rate and the assumption that false calls are randomly 
(i.e., Poisson) distributed, the probability that a call would 
intersect a blank grading unit of length Lgu can be calculated. If 
the average length of a false call is Lfc, the probability of a false 
call intersecting the grading unit is, 

 ( )( )
FCP = Pr(Grading Unit Intersection) 

= 1 exp λ− − +fc gu fcL L
 (3) 

2.2 Uncertainty in Probability of Detection 
The uncertainties in model parameters, β1, and β2, are 

represented by a covariance matrix from which the standard 
deviations in the model parameters, 

1βσ  and 
2βσ , and the 

covariance in the model parameters, 
1 2β βρ , can be estimated. In 

practice, this uncertainty is often expressed in terms of 95% 
confidence intervals, which are included on plots of the 
calculated POD. A wide confidence interval indicates that 
performance was variable and that there is less confidence in the 
POD for a given flaw depth. This may be due to inconsistency in 
detections or to a small number of data points, or both. 

 
2.3 Empirical POD Results from PINC and PARENT 

Empirical data collected in the PINC and PARENT 
programs were analyzed using the method described in previous 
sections. Data was collected from test blocks classified as 
“small-bore” dissimilar metal welds (SBDMW) and “large-
bore” dissimilar metal welds (LBDMW), which are 
distinguished by their dimensions as summarized in Table 1. In 
addition, inspections are distinguished according to if the 
inspection was performed by accessing the inner diameter (ID) 
or outer diameter (OD) surface of test blocks. Some results from 
PINC and PARENT are presented in Figure 1 for circumferential 
flaws. It appears that POD for OD access is consistent for 
SBDMW and LBDMW test blocks in PARENT and that POD 
for ID access is consistent between PINC and PARENT. 
 

TABLE 1. SUMMARY OF TEST BLOCK DIMENSIONS 
FOR PINC AND PARENT. 

 PINC PARENT 
 SBDMW SBDMW LBDMW 
Outer Diameter (mm) 386–390 289 and 815 852–895 
Wall Thickness (mm) 42–46 35 and 39.5 68–78 
Access OD and ID OD OD and ID 
 

 

FIGURE 1. POD CURVES FOR CIRCUMFERENTIAL 
FLAWS FROM PINC [2] AND PARENT [3] 

3. OVERVIEW OF MAPOD  
A literature review of MAPOD was previously conducted to 

assess approaches that may be useful for improving estimates of 
field POD for nuclear power applications [7]. Methods vary 
significantly and include approaches that leverage existing 
empirical POD data sets to derive POD estimates for similar 
examination scenarios. The existing empirical baseline POD 
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data may be augmented with additional data obtained through 
laboratory testing or physics-based computer modeling and 
simulation. Alternatively, MAPOD may be used to derive POD 
curves from scratch. In this approach, factors that control the 
variability of an examination are systematically identified. The 
variability contributed by factors that are represented by well 
understood physical phenomena can be investigated with 
physics-based computer modeling and simulation while the 
variability contributed by other factors must be determined 
empirically [8]. 

The literature review cites several studies that demonstrated 
MAPOD and categorized them based on employing Bayes 
theorem versus other techniques. A summary of the 
demonstrations that utilized binary NDE response data is 
provided in Table 2. All the studies in Table 2 employed Bayes 
Theorem for augmenting data except for Bode, Newcomer and 
Fitchett [9]. In Leemans and Forsyth [10], a limited set of field 
data is utilized to update prior assumptions of the POD curve. 
The study showed that the influence of the field data depended 
on the uncertainty in prior assumptions. If the uncertainty was 
large, the new data significantly influence the POD estimate. If 
the uncertainty was small, the new data would not have a large 
influence. In the nuclear power industry, field data regarding 
missed detections is not readily available so approaches that 
minimize the requirement for field data will be more feasible to 
implement.  

 
TABLE 2. SUMMARY OF POD DEMONSTRATIONS 
USING BINARY NDE RESPONSE DATA. 
Augmenting 
Technique 

NDE 
Method Description Reference 

Other Ultrasonic 
Testing 

Airplane lap joint 
specimen sets with 
multiple site 
fatigue damage 

[9] 

Bayes 
Theorem 

Visual 
testing 

Determination of 
field POD based 
on limited field 
data 

[10] 

Bayes 
Theorem 

Eddy 
current 
testing 

POD 
determination 
using computer 
models to generate 
additional infor-
mation to supple-
ment limited data 
from experiment. 

[11] 

 
The review highlights some challenges with applying 

MAPOD to nuclear power beyond availability of pertinent field 
data. Human factors are significantly influential in nuclear power 
inspection processes, and robust methods for modeling human 
factors and quantifying their influence on variability in NDE 
performance have not been developed for nuclear power 
applications. In addition, much of the literature assumes a single 
response parameter (i.e., amplitude) for determination of POD. 

In ultrasonic testing, practitioners may apply more complex 
methods for discrimination. For example, flaw detection may 
depend on the spatial pattern of amplitude in an NDE response 
image or might consider how a response signal feature varies 
with probe position or incident angle.  
 
4. VIRTUAL FLAW TOOLS 

Recent developments include the creation of “virtual flaw” 
tools, which enable the creation of a large sample of realistic flaw 
responses for POD estimations and NDE qualification 
applications. These tools are based on the digital manipulation of 
a small number of recorded physical flaw responses to create a 
much larger sample of flaw responses. Copies of the flaw 
responses can be manipulated to create variation in the flaw 
sample population. The process also requires the creation of a 
blank “canvas” file, which contains the background response for 
the target material. The digitally manipulated flaw responses can 
be pasted into the canvas at the desired locations. A more 
thorough description of this type of approach developed for 
ultrasonic testing data is provided in Virkunnen et al. [12]. 
Application of the tool for NDE qualification is considered in 
[12] and [13] while application to POD estimation is discussed 
in Koskinen et al. [14]. 

 
5. FUTURE WORK UNDER PIONIC 

The efforts of PINC and PARENT continue under the 
Program for Investigation Of NDE by International 
Collaboration (PIONIC). An objective of PIONIC is the 
improvement of POD estimations obtained in PINC and 
PARENT with respect to reducing uncertainty and attempting to 
obtain a better understanding of field POD. The data collected 
under PINC and PARENT provide useful sources of baseline 
data that can be updated with MAPOD concepts and virtual flaw 
tools. Conversely, the data from PINC and PARENT provide 
opportunities to validate virtual flaw tools with empirical data 
sets. 
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