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ABSTRACT 
Fiber-metal laminate (FML) is a laminated composite 

combining thin sheets of metal in fiber-reinforced polymer 
matrix. It has superior properties that are ideal for aerospace 
applications. To develop the Lamb wave based NDE techniques 
for FML, numerical simulation to better understand Lamb wave 
response is important. An efficient framework of coupling the 
source and the scattering problem is presented to simulate how 
multiple Lamb modes that are generated by a source is scattered 
due to a defect. The framework is applied to a titanium-CFRP 
with a metal-composite interface disbond. The results are 
compared with those obtained from a dynamic FE method 
showing very good agreement.  
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1. INTRODUCTION 
Fiber-metal laminate (FML) is a laminated material 

consisting of thin layers of metal sheets and fiber layers 
embedded in an adhesive system. It has advantageous 
mechanical and physical properties for use as primary load 
bearing components of aerospace structures [1]. The NDT of 
FML is necessary due to the complexity of the material system 
and its vulnerability to the presence of hidden defects. Lamb 
wave-based damage detection method is potentially an effective 
and efficient tool for the NDT of FML structures with relatively 
large areas. Numerical simulation of the complex ultrasonic 
wave phenomenon is also essential for the development of NDT 
strategy for FML structures. In previous research, the global-
local method (GLM) is used to model the Lamb wave 
propagation in different structures containing either a source [2] 
or some defects [3] [4]. This paper presents a framework to 
model multiple Lamb wave modes generated by a source that 
interact with a defect. The compute wave field can then be 
directly compared to the field measurements from experiments. 
The paper offers important insights into the effects of sources 
and the scattering characteristics of individual Lamb modes due 
to different types of defects. The results obtained from the GLM 
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are compared with those obtained from conventional dynamic 
FE simulations, which shows very good agreement. 

2. THE GLOBAL LOCAL FORMULATION 
The following analysis considers a large plate subjected to a 

specified surface traction, representing an ultrasound source 
transducer, and a defect at some distance away. The GLM uses 
the finite element method to represent local effects and analytical 
Lamb modes to represents the far-field solution. Figure 1 
illustrates the region in the proximity of the surface load and the 
region around the defect represented by finite element meshes. 
Plane strain conditions in the x-z plane are assumed.  

 
FIGURE 1: ILLUSTRATION OF THE COUPLED SOURCE-
SCATTERING PROBLEM WITH GLOBAL-LOCAL METHOD. 

The source problem is described under its coordinate system 
(𝑥#, 𝑧#) and the scattering problem is described by the coordinate 
system (𝑥##, 𝑧##). The distance between the origins of the two 
coordinate systems is 𝑥'. The FE region is governed by the 
discretized form of the equation of motion: 

𝑴�̈� +𝑲𝒖 = 𝒇   (1) 

Assuming harmonic motion of the form e-iωt, where ω is the 
circular frequency, equation (1) can be written in frequency 
domain in terms of the dynamic stiffness matrix 𝑫 in the form 
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Where 𝑫 = 𝑲−𝜔;𝑴 and the scripts L,	 I,	R	refers to the left, 
interior, and right-hand sides of the degrees of freedom (DOFs).  
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2.1 The Source Problem 
For the source problem, equation (2) can be partitioned into 

left(L), right(R), and interior DOFs that are either free (I0) or 
subjected to applied traction (IF). 
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The applied nodal force 𝑓𝑎𝑝𝑝is the Fourier time transform of the 
dynamic time dependent nodal force. The displacements and 
nodal force on either side of the FE boundaries are expressed as 
a summation of propagating Lamb modes (e.g. A0, S0, …) with 
unknown amplitudes 𝐵T 

{𝒖𝑩𝑳 } = W�⃖�ZZ[{𝑩𝒏𝑳𝒆𝒊𝒌𝒏
Z⃖ZZZ𝒙𝑳}	   (4) 

a𝒇𝑩
𝑳 b = −W�⃖�ZZ[{𝑩𝒏𝑳𝒆𝒊𝒌𝒏

Z⃖ZZZ𝒙𝑳}    (5) 

{𝒖𝑩𝑹} = W𝑸ZZ⃑ [{𝑩𝒏𝑹𝒆𝒊𝒌𝒏
ZZZZ⃑ 𝒙𝑹}	   (6) 

a𝒇𝑩
𝑹b = W𝑭ZZ⃑ [{𝑩𝒏𝑹𝒆𝒊𝒌𝒏

ZZZZ⃑ 𝒙𝑹}	   (7) 

In equations (4) through (7) the modal displacements and nodal 
forces are denoted by [�⃖�Z⃗ ] and [�⃗⃖�] respectively. The upper arrows 
indicate the propagation direction with respect to the x direction. 
The columns of the two matrices correspond to the Lamb modes 
being considered. The rows are the 𝑥 and 𝑧 degrees of freedom 
on the FE boundary nodes at different z positions and kn is the 
wave number for each mode. Nota that, the minus sign on the 
nodal force expressions is because the negative face normal. For 
a homogeneous isotropic plate, the modal functions can be found 
in [5]. For a multilayered composite plate, Waveguide Finite 
Element Method (WFE) [6] is used to determine the 
wavenumbers and the modal functions. Solving for Bn from the 
displacement expressions given in equations (4) and (6) and 
substituting them into the nodal force expressions given in 
equation (5) and (7) respectively, the augmented dynamic 
stiffness matrix is obtained. Then the displacements in the FE 
region can be solved from the equation 
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2.2 The Coupled Scattering Problem in GLM 
The equations for the scattering problem are written in the 

coordinate system (𝑥##, 𝑧##) by omitting the superscript II. 

2.1.1. Left FE Boundary (at x = xL = 0): 

The displacements, 𝒖pq  and nodal forces 𝒇pq  at the left boundary 
nodes would consists of an incident field from the source.  
Therefore, the incident amplitude coefficient Amm is equal to the 
right going Lamb mode amplitude coefficients 𝐵𝑛𝑅	of the source 

problem with a phase change due to the distance xT between the 
coordinates in the source problem and the scattering problem. 
The reflected field has unknown amplitude coefficients BnL for 
each mode n:  

a𝒖𝑩𝑳 b = W𝑸ZZ⃗ [{𝑨𝒎𝒎𝒆𝒊𝒌𝒎𝒎
ZZZZZZZZZZ⃗ (𝒙𝑳v𝒙𝑻)} + W�⃖�ZZ[{𝑩𝒏𝑳𝒆𝒊𝒌𝒏

Z⃖ZZZZ𝒙𝑳}	 (9) 

a𝒇𝑩𝑳 b = −W𝑭ZZ⃗ [{𝑨𝒎𝒎𝒆𝒊𝒌𝒎𝒎
ZZZZZZZZZZ⃗ (𝒙𝑳v𝒙𝑻)} − W�⃖�ZZ[{𝑩𝒏𝑳𝒆𝒊𝒌𝒏

Z⃖ZZZZ𝒙𝑳} (10) 

Right Hand Side Boundary (at x = xR): 
The right-hand displacements and nodal forces at the boundary 
nodes consist of an incident field from the source problem with 
phase shift (𝑥x + 𝑥'), and scattered fields with unknown 
amplitude coefficients BnR for each mode n: 

a𝒖𝑩𝑹b = W𝑸ZZ⃗ [{𝑨𝒎𝒎𝒆𝒊𝒌𝒎𝒎
ZZZZZZZZZZ⃗ (𝒙𝑹v𝒙𝑻)} + W𝑸ZZ⃗ [{𝑩𝒏𝑹𝒆𝒊𝒌𝒏

ZZZZZ⃗ 𝒙𝑹}	 (11) 

a𝒇𝑩𝑹b = W𝑭ZZ⃗ [{𝑨𝒎𝒎𝒆𝒊𝒌𝒎𝒎
ZZZZZZZZZZ⃗ (𝒙𝑹v𝒙𝑻)} + W𝑭ZZ⃗ [{𝑩𝒏𝑹𝒆𝒊𝒌𝒏

ZZZZZ⃗ 𝒙𝑹} (12) 

It should be noted that the source problem and the scattering 
problem must have the same wavenumber, then kmm = kn since 
their far fields have the same thickness and material properties. 
Also, it is important to note that the coefficient 𝐴{{is taken from 
the right going amplitude coefficients, 𝐵Txof the source problem, 
which is under coordinate 𝑥#, 𝑧#	and	the phase of 𝐴{{ (along 
with 𝑒������	) is expressed in terms of 𝑥#, 𝑧#. This is important 
when the right-hand scattering coefficient is used. The next step 
is to use the displacement expression {𝒖pq } to solve for the 
unknown amplitude coefficients {𝐵Tq𝑒���

Z⃖ZZZZ��} and substitute them 
into the nodal force expressions {𝒇pq } to obtain the FE system of 
equations with the unknown FE region displacements. Using 
equation (9): 
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Substituting into the left-hand nodal force given in equation (10),  
a𝒇𝑩𝑳 b = −W�⃖�ZZ[W�⃖�ZZ[
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Similarly, for the right-hand side, solving for amplitude 
coefficient term from displacement given in equation (11) the 
nodal forces can be expressed in the form, 

a𝒇𝑩𝑹b = W𝑭ZZ⃑ [W𝑸ZZ⃑ [
j𝟏
a𝒖𝑩𝑹b	  (15) 

Substituting the nodal force into equations (2), the final system 
of equations for displacements in the local region is obtained: 
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3. RESULTS AND DISCUSSION 
To demonstrate the coupled problem technique, a problem 

of a titanium-carbon epoxy fiber metal laminate with a disbond 
is modeled with both global-local method and with conventional 
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implicit time-stepping FE method in the commercial FE software 
ABAQUS.  Figure 2 shows the FE problem of a uniformly 
distributed source, 10mm wide with a 5-cycle Hann windowed 
sinusoidal with 300kHz center frequency, generating Lamb 
waves that interact with a 10mm long crack 259mm to the right 
of the center of the source.  

 
FIGURE 2: SKETCH OF THE SOURCE-DELAMINATION 
PROBLEM. THE DASHED LINES INDICATE THE FE 
REGION IN THE GLOBAL LOCAL MODEL. 

For the GLM, each “local” region is 45[mm] long which is 25 
times the plate thickness. The plate has a stacking sequence of 
[0/90/Ti/0/90/Ti]s with 12 plies. All plies are 0.15mm thick. The 
metal plies are titanium and the composite plies are IM7-5250-4 
system with the properties as shown in Table 1. 

TABLE 1. PROPERTIES USED IN THE FML MODELS. 
11 DIRECTION IS ALONG FIBER DIRECTION 

 E11 

[GPa] 
E33 

[GPa] 
G13 

[GPa] ν12 ν23 Density  
[kg/m3] 

CFRP 162.0 9.685 5.861 0.318 0.402 1578 
Ti 100.0   0.330  4760 

 
Note that for conventional FE approach, only the right half of the 
problem is modeled with the use of symmetric boundary 
conditions. The model has a total length of 550[mm] in x-
direction. A “crack seam” which allows the separation of nodes 
is created to represent the disbond between the first 90/Ti 
interface in the upper half of the laminate. The debonded face is 
traction free. The time stepping FE model has a total simulation 
period of 0.175[ms] using 800 time-steps (with step time of 
2.1875e-4[ms]). Figure 3 shows the results from the conventional 
FE and global-local method for the vertical displacement 20mm 
to the right of the source due solely to S0 mode. The reflection 
after 0.1ms from the disbond in the ABAQUS solution is part of 
the scattering solution and therefore is not plotted here.  

 
 

FIGURE 3. TOTAL VERTICAL DISPLACEMENT 22MM 
TO THE RIGHT OF THE SOURCE FROM GL AND FE 
SOLUTION, AND DISPLACMENT FIELD NEAR THE 
SOURCE AT 6.7 MIRCO SECOND. 

Figure 4, shows the comparison between of the FE and global-
local solution to the left of the disbond.  

 
FIGURE 4. TOTAL VERTICAL DISPLACEMENT 17.5MM 
TO THE LEFT OF THE DISBOND’S LEADING EDGE 

Both the ABAQUS and GL solutions predict that the reflected 
waveform has two packets due to the leading and trailing edges 
of the disbond, which is visualized in the contour plot of the 
displacement field. 

4. CONCLUSIONS 
This research demonstrates a framework that couple the 

source and the scattering problem to model a physical 
phenomenon. This method, when using WFE, has the ability to 
model multilayered composites such as FML for different types 
of defects. The solution is compared with the dynamic FE 
result. Both solutions show that the S0 mode is generated from 
the applied load and the reflected waves consist of two packets 
from the leading and trailing edges of the disbond. 

ACKNOWLEDGEMENTS 
This research is funded by the Aerospace Corporation 

(Contract #: 20182871).  

REFERENCES 
[1]  R. C. Alderliesten and R. Benedictus, "Fiber/Metal Composite 

Technology for Future Primary Aircraft Structures," Journal of 
Aircraft, vol. 45, no. 4, pp. 1182-1189, 2008.  

[2]  C. Schaal, R. M'Closkey and A. Mal, "A Semi-analytical Method 
for Caculating Resonator Energy Loss into Plate Substrates," IEEE 
International Symposium on Inertial Sensors and Systems, pp. 17-
20, 2016.  

[3]  Y. N. Al-Nassar, S. K. Datta and A. H. Shah, "Scattering of Lamb 
Waves by a Normal Rectangular Strip Weldment," Ultrasonics, 
vol. 29, no. March, pp. 125-132, 1991.  

[4]  Z. Chang and A. Mal, "Scattering of Lamb Waves from a Rivet 
Hole with Edge Cracks," Mechanics of Materials, vol. 31, pp. 197-
204, 1999.  

[5]  C. Schaal, H. Samajder, H. Baid and A. Mal, "Rayleigh to Lamb 
Wave Conversion at a Delamination-like Crack," Journal of Sound 
and Vibration, vol. 353, pp. 150-163, 2015.  

[6]  M. Maess, J. Herrmann and L. Gaul, "Finite Element Analysis of 
Guided Waves in Fluid-Filled Corrugated Pipes," Journal of 
Acoustic Society, vol. 121, no. 3, pp. 1313-1323, 2007.  

 
 


