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ABSTRACT 
        The Green’s functions for a given medium are defined to be 
the solution of the wave propagation problem in presence of a 
concentrated force. Two analytical methods to derive the 
elastodynamic Green’s functions using guided waves in layered 
structures are proposed. The dispersion relations and modal 
functions were obtained using the global matrix method and 
singular value decomposition (SVD) to find the null space vector. 
In the first approach, the representation theorem for 
elastodynamics was introduced to develop the modal expansion 
of the Green’s function in terms of the analytical mode shapes 
normalized by a factor related to the power flow in the layered 
structure. In the second approach, temporal and spatial Fourier 
transforms were applied to the field variables and the boundary 
conditions. Application of the interface conditions and 
discontinuity conditions across the force lead to a system of 
linear equations for the calculation of the unknown constants. 
The residue theorem was applied for inverse Fourier transform 
of the matrix-form Green’s function to recover the frequency 
domain expressions. In this paper, the displacements and stresses 
in a three-layered structure with different materials produced by 
a concentrated impulse load were obtained by the two methods. 
The problem was also solved using the conventional Finite 
Element Method (Abaqus). All three results were in a good 
agreement. 
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1. INTRODUCTION 

Wave propagation in layered media was first introduced by 
Thomson in 1950 [1] as the Transfer Matrix Method (TMM). 
This method relates the displacements and stresses on the top and 
bottom surfaces for all layers and applies continuity at the 
interface between layers to obtain the dispersion curves. An 
alternative method to the TMM was presented by Knopoff in 
1964 [2]. Later, Mal [3] proposed the Global Matrix Method 
(GMM) to avoid the numerical instability at high frequencies as 
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well as thicker layers presented in Knopoff’s method. On the 
other hand, the extension of the representation theory to 
elastodynamics presented by Hudson and Knoppof [4] was used 
to obtain the Green’s function for a multi-layered half space 
based on the modal functions in 1964 [5]. This paper provides a 
matrix form of the green’s function based on two methods. In the 
first method, the residue theorem is applied to the global matrix. 
In the second method, the Green’s function is obtained from the 
modal functions of the layered medium. The modal functions are 
calculated by Single Value Decomposition (SVD) in the global 
matrix.  Finally, in order to validate both methods, the results are 
compared with conventional finite element method. 
2. Green’s Function Analytical Derivations 

Two methods are provided to obtain the Green’s function of 
layered structures. For the first method, the modal functions are 
obtained from the SVD of the global matrix. Then, the Green’s 
function is obtained from representation theorem using the 
modal function. For the second method, the residue theorem is 
applied to the global matrix to transform the frequency 
wavenumber domain solution into frequency domain. 

 
2.1 Representation Theorem 

Consider a uniformly multilayered structure in which the 
elastic constants 𝜆(𝑥$), 𝜇(𝑥$) and the density 𝜌(𝑥$) are 
piecewise constant functions of 𝑥$. Assume that the 
displacements and the stresses are only dependent of 𝑥( and 𝑥$ . 

 
Figure 1: MULTILAYERD STRUCTURED 

 
The displacement vector 𝒖(𝒙)𝑒,-./ in each mode satisfies 

the equation of motion, 
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𝜏-1,1(𝒖) + 𝜌𝜔$𝑢- = 0										𝑖, 𝑗 = 1,2 
 

(1) 

at all points within the medium except at the interfaces. 
Furthermore, 𝑢-(𝒙) and 𝜏-$(𝒖) are continuous across each 
interface and 𝜏-$(𝒖) = 0 on the top and bottom surfaces of the 
multilayered media. The wave displacements and stresses 
components can be expressed in the forms, 

 

 
𝑢-=(𝒙) = 𝑈-=(𝑦)𝑒-@AB 

 
𝜏-1=(𝒙) = 𝑇-1=(𝑦)𝑒-@AB 

 

(2) 

where 𝑘=, the wavenumber in the mth mode, is a root of the 
dispersion equation, 

Let D denote the area enclosed by the straight lines 𝐶F, 
𝐶(,	𝐶,,	𝐶G, figure (2). Since there are no body forces within D, 
the following identity can be easily proved.  

 

 

H I𝑢-=I𝜏-1J K
∗ − (𝑢-J)∗𝜏-1=K𝜐1𝑑𝑠 = 0

QRGQSGQTGQU
 

 

(4) 

in which 𝜐1 is an outward unit normal and (*) indicates complex 
conjugate. 

Figure 2: INTEGRATION CONTOUR 
Let a time harmonic line force of unit magnitude at 𝑥 = 𝜉 in 

a multilayered media. Let 𝐺-1(𝒙, 𝝃) denote the 𝑥- component of 
the displacement produced at 𝒙 due to a unit line force at 𝝃 acting 
in the 𝑥1 direction. For fixed 𝝃, 𝐺-1(𝒙, 𝝃) represents waves which 
propagate in the +𝑥( direction if 𝑥( > 𝜉( and in the −𝑥( 
direction for 𝑥( < 𝜉(. Consequently, 𝐺-1(𝒙, 𝝃) may be expressed 
as,  

 
𝐺-1(𝒙, 𝝃) =[𝐴1(𝜉$)𝑈-=(

=

𝑥$)𝑒-@A(BT,]T), 𝑥( > 𝜉( 

 
𝐺-1(𝒙, 𝝃) =[𝐵1(𝜉$)(𝑈-=)∗(

=

𝑥$)𝑒,-@A(BT,]T), 𝑥( < 𝜉( 

 

(5) 

where 𝑈-=(𝑥$)𝑒-@ABT is an eigenfunction of the multilayered 
media and 𝐴1=, 𝐵1= are, as yet, unknown functions of the source 
depth.     

 
Recall the region D, which is bounded by the surfaces 𝐶F, 

𝐶(,	𝐶,,	𝐶G. Let 𝑈-(𝒙) denote a possible displacement field within 
D and on the bounding surfaces. According to the representation 

theorem of elastodynamics, the solutions inside D can be 
obtained in terms of the Green’s function and the boundary data. 
𝑢@(𝒙) = 
H _	𝐺-@(𝝃, 𝒙)𝜏-1(𝒖) − 𝑢-(𝝃)𝜏-1(𝑮@)a
QRGQSGQTGQU

𝜈1𝑑𝑠(𝜉) (6) 

Since 𝐶F and  𝐶( are traction free,  
𝑢@(𝒙) = 

H {	𝐺-@(𝝃, 𝒙)𝜏-((𝒖) − 𝑢-(𝝃)𝜏-((𝑮@)}]Te,f
g

F
𝑑𝑠(𝜉$) 

+H {	𝐺-@(𝝃, 𝒙)𝜏-((𝒖) − 𝑢-(𝝃)𝜏-((𝑮@)}]Teh
g

F
𝑑𝑠(𝜉$) 

 

(8) 

Let 𝑢@(𝒙) = 𝑈@J(𝑥$)𝑒-@iBT be a wave eigenfunction for 
multilayered media propagating in the positive 𝑥(-direction. 
Note that on 𝑥( = 	−𝑎, 𝑥( < 	 𝜉(, so that  

𝐺-@(𝝃, 𝒙) =[𝐴@=(𝑥$)𝑈-=(
=

𝜉$)𝑒-@A(]T,BT) (9) 

and on 𝑥( = 	𝑏, 𝑥( > 	 𝜉(, so that 

𝐺-@(𝝃, 𝒙) =[𝐵@=(𝜉$)(𝑈-=)∗(
=

𝑥$)𝑒,-@A(]T,BT) (10) 

Substituting from (9) and (10) into (8) we have,  

 

 

𝐵@J(𝜉$) =
1
𝑅J 𝑈@

J(𝑥$) 
 

(11) 

Similarly, by assuming that 𝑢@(𝒙) = (𝑈@J(𝑥$))∗𝑒,-@iBT, a wave 
eigenfunction propagating in the negative 𝑥(-direction, in (8), it 
can be proved that, 

 

 

𝐴@J(𝜉$) =
1
𝑅J (𝑈@

J(𝑥$))∗ 
 

(12) 

Using (11) and (12) in (5), the wave terms of the Green’s 
function may be written in the form, 

𝐺-1(𝒙, 𝝃) =[
1
𝑅= 𝑈-

=(
=

𝑥$)(𝑈1=)∗(𝜉$)𝑒-@A(BT,]T), 𝑥( > 𝜉( 

 

𝐺-1(𝒙, 𝝃) =[
1
𝑅= (𝑈-

=)∗(
=

𝑥$)𝑈1=(𝜉$)𝑒,-@A(BT,]T), 𝑥( < 𝜉( 

(13) 

Applying the SVD to the global matrix, one can obtained the 
approximate modal function to calculate the Green’s function for 
a multilayered structure. 

 
2.2 Residue Calculations  

Defining layered matrix: 

 Q(m) = o

𝑖𝑘 𝜂$ 𝑖𝑘 −𝜂$
−𝜂( 𝑖𝑘 𝜂( 𝑖𝑘

−2𝑖𝑘𝜂(𝜇 −𝜁$𝜇 2𝑖𝑘𝜂(𝜇 −𝜁$𝜇
𝜁$𝜇 −2𝑖𝑘𝜂$𝜇 𝜁$𝜇 2𝑖𝑘𝜂$𝜇

r (1) 
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 E(m) = 𝑑𝑖𝑎𝑔(𝑒,uTvA 𝑒,uwvA) (2) 
 

 𝐶(𝑚) = y

𝐶(
𝐶$
𝐶z
𝐶{

| (3) 

Therefore, the modal function for each layer m can be 
express as: 

 𝑈(𝑚) = y

𝑈
𝑉
𝑇
𝛴

| = 𝑄(𝑚)𝐸(𝑥$,𝑚)𝐶(𝑚)𝑒-@BT (4) 

By applying proper boundary condition, the global matrix 
can be assembled by: 

𝐺 =

⎩
⎪
⎨

⎪
⎧

𝑄$((1) 𝑄$$(1)𝐸(1) 𝑍 𝑍 … 𝑍 𝑍
𝑄(((1)𝐸(1) 𝑄($(1) −𝑄(((2) −𝑄($(2)𝐸(2) … 𝑍 𝑍
𝑄$((1)𝐸(1) 𝑄$$(1) −𝑄$((2) −𝑄$$(2)𝐸(2) … 𝑍 𝑍

⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮
𝑍 𝑍 𝑍 𝑍 … 𝑄$((𝑁)𝐸(𝑁) 𝑄$$(𝑁)⎭

⎪
⎬

⎪
⎫

 (5) 

In the frequency wavenumber domain, the boundary 
condition can be expressed as:  

 𝐶 = 𝐺,(𝐹 (6) 
One can obtained the C vector in frequency domain by 

applying residue theorem: 

 𝐶 =	
1
2𝜋	

(2𝜋𝑖)�[
𝑀𝐹

∂det(G)
∂k

� 

 

(7) 

Finally, the matrix form of Green’s function can be obtained 
by letting F be a unit impulse function and splitting the following 
matrix function: 

 𝑈(𝑚) = y

𝑈
𝑉
𝑇
𝛴

| = 𝑖𝑄(𝑚)𝐸(𝑥$,𝑚)	
𝑀𝐹

𝑡𝑟(𝑀�̇�)
𝑒-@BT (8) 

 
3. RESULTS AND DISCUSSION 

Results from the two proposed methods are compared on a 
single layer aluminum plate subjected to a buried impulse load. 

 
Figure 3: GREEN’S FUNCTION SPECTRUM ON TOP 

SURFACE FOR A BURIED LOAD – S0 MODE 
 
 
 
 
 
 
 
 

Results from the Global Matrix Method is obtained for a 
three-layer non-homogeneous structure subjected to an impulse 
load on the free surface. 

 
Figure 4: GREEN’S FUNCTION SPECTRUM FOR TWO 

FUNDAMENTAL MODES 

 
Figure 5: PLATE RESPONSE FOR 400kHz 5CYCS HANG- 

WINDOW EXCITATION SIGNAL 
 

4.  CONCLUSION 
The results obtained from the two analytical approaches and 
those from the numerical simulations show excellent agreement.  
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