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ABSTRACT 
The ability of an ultrasonic testing method to distinguish 

flaws in close proximity relative to the wavelength is limited by 

the theoretical resolution limit. Ultimately the reflections become 

superposed in the same wave packet. In many ultrasonic testing 

scenarios, the maximum useable frequency is limited by 

attenuation, and it may therefore become difficult to detect flaws 

in close proximity and impossible to increase the frequency. The 

purpose of this work is to use a convolutional neural network in 

order to separate and identify the time of arrival overlapping 

echoes. The machine learning algorithm was trained using finite 

element simulations and was then tested on experimental 

measurements. The convolutional neural network was able to 

distinguish shallow flat bottom hole in an aluminum block with 

a depth corresponding to only 0.5λ. 
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1. INTRODUCTION 
 In ultrasonic non-destructive evaluation, a tradeoff must be 

made between the resolution and the propagation distance. 

Indeed, increasing the frequency increases the resolution but also 

the attenuation, and thus decreases the practical depth of the 

measurement. When the maximum useable frequency is low, 

overlapping echoes of defects and the backwall rapidly becomes 

a problem. Methods using deconvolution exist and have good 

results in simulation but are disappointing in practice [1]. 

The use of Convolutional Neural Network (CNN) in signal 

processing has thus far been studied mainly for classification 

purposes [2, 3]. Pre-processing methods such as the discrete 

wavelet transform or the 1-D LBD algorithm were implemented 

to help the machine-learning algorithms gain accuracy in the 

classification. 

In this paper, a new method of Time-of-Flight (ToF) picking 

based on a CNN is proposed. The algorithm locates pattern 
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echoes from reflectors, even when the SNR is low or when the 

reflectors are in close proximity. The neural network is trained 

and validated with simulations generated with the GPU-

accelerated finite elements code Pogo [4]. The CNN is then used 

to deconvolve experimental signals acquired on a block of 

aluminum with machined flat bottom holes. 

 
2. MATERIALS AND METHODS 

2.1 Simulations 
In CNN, the larger the training and validation data sets are, 

the higher the accuracy of the neural network tends to be. Hence, 

provided that simulations are accurate, they are the most efficient 

solution to train a CNN. However, the difficulty is to ensure that 

the simulations and experiments are in excellent agreement. 

Finite element (FE) simulations of the propagation of 

ultrasonic guided waves have been used successfully for a 

number of years. At 15 elements per wavelength, standard FE 

codes are typically too slow to be considered in the training of a 

CNN. However, simulation codes recently saw a rapid 

acceleration with the advent of graphics processing unit (GPU). 

GPU accelerated simulation codes enables the simulations of a 

large number of cases in a limited amount of time.   

In this paper, the material was arbitrarily chosen as 

aluminum. However, the results presented in this paper could be 

easily transposed to other materials. The speed of sound of the 

experimental block was measured to ensure a perfect fit with the 

simulations. 2D simulations were considered due to their lower 

computational cost. 3D models offer a higher fidelity to 

experiments but are significantly more expensive in terms of 

computation time. Figure 1 presents a schematic of the 

parameterized finite element model.  
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FIGURE 1: SCHEMATIC AND PARAMETRISATION OF 

THE FE MODEL USED FOR SIMULATIONS. 

 

Absorbing boundaries were used to simulate an infinite block 

and therefore reduce the number of degrees of freedom of the 

model. In the model, the reflectors, in white, correspond to 

deleted elements. The black dots show the excited nodes. The 

positions (X1, X2, Y1 and Y2) and the dimensions (L1 and L2) of 

the two flaws were random. L1 was also chosen to be always 

shorter than L2 to avoid shadowing effect. The depth of the two 

flaws were stored in memory. 

 

2.2. Convolutional Neural Network 
Among the diversity of artificial neural networks the CNN 

caught attention because of its ability to take account the 

temporal organization of an A-scan. 

 
FIGURE 2: a) SIMULATED A-SCAN USED FOR TRAINING 

AND VALIDATION. b) TARGETED OUTPUT USED IN THE 

TRAINING OF THE CNN. 

 

There are several advantages to CNN. Firstly, the algorithm 

can self-learn the statistical noise and the pattern of interest in 

the signal concurrently, without any operation of extraction. 

Secondly, the number of different self-learnt filters limits the 

impact of noise or the modifications of the echo patterns by 

scattering. Finally, CNN are able to learn pattern using time 

domain A-Scans. 

The CNN used in this study only contains two 1D 

convolutional layers and can therefore be trained rapidly. A 

stochastic gradient descent is used to minimize mean squared 

error loss function. The learning rate was initially 0.05 and 

decrease logarithmically with the epochs. The learning stopped 

when 750 epochs were computed. 

One thousand simulated A-scans were generated. The first 

750 were the training set, the next 200 were used as the 

validation batch and the last 50 were used to evaluate the trained 

CNN. The evaluation of the trained CNN was only done in 

simulations at this stage and therefore didn’t take into account 

the experimental effects.  

 

2.3. Experiments 
An aluminum block was used to verify the efficiency of 

deconvolution using a CNN trained with simulations. 26 flat 

bottom holes (FBH) were machined with decreasing depth. The 

CNN was then used to distinguish the reflection from the 

backwall and the FBH. The accuracy of the algorithm was 

evaluated by comparing the distance between the reflectors as 

evaluated by the CNN with the true distance. An Olympus probe 

V125 RM was used in pulse-echo with a centre frequency of 

2.25 MHz. Signals were acquired with a Verasonics Vantage 64 

LE data acquisition system with a sampling frequency of 25 

MHz.  

 

 
FIGURE 3: ALUMINUM BLOCK USED IN THE 

VALIDATION OF THE CNN. 

 

Before the generation of training data, five A-scans were 

measured on the aluminum block so as to extract backwall echo 

patterns. The echoes were used to estimate the speed of sound in 

the aluminum block as well as the bandwidth of the transducer. 

Those parameters were then used in the simulations. For the 

validation of the CNN, 54 A-Scans or 2 for each FBH were then 

acquired.  

 

3. RESULTS AND DISCUSSION 
The CNN was applied on the experimental A-scans. Two 

examples of results are shown below in figures 4 and 5. In Fig. 

4., the distance between the flat bottom hole and the backwall 

was 0.69 mm (or 0.25λ) therefore corresponding to a separation 

on the A-Scan of 0.5λ at 2.25 MHz. The wave packet in the A-

Scan appears to contain only one reflector but the CNN was able 

to distinguish a pair of reflectors in close proximity. This case 

was the limit for which the CNN was still able to distinguish two 

reflectors and also corresponds to the theoretical resolution limit. 

Although the FBH was detected, its position in the deconvolved 

A-Scan was 1.27 mm instead of 0.69 mm.  

Fig. 5. presents another example for which the distance 

between the reflectors was 2.06 mm or 0.74λ and corresponding 

to 1.48λ on the A-Scan at 2.25 MHz. In this case, the wave packet 

does appear to contain more than one reflector but the CNN is 

able to detect the position of the reflectors. In this case, the 
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deconvolved A-Scan shows a distance between the reflectors of 

2.76 mm instead of 2.06 mm. A similar trend was seen on other 

measurements: as the FBH becomes deeper the error on the 

position decreases. This error is not related to the speed of sound 

in the material because the backwall also appears at the right 

position in the deconvolved A-Scans. 

 

 
FIGURE 4: a) A-SCANS, EXPECTED TIME OF ARRIVAL 

AND OUTPUT OF THE CNN WHEN THE REFLECTORS 

ARE 0.69 MM APART (0.5λ AT 2.25 MHz). b) ZOOM ON THE 

REGION OF INTEREST. 

 

 
FIGURE 5: a) A-SCANS, EXPECTED TIME OF ARRIVAL 

AND OUTPUT OF THE CNN WHEN THE REFLECTORS 

ARE 2.06 MM APART (1.48λ AT 2.25 MHz). b) ZOOM ON 

THE REGION OF INTEREST 

 

4.  CONCLUSION 
In this study, a CNN was used to deconvolve experimental 

A-Scans. The CNN was trained using only FE simulations. The 

trained CNN was then able to deconvolve reflectors separated by 

0.5λ at 2.25 MHz therefore reaching the theoretical limit. With a 

reflector separation of 0.5λ, the A-Scan appears to contain only 

one reflector but the CNN is able to distinguish two reflectors. 

The estimation of the position of the reflectors is not quite 

accurate as it always overestimate the distance between the 

reflectors. The overestimation reduces when the distance 

between the reflectors increases.  
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