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ABSTRACT 
Recently, there has been a move toward the use of 

ultrasonic-based permanently installed systems to monitor the 

health status of a number of structures, such as pipes. A big 

advantage of this approach compared to the typical one-off 

inspection configuration is the potential for detection of 

damage at earlier stages. This is enabled by the frequent 

collection and analysis of data. Once the signals are corrected 

for the effects of temperature, the trends of the measurements 

taken at each structural location can be monitored, and 

deviations from the expected behavior can be related to the 

occurrence of damage. In this setting, fault-detection methods 

such as the ones widely used in the field of statistical process 

control can be used to detect those deviations. In this work, two 

methods based on the Generalized Likelihood Ratio are 

investigated and are applied to a set of T(0,1) guided wave 

signals collected by a pipe monitoring system. Receiver 

operating characteristics curves are used to identify a suitable 

threshold for the method to operate based on the desired levels 

of probabilities of false alarm and of true detection at given 

defect sizes. The method promises a substantial improvement in 

the detectability of small defects, while minimizing the human 

workload needed to actually inspect the signals. 
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1. INTRODUCTION 
Inspection systems based on guided waves are widely used 

to detect damage in numerous applications, such as the testing 

of pipes for the oil & gas industry by means of the T(0,1) 

torsional wave mode using a pulse-echo configuration at 

frequencies in the order of tens of kHz [1]. In this setting, the 

sensor is deployed on the structure and it is then removed after 

taking one (or a few) measurements. 

Recently, there has been strong interest in moving from the 

standard one-off inspection configuration to a permanently 

installed monitoring system (PIMS), which allows for frequent 

collection and interpretation of data [2], hence potentially 

enabling the detection of damage at earlier stages. Recent 

publications presented examples of such systems based on 

piezoelectric transducers [3, 4], Lorentz force–based EMAT 

transducers [5] and magnetostrictive-based EMATs [6].  

In a PIMS setting, the data analysis typically involves 

comparing new measurements with a baseline record, where 

any change in the signal could represent a defect signature, in a 

procedure termed baseline subtraction [7]. Unfortunately, 

changing environmental and operational conditions (EOCs), 

primarily temperature, also cause changes in the signals, so 

degrading the damage detection performance. A number of 

temperature compensation methods have been proposed in the 

last 15 years [8-10]. A novel procedure was recently developed 

by the authors and is the object of a patent application [11]. One 

of the advantages of the new method is that the residuals 

obtained at each structural location appear to follow a normal 

distribution. 

This enables the application of a number of fault-detection 

methods such as those used in statistical process control [12, 

13], which can be used to analyze the trends of data acquired at 

each structural location. In this work, two methods based on the 

Generalized Likelihood Ratio (GLR) [14, 15] are investigated 

and applied to a set of T(0,1) guided wave signals collected by 

a pipe monitoring system. The two methods fundamentally 

differ on the assumptions about the statistical distribution of the 

analyzed trends of signals when the structure is undamaged. 

The most important operating parameter to set when using 

either of these two methods is the call-threshold. Receiver 

operating characteristics curves can be used to both compare 

the performance given by each method, and to identify suitable 

threshold values to guarantee some desired levels of 

probabilities of false alarm and of true detection at given defect 

sizes. 

 
2. EXAMPLE OF GLR FAULT-DETECTION TESTS 

Figure 1 shows the capability of the GLR tests originally 

introduced in [14, 15] for detecting a change in the mean of a 

sequence of data-points. Figure 1(a) plots a sequence that was 
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randomly generated using MATLAB
®
, where points 1 to 50 are 

drawn from a normal distribution with zero-mean and unity 

standard deviation, while points 51 to 100 have the same 

standard deviation, but a mean of 1, hence simulating the 

occurrence of some damage which is captured by the 

measurement system. The method in [14] requires knowledge 

(in practice, an assumption) of the distribution of the data 

before the (potential) occurrence of a fault. Figure 1(b) plots the 

test score computed at each point (specifically, computed using 

the sequence of data from point 1 to each point being analyzed) 

when using the known parameters of the distribution followed 

by points 1 to 50. The test score grows past the point of change, 

until eventually crossing the set threshold (10 in figure) and so 

giving the alarm. It can be appreciated how a simple visual-

inspection on the sequence in Figure 1(a) might easily miss the 

identification of the change. In practical cases, worse results 

would be achieved if the wrong parameters are used to run the 

test. The method in [15] completely eliminates this issue, as the 

test automatically estimates the parameters before the 

(potential) change, at the expense of a diminished sensitivity. 

For example, Figure 1(c) plots the test scores computed using 

[15] on the data of Figure 1(a), also showing the efficacy of the 

method. 

 
FIGURE 1: (A) SEQUENCE OF 100 NORMALLY 

DISTRIBUTED AND RANDOMLY GENERATED DATA-POINTS, 

WITH STANDARD DEVIATION OF 1, MEAN OF 0 FROM 

POINTS 1 TO 50, AND MEAN OF 1 FROM POINTS 51 TO 100. (B) 

TEST SCORE FROM THE METHOD IN [14]. (C) TEST SCORE 

FROM THE METHOD IN [15]. (B-C) THE RED LINES INDICATE 

POSSIBLE THRESHOLDS. 

3. CONCLUSION 
A temperature compensation procedure for ultrasonic 

signals that was recently developed by the authors [11] 

produces residuals at each structural location which appear to 

follow a normal distribution. This enables the application of a 

number of fault-detection methods that can automatically flag 

the occurrence of damage in the tested structure. Following 

extensive literature review, two methods based on the 

Generalized Likelihood Ratio [14, 15] have been selected as 

most promising for this SHM application. Receiver operating 

characteristics curves will be used to assess the performance 

offered by each method, and ultimately to identify what 

probabilities of false alarm and of detection at given defect 

sizes they would enable when applied to actual signals 

collected by a pipe monitoring system. 
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