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ABSTRACT 
This paper proposes a method to enhance the resolution of 

images computed from Full Matrix Capture (FMC) datasets 

widely used in Non-Destructive Evaluation (NDE). The 

resolution of standard techniques such as Total Focusing Method 

(TFM) that do not account for the impulse response of 

transducers is limited. The proposed model exploits the 

instrumental signature of the transducers in order to link linearly 

the FMC dataset to the reflectivity of the material. An ill-posed 

inverse problem is hence formulated due to the limited 

bandwidth of the transducers. The final image is obtained 

iteratively by inverting the model using a sparse prior 

representing the small number of scatterers in the specimen 

under test. Experimental results are given in order to compare 

the proposed method with the well-known TFM. A specific 

application of close flaw separation is presented and shows that 

the proposed approach is able to resolve two close scatterers 

separated by 𝜆/4.  

Keywords: ultrasonic imaging, total focusing method, 

inverse problem, regularization, resolution, GPU. 

NOMENCLATURE 

𝜏  Time of flight 

𝑢𝑖 , 𝑣𝑗 Abscissa of emitter and receiver 

𝑁𝑒𝑙   Number of elements 

𝑁𝑥𝑁𝑧 Number of pixels 

𝑁𝑡  Number of time samples per signal 

𝜆  Wavelength 

c  Speed of sound (m/s) 

𝒚  FMC data 

𝑯  waveform matrix 

𝒐  reconstructed image 
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1. INTRODUCTION 
Imaging techniques using phased array probes are 

commonly used in ultrasonic imaging for their ability to build 

images. Conventional imaging techniques only focus at few 

points in the material by applying a delay law in the hardware. 

These methods have been outperformed by Delay-and-Sum 

(DAS) techniques that focus the signals at each point of a region 

in post processing [1]. The industrial use of these new methods 

is made possible thanks to the growth of Graphic Processing Unit 

(GPU) [2] and ultrasonic hardware capabilities. Still, due to the 

impulse response of the transducers or Point Spread Function 

(PSF) [3], a single scatterer in the material gives oscillations in 

ultrasonic images, which limits the resolution of such methods. 

The proposed approach includes the PSF in order to build a 

waveform matrix that links the reflectivity of the media to the 

ultrasonic raw data. The reconstruction of the reflectivity at each 

point from data collected by transducers pulsing and receiving in 

a limited range of frequencies is an ill-posed inverse problem [4]. 

In NDT, the final image contains only few scatterers with a small 

size, thus a sparse a priori information is relevant in order to 

regularize the problem [5,6,7]. The result is then obtained by 

minimizing a penalized least squares criterion within an iterative 

procedure [8].  

In this paper, the inverse approach is presented in the context 

of FMC acquisition and is compared to the well-known Total 

Focusing Method on experimental data from an aluminum block 

containing Side Drilled Holes (SDH). 

 
2. INVERSE METHOD 

2.1 The Total Focusing Method 
The FMC data acquisition consists in firing successively 

with each transducer, the reflected echoes being acquired with 

all elements of the probe. The TFM is a standard process to 

produce ultrasonic image from FMC data [9]. For each pixel 

(xk, zl) of a discrete grid, the proper time of flight is computed 
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for each emitter/receiver pair. In a homogeneous media inspected 

in contact, the time of flight reads: 

τ(i, j, xk, zl) =
√(xk−ui)2+zl

2+√(xk−vj)
2

+zl
2

c
.  (1)                             

Then, all signals are summed for each pixel at the proper time of 

flight as follows: 

 

𝑂TFM(𝑥𝑘, 𝑧l) = ∑ ∑ 𝑦𝑖,𝑗(τ(𝑥𝑘, 𝑧l, 𝑖, 𝑗))
𝑁𝑒𝑙
𝑗=1

𝑁𝑒𝑙
𝑖=1 .    (2) 

 

This operation can be realized in real time by parallelizing the 

computation on GPU [2]. 

 
2.2 Direct Model 
Each signal can be modelled as a convolution between the 

PSF and the reflectivity of the media under test [3 ,10]. Thus, a 

convolution matrix 𝑯 can be built to link the discrete directivity 

𝒐 of the material to the FMC signals 𝒚 [11]: 

 

𝒚 = 𝑯𝒐 + 𝒏,                            (3) 
 

where 𝒚 ∈ 𝑅𝑁𝑡𝑁𝑒𝑙
𝟚

 is the vectorized data, 𝒐 ∈ 𝑅𝑁𝑥𝑁𝑧 is the 

vectorized reflectivity sequence. 𝒏 ∈ 𝑅𝑁𝑡𝑁𝑒𝑙
𝟚

 stands for the noise 

and model errors and each column of 𝑯 ∈ 𝑅𝑁𝑡𝑁el
𝟚 ×𝑁𝑥𝑁𝑧 gathers 

the signature in the data of a single, pointwise, scatterer located 

at the corresponding position in the medium. 

 
2.3 Inversion 
From Equation (3), retrieving the reflectivity of the media 𝒐 

from the knowledge of the ultrasonic raw data 𝒚 formulates an 

inverse problem [4]. Due to the frequential selectivity of the 

probe, the problem is ill-posed and must be regularized by 

introducing a priori information depending on the desired 

properties in the final solution 𝒐. Thus, the reflectivity of the 

media is obtained by minimizing iteratively the following 

criterion: 

 

𝐽(𝒐) = ‖𝒚 − 𝑯𝒐‖2 + ϕ(𝒐),  (4) 
                      

where ϕ(𝒐) is the regularization function. Sparse a priori have 

been widely used in ultrasonic imaging [5,6,7] and are 

particularly adapted to the reconstruction of few small scatterers. 

Thus, the chosen penalization function is composed of a sparse 

term. In order to ensure spatial smoothness between close pixels 

in the solution, another penalization function is added to the 

criterion: 

 

ϕ(𝒐) = μ1‖𝒐‖1 + μ2‖𝑫𝒐‖2,  (5) 
 

where 𝑫 is a matrix operator computing differences between 

neighboring pixels, μ1 and μ2 are the regularization parameters 

that balance between the data fitting term and the prior 

knowledges. The non-differentiable criterion is minimized with 

FISTA algorithm [8].                             

3. RESULTS 
In this part, the proposed method is confronted to the TFM. The 

goal of the first experiment is to show the resolution 

improvement from experimental data acquired at 3 MHz from an 

aluminum block presented on Figure 1a. The reconstruction grid 

is centered on 3 SDH of 1mm diameter at 30 mm depth. 

 

 
FIGURE 1: (a) First acquisition on an aluminum block. The 

reconstruction grid is framed in red around 3 SDH. (b) Second 

acquisition on an aluminum block containing 2 close SDH circled in 

red. 

 
FIGURE 2: (a) TFM reconstruction and (b) Inverse method 

reconstruction in log scale. (c) Maximum amplitude of the two 

reconstructions along z axis. 

https://www.linguee.fr/anglais-francais/traduction/neighboring+buildings.html
https://www.linguee.fr/anglais-francais/traduction/neighboring+buildings.html
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 Lat. Res. (mm) Ax. Res. (mm) 

SDH #1 #2 #3 #1 #2 #3 

TFM 0.97 1.00 1.05 1.40 1.43 1.39 

INV 0.24 0.20 0.19 0.11 0.10 0.10 

TABLE 1: Lateral and axial resolutions at -6dB computed on the TFM 

and inverse method reconstructions presented in Figure 2. 

 

The results are presented in Figure 2 and corresponding metrics 

are computed in Table 1. From this experiment, it is clear that the 

inverse method outperforms the TFM in terms of lateral and axial 

resolutions. 

The second experiment consists in resolving two close SDH 

of 1 mm diameter located at 40 mm depth, distant from 1 mm 

edge to edge presented on Figure 1b. The probe used to acquire 

the data is pulsing around 1.5 MHz, which means that the 

wavelength in aluminum is around 4.2mm. Moreover, the inter-

element space is 2 mm, i.e. twice the distance between the two 

flaws. Figure 3 shows the TFM and inverse method 

reconstruction in log scale. The two SDH are not resolved in the 

TFM image where only one big spot is visible. In the Inverse 

method reconstruction, the two flaws are resolved and the 

maxima of the two spots is distant of 1.50 mm. 

 

 
FIGURE 3: (a) TFM reconstruction and (b) Inverse method 

reconstruction in log scale 

  
4.  CONCLUSION 

An inverse problem approach applied to FMC data has been 

presented. The method consists in inverting a linear model that 

accounts for the instrumental response of transducers using a 

sparse prior. Applied to SDH in an aluminum block, the proposed 

method improves significantly the resolution on the 

reconstructed image and is able to separate close flaws up to 𝜆/4. 

This work is still in progress in order to integrate complex 

propagation properties that accounts for the PSF distortion into 

the model, the final purpose being the improvement of resolution 

and signal to noise ratio in scattering materials. 
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