
Nagle, C. (2019). An introduction to fitting and evaluating mixed-effects models in R. In J. Levis, C. Nagle, & E. Todey (Eds.),

Proceedings of the 10th Pronunciation in Second Language Learning and Teaching Conference, ISSN 2380-9566,

Ames, IA, September 2018 (pp. 82-105). Ames, IA: Iowa State University.

Pronunciation in Second Language Learning and Teaching 10 82

RESEARCH WORKSHOP

AN INTRODUCTION TO FITTING AND

EVALUATING MIXED-EFFECTS MODELS IN R

Charles Nagle, Iowa State University

Mixed-effects modeling is a multidimensional statistical analysis capable of modeling

complex relationships between predictor and outcome variables while accounting for

random variance in various dimensions of the data. Although this technique is gaining

popularity in applied linguistics research, learning how to model, and how to do so in R,

can be intimidating. This guide provides an introduction to fitting mixed-effects models in

R (Version 3.5.3) using RStudio. It includes a written introduction describing the modeling

process, a video tutorial that focuses on getting started in RStudio, a sample data set, and

an R script containing code to analyze the data. By the end of this introduction, researchers

should have developed a basic understanding of the modeling process and should be able

to (1) read data into R and inspect its structure, (2) create a series of plots to visualize trends

and/or primary variables, and (3) fit and evaluate models.

INTRODUCTION

Mixed-effects models (also known as hierarchical or multilevel models) involve two fundamental

components: fixed effects and random effects. Fixed effects are variables whose levels are defined,

or do not change from one study to another. For example, lexical stress is a fixed effect because

the levels are always reproducible across studies: stress vs. unstressed syllable, primary vs.

secondary stress, etc. Gender is another classic example of a fixed effect since it is traditionally

treated as a binary predictor: male vs. female. In contrast, random effects change across studies

because they represent a random sample of a larger set. For instance, participants are treated as a

random effect because the levels change across studies; participant 1 in study x is not the same

person as participant 1 in study y. Raters and items can also be treated as random effects.

Mixed-effects models are superior to traditional analyses, such as ANOVA. Imagine that we

collect data from 30 participants over four sessions, but at the last session, only 15 of our

participants return. ANOVA employs listwise deletion (cases with missing data are excluded),

leaving us with an analyzable sample of 15 participants; in other words, we lose all of the data for

the 15 participants who completed the first three sessions. In contrast, mixed-effects models are

robust in the face of missing data, which means that models are estimated using all available data

points, even if some cells are missing (e.g., session 4 for 15 of 30 participants). This makes mixed-

effects modeling an ideal approach for complex studies where attrition can be an issue, such as

studies involving multiple tasks, sessions, or both. Mixed-effects models are also more flexible

than ANOVA in terms of the assumptions that must be met. For example, the assumption of

independence of observations is not required for mixed-effects models. Mixed-effects models are

specifically designed to deal with dependent observations since we can treat various facets of the

model as nested within one another. Finally, mixed-effects models allow for far more complex

analyses, such as modeling curvilinear development and the effect of time-varying predictors,

predictors whose values change over time (e.g., language use, motivation, etc.).

Nagle An introduction to fitting and evaluating mixed-effects models in R

Pronunciation in Second Language Learning and Teaching 10 83

HOW TO USE THIS GUIDE

I began learning how to model five years ago. At the time, I did not know anything about R, so I

actually learned how to use R as I was learning to model. From my perspective, learning how to

model in R is remarkably similar to learning another language: as you learn how to model, you

gradually restructure your knowledge, leading to a deeper and more intuitive understanding of the

process, and as your familiarity increases, you become ready to learn about more complex topics.

In fact, I still learn something new about modeling every time I fit models to a new data set. I share

this information because I think it is important that you look at learning how to model in R as a

longer-term endeavor whose payout will increase over time. This guide can serve as a starting

point, but you will need to consult other resources and begin modeling your own data as soon as

possible; as far as modeling is concerned, experience really is the best teacher. At the same time,

I have tried to make the process as straightforward and anxiety-free as possible. In this guide, you

will find step-by-step instructions on how to fit models to a sample data set using an annotated R

script that I have provided. In other words, you will not need to write your own code at this stage.

I have also recorded a video tutorial that will help you with preliminary steps, including setting up

R and RStudio. I recommend watching the tutorial and reading this guide before modeling the

accompanying data set.

Before you begin, you will need to install the latest version of R (https://www.r-project.org/) and

RStudio (https://www.rstudio.com/). When you launch RStudio, it will automatically load R and

ask you to create a new project in a new working directory. If you have already downloaded

RStudio and created one or more projects, it may load an existing project. I prefer to create a new

working directory for each project, saving all associated files (e.g., the master project files, R

scripts, datasets, plots, etc.) into the folder. The written guide starts from loading the dataset and

therefore assumes you have already loaded RStudio and created a new project. The video tutorial

starts from opening RStudio, creating a project, and opening the script with the R code for data

analysis. I will include a few illustrative screenshots of the RStudio interface in this written guide,

but for information on where to click, see the video tutorial. Materials for this workshop can be

accessed at https://iastate.box.com/s/bf0kerv0g17jnmqsdxgofgzldyo0ubgf.

TRANSLATING A STUDY INTO A MIXED-EFFECTS MODEL

We are going to use a data set similar to the one described in Nagle (2017). In that study, I was

interested in how learners’ production of L2 stop consonants changed over time. I created a set of

fictitious characters to control for the phonetic context in which the stop appeared and participants’

familiarity with the target items. The four fictitious characters relevant to the present analysis are

Pafo, Bafo, Pamuso, and Bamuso. In the first two characters, Pafo and Bafo, the stop occurs in a

stressed syllable, whereas in Pamuso and Bamuso, the stop occurs in an unstressed syllable. The

outcome variable was voice onset time (VOT), an acoustic measure that represents the time that

elapses between voicing onset and the release of the stop closure.

For the purpose of modeling, we will work with a data set consisting of 24 L1-English university

students that I recruited from various sections of a second-semester Spanish course. Some

participants had taken Spanish classes in elementary school and high school and were placed into

the second-semester course, whereas others had begun learning Spanish at university. Learners

https://iastate.box.com/s/bf0kerv0g17jnmqsdxgofgzldyo0ubgf

Nagle An introduction to fitting and evaluating mixed-effects models in R

Pronunciation in Second Language Learning and Teaching 10 84

participated in five sessions over their second, third, and fourth semesters of Spanish, at

approximately half-semester intervals. At each session, they completed a sentence formation task

and a reading task. On the sentence formation task, they saw pictures representing one of the

characters, a verb, and an object or location. Using these pictures, they created simple sentences

in Spanish, such as Pafo corre en el parque (‘Pafo runs/is running in the park’). On the reading

task, they saw a similar sentence printed on the computer screen and read it aloud. Ten sentences

were elicited for each target character.

From this point forward, variables will appear in italics. We have the following variables in the

“VOT data final.csv” data set (levels are labeled as they appear in the data set):

o id: categorical, 24 levels (one per participant)

o session: continuous, 0 to 4 (could also be treated as a factor if sessions were not evenly

spaced)

o task: categorical, two levels (formation, reading)

o stress: categorical, two levels (stressed, unstressed)

o phone: categorical, two levels (b, p)

o item: categorical, four levels (this is a dummy variable that shows the character names)

o age of learning (aol): continuous, the age at which the participant began learning Spanish

o previous experience (pe): continuous, the number of years of Spanish participants had

taken before the study

o class: categorical, two levels (a, b), this is a variable I have added to the data set to

illustrate the principle of nesting (i.e., this variable was not part of the original study)

o vot: continuous, dependent variable

Before we translate this design into mixed-effects models, we should review some facts about stop

consonant VOT. In English, word-initial voiceless stops such as /p/ are aspirated, or produced with

a strong burst of air that delays the onset of voicing in the following segment for about 30 to 60

milliseconds depending on point of articulation (closer to 30 for bilabial /p/ and 60 for velar /k/).

In contrast, voiceless stops in Spanish are unaspirated, which means that the delay between the

release of the stop and the onset of voicing in the following segment is very short, ranging from

10 to 30 milliseconds. Consequently, English speakers need to minimize the burst of air that occurs

on stop release to produce more Spanish-like voiceless stops. Voiced stops in English, such as /b/,

are variably realized as either voiced or voiceless unaspirated. In Spanish, voiced stops are always

voiced, so English speakers who produce voiced stops need to learn that only voiced variants are

used in Spanish, and speakers who do not produce voiced stops need to acquire them. English

speakers need to produce shorter VOT values for Spanish /p/ and negative VOT values for Spanish

/b/, since negative VOT is a coding convention that indicates that voicing begins before the stop

is released (i.e., that the stop is produced with voicing during closure).

Our modeling will focus on VOT in Spanish /p/, a continuous outcome whose lower and upper

limits are approximately 10 and 100 milliseconds. We will focus on modeling development over

time, or how vot changes over session, while examining how task and stress affect vot. We will

also incorporate aol and pe as covariates to control for their potential relationship with vot (e.g.,

perhaps learners with an earlier aol produce more accurate vot). We could also investigate whether

learners improve their VOT production more rapidly on one task, which would involve a session

× task interaction.

Nagle An introduction to fitting and evaluating mixed-effects models in R

Pronunciation in Second Language Learning and Teaching 10 85

We can model these relationships as fixed and random effects. Fixed effects essentially represent

the group trend, and random effects can be conceptualized as individual variation around that trend.

For instance, if we include session as a fixed effect, we are modeling rate of change in vot for a

prototypical participant, pooling all of the individual data. If we include session as a by-subject

random effect, we are modeling individual variation in rate of change. In other words, we are

instructing our model to estimate a unique rate of change for each individual in the data set, or

each of our 24 participants. In principle, we could include a random effect for each of our fixed

effects, creating a maximal random effects structure (Barr, Levy, Scheepers, & Tily, 2013).

Likewise, we could include another group of random effects, such as by-item random effects. The

design of the current study includes only two target items for /p/, Pafo representing the stressed

condition and Pamuso representing the unstressed condition. If we had ten target items per

condition, then we could introduce by-item random effects to account for random variance

associated with the particular target items we had selected.

PREPARING DATA FOR MODELING

With the conceptual basis of our model in place, we can now inspect, analyze, and plot the data in

R. I recommend that you open the R script “Script for PSLLT Proceedings Article” so that you

can follow each of the steps outlined below. All R code provided in this written guide will appear

in Calibri. In addition to the baseline R packages, we will need the following packages: “lme4”

(Version 1.1-21; Bates, Maechler, Bolker, & Walker, 2014) to fit the models, “lmerTest” (Version

3.1-0; Kuznetsova, Brockhoff, & Christensen, 2017) to produce p values for fixed effects, and

“ggplot2” (Version 3.1.0; Wickham, 2016) to plot the data.

To install these packages, we use the install.packages() function. We could install each package

separately using three commands, or we can install all of them simultaneously by telling R that we

have multiple items, which is generally what c() does in R code.

install.packages(c("lme4", "lmerTest", "ggplot2"))

Having installed the packages, we now need to load or activate them using the library() function.

In this case, we must do so individually; we cannot load all three packages simultaneously using

c().

library(lme4)
library(lmerTest)
library(ggplot2)

As we build our models and plots, we will create objects in R. The text that appears to the left of

the arrow (which is actually the less than sign and a dash) is the name we are giving the object,

and the text that appears to the right of the arrow refers to the function(s) that we are executing to

create that object. First, we need to read our data into R using the read.csv() function.

data <- read.csv("VOT data.csv", row.names = NULL)

Nagle An introduction to fitting and evaluating mixed-effects models in R

Pronunciation in Second Language Learning and Teaching 10 86

Figure 1. Screenshot of RStudio interface showing “data” dataframe on the Environment tab. The

font, size, and background of the interface will depend on your settings in tools > global options >

appearance.

We now have a dataframe named “data” (Figure 1) that we can inspect using the str() function.

We should inspect every dataframe to make sure that R has interpreted our data structure properly.

In my research, I typically use numbers to refer to participants (e.g., 1, 2, 3, etc.). R interprets

numbers as integers or continuous variables. To avoid this, you could label participants with letters

or a combination of a letter and number (i1, i2, i3, etc.). However, if you like to use numbers like

I do, then we can use the as.factor() function to tell R that id is a categorical variable. This function

is slightly more complicated since we need to use $ to tell R to look inside the dataframe for the

id variable and interpret it as a factor.

str(data)
data$id <- as.factor(data$id)

Now if we reinspect the data using the str() function, we see that R is interpreting id as a factor.

All of our other variables have been interpreted correctly. We are going to focus on the /p/ data for

this analysis, so we need to create a new data set consisting of only the /p/ data using the subset()
function.

data.p <- subset(data, phone == "p")

Nagle An introduction to fitting and evaluating mixed-effects models in R

Pronunciation in Second Language Learning and Teaching 10 87

From this point forward, we will work with the “data.p” dataframe. The last step before we begin

analyzing is to check for normality using the qqnorm() function. If our continuous variable is

normally distributed, the points will fall more or less on a straight diagonal line. While slight

deviations are acceptable, major departures indicate that the distribution is not normal.

qqnorm(data.p$vot)

Immediately from the plot we can see that some participants produced negative VOT (or voiced

variants) for /p/. For these target items, participants probably made a mistake, reading /p/ as /b/, so

it makes sense to eliminate these few outliers from the data set and retest for normality. We can

use subset() to remake the data set including only items for which VOT > 0. In this case, we are

modifying (overwriting) our dataframe instead of creating a new one, so we include “data.p” to

the left of the arrow.

data.p <- subset(data.p, vot > 0)

If we look at the environment tab, typically displayed in the upper right corner of RStudio, we can

see that the number of observations decreased from 4392 to 4375 when we executed the subset

function, which tells us that we have eliminated 17 observations whose VOT ≤ 0. Now we check

for normality again, and see that the data is beginning to look more normal since we have

eliminated outliers on the lower end. However, we can still see that there is a relatively substantial

curve in the line, so we will transform the data to enhance normality. Before we do, we should

look at histogram of vot, which can help us determine what type of transformation to apply. We

can generate a plot object (Figure 2) using the following code:

histogram.p <- ggplot(data.p, aes(x = vot)) +
 geom_histogram()

Nagle An introduction to fitting and evaluating mixed-effects models in R

Pronunciation in Second Language Learning and Teaching 10 88

Figure 2. Screenshot of code to generate “histogram.p” plot and code to call the plot in the “Plots”

tab.

The histogram seems to suggest that the data is somewhat log-normal, making a log transformation

appropriate. Consequently, we will add a new variable, log_vot, to our dataframe using the log()
function.

data.p$log_vot <- log(data.p$vot)

Now when we check normality of log_vot, qqnorm(data.p$log_vot), we see that we have a

reasonably straight line. We will build models using log_vot as our dependent variable.

VISUALIZING THE DATA

When we model, we are trying to represent the data as accurately as possible, assessing

relationships between our predictors and outcome. Plotting provides insight into the data and helps

us fit the appropriate model, particularly when we are dealing with complex data sets. For

longitudinal data in particular, we are trying to visualize the shape of the developmental curve so

that we can specify the time predictor appropriately. For instance, if we see that development slows

down over time, then we could include linear and quadratic time variables to estimate linear and

quadratic rates of change (i.e., rate of change and rate of deceleration).

I always generate at least two primary plots, one that summarizes the group trajectory against

individual trajectories (plots that include individual trajectories are sometimes referred to as

Nagle An introduction to fitting and evaluating mixed-effects models in R

Pronunciation in Second Language Learning and Teaching 10 89

spaghetti plots) and another that plots trajectories for individual participants over time. We will

use the “ggplot2” package to make our plots. Code for this package can be complicated depending

on what we want to graph and how we want it displayed. I recommend starting each piece of code

on a new line for the sake of readability. Make sure to include a plus sign (+) at the end of each

line, except the last, so that R continues reading the next piece of code. If you take this approach,

R will automatically indent lines below the first to indicate that indented lines pertain to a larger

block of code, as in the following example.

plot.group.p <- ggplot(data.p, aes(session, vot)) +
stat_smooth(method = "loess", se = F, size = 2) +
stat_summary(aes(group = id), fun.y = mean, geom = "line", alpha = 0.3) +
xlab("Session") +
ylab("Voice Onset Time")

This creates the basic plot. However, I like to remove the gridlines and use a black and white

theme, which we can accomplish by adding the following pieces of code. The two sets of code

will generate the plot displayed in Figure 3.

theme_bw() +
theme(strip.background = element_blank()) +
theme(panel.grid.major = element_blank(), panel.grid.minor = element_blank())

Figure 3. Group trend in VOT for Spanish /p/ versus individual trajectories.

Nagle An introduction to fitting and evaluating mixed-effects models in R

Pronunciation in Second Language Learning and Teaching 10 90

If we want to save our plot, we use the ggsave() function, specifying the output file, the plot object

in R, and the dimensions of the plot in inches and its dpi (300 is typically required by most

journals).

ggsave("group plot p data.jpeg", plot.group.p, width = 4, height = 4, dpi = 300)

We can rework the code for the group plot to make individual boxes for each participant by

telling R to facet (or array the data) by id using the facet_wrap() function. We can also

optionally include the number of columns and rows if we want a particular configuration. In this

case, we will specify six columns (generating four rows) since we have 24 participants.

plot.individual.p <- ggplot(data.p, aes(session, vot)) +
stat_summary(fun.y = mean, geom = "line") +
xlab("Session") +
ylab("Voice Onset Time") +
theme_bw() +
theme(strip.background = element_blank()) +
theme(panel.grid.major = element_blank(), panel.grid.minor = element_blank()) +
facet_wrap(~id, ncol = 6)

We then save this plot using the ggsave() function, adjusting the dimensions to fit the plot. In

general, getting the dimensions of the plots right requires some trial and error, so I think the

simplest approach is to save the file, copy it into a Word document, and adjust the dimensions as

needed until it displays correctly. For example, I specified dimensions of 6.5” width and 4”

height to create Figure 4.

Figure 4. Individual trajectories in VOT for Spanish /p/.

Nagle An introduction to fitting and evaluating mixed-effects models in R

Pronunciation in Second Language Learning and Teaching 10 91

These two plots (Figures 3 and 4) show us that most participants improved their VOT production

since we see a downward trend toward shorter, more Spanish-like VOT in /p/. We also see that for

many individuals, VOT improved more over the first half of the study, suggesting that we should

try modeling linear and quadratic rates of change. In both plots, we can see that some learners did

not participate in all five sessions (e.g., 6, 18). As I mentioned in the introduction, mixed-effects

models can handle missing data, so these cases are not problematic.

We could also generate a plot to illustrate the effect of stress on VOT production. In the code

below, we map line type to stress (we could also map color, but since many journals print in

greyscale, I try to avoid using color to differentiate conditions or groups) within the aes() function

and include an additional line of code to move the legend from its default location (vertical display

to the right of the plot) to the bottom of the plot to avoid compressing the x-axis.

plot.individual.p <- ggplot(data.p, aes(session, vot, linetype = stress)) +
stat_summary(fun.y = mean, geom = "line") +
xlab("Session") +
ylab("Voice Onset Time") +
theme_bw() +
theme(strip.background = element_blank()) +
theme(panel.grid.major = element_blank(), panel.grid.minor = element_blank()) +
facet_wrap(~id, ncol = 6) +
theme(legend.position = "bottom")

Figure 5. Individual trajectories in VOT for Spanish /p/ in stressed and unstressed environments.

Nagle An introduction to fitting and evaluating mixed-effects models in R

Pronunciation in Second Language Learning and Teaching 10 92

FITTING MIXED-EFFECTS MODELS TO THE DATA

Before we can begin modeling, we should create a variable that represents the quadratic trend for

time by squaring session. We want to create this variable because in Figures 3 and 4 we observed

curvature in the group and individual trajectories. In other words, VOT production over time did

not follow a straight line (cf. participants 1, 2, 10, 12, etc. in Figure 4 above). We can approximate

this curvature using a quadratic function for session, or session_sq.

data.p$session_sq <- data.p$session^2

We should also center aol and pe, our continuous predictors. Centering is essentially a form of

standardizing variables, making them easier to interpret without altering the model (coefficients

will change but significant effects will not). There are various ways to center, but grand-mean

centering makes the most sense for our predictors. In this form of centering, we compute the mean

and subtract it from each participant’s score on the relevant variable. In our centered variables, a

negative score indicates that the participant was below the mean, a positive score that the

participant was above the mean, and a score of zero refers to the mean. For example, aol refers to

the age at which participants began learning Spanish. When we fit a model, the intercept is

computed by setting all predictors to zero, but a score of zero is not possible in our data (i.e., a

score of zero would in theory represent a native speaker of Spanish). Centering resolves this issue

by setting zero to refer to the sample mean. A score of zero is possible for pe because some

participants had not taken Spanish before enrolling in university language coursework. However,

it is still advantageous to center pe to represent the average amount of previous experience that

participants had, since ultimately we are trying to model a prototypical participant’s trajectory. We

can create the centered predictors and add them to our data set in R.

data.p$aol_c <- data.p$aol – mean(data.p$aol)
data.p$pe_c <- data.p$pe – mean(data.p$pe)

We are now in a position to begin modeling. Scholars have advocated for a variety of approaches

to modeling, but the most common is forward-testing random effects and backward-testing fixed

effects. This means that we will add random effects one by one and compare models to one another,

and we will add fixed effects as a group and compare models by progressively dropping the least

significant effects. Even though backward-testing fixed effects is generally advisable, this does

not mean that we should include every possible fixed effect. Rather, our fixed effects should be

guided by our theoretical framework and the design of our study. In certain scenarios, we may

decide to retain a fixed effect even if is not significant. For instance, if we are interested in higher

order interactions among predictors, we would not eliminate their baseline components.

In practice, backward-testing fixed effects can be challenging when you first transition to mixed-

effects models. In my view, a data-driven, bottom-up approach (Cunnings & Finlayson, 2015) is

perfectly acceptable so long as you report your modeling process as transparently as possible,

including the model containing your “final” set of predictors. The data-driven approach can be

particularly advantageous when dealing with longitudinal data since decisions need to be made

about the shape of development over time. In some of my previous work (Nagle, 2017a, 2017b), I

opted to forward-test models, reporting all of the models I built in a table or appendix to illustrate

Nagle An introduction to fitting and evaluating mixed-effects models in R

Pronunciation in Second Language Learning and Teaching 10 93

the process (for examples of how to format such a table, see Murakami, 2016; Singer & Willett,

2003).

For the purpose of this illustration, we will take a hybrid approach. First, we will build the

unconditional growth model, which is a model that describes how VOT, our dependent variable,

changes over time. To this model, we will add task and stress, our primary predictor variables,

using backward-testing to evaluate the fixed terms and forward-testing to evaluate the random

terms. To build our models we will use the lmer() function, which takes the following general

form. Note that I place fixed and random effects on separate lines so that the code is easier to read.

name of model <- lmer(dependent variable ~ fixed1 + fixed2 +
(random1 + random2 | random grouping term 1) +
(random1 + random2 | random grouping term 2), data = name of dataframe)

First, we build the null or random intercepts model:

null.p <- lmer(log_vot ~ 1 + (1 | id), data = data.p, REML = F)

In the code above, we are creating a model, “null.p,” in which log_vot is the dependent variable.

We have only one fixed effect, the intercept, represented by the 1 after the tilde (~), and we have

included by-subject random intercepts using the code (1 | id). In this piece of code, the random

effects appear to the left of the vertical bar, and the grouping term over which they are computed

to the right. We have also specified that our data set is “data.p,” and we have told the model to use

maximum likelihood estimation rather than restricted maximum likelihood estimation (REML) so

that we can compare models with different fixed-effects structures to one another. If we were

interested in comparing models with the same fixed effects but different random effects, then we

could fit and compare REML models. In lmer(), REML is the default, so we turn it off using the

code REML = F.

Next, we build unconditional linear and quadratic growth models using session and session_sq.

Unconditional growth simply means that we have not yet included any predictors that would affect

the intercept or rate of change over time (i.e., we have not yet placed any conditions on the intercept

or rates of change). R will always include intercepts unless we suppress them, so we do not need

to carry 1 forward in our model specification.

linear.p <- lmer(log_vot ~ session +
(session | id), data = data.p, REML = F)

quadratic.p <- lmer(log_vot ~ session +

session_sq +
(session + session_sq | id), data = data.p, REML = F)

The quadratic model with by-subject random slopes for session_sq fails to converge, which is not

uncommon for models involving large data sets and/or complex random effects structures. Failure

to converge does not always indicate a problem with model specificiation. There are a number of

ways to facilitate convergence, such as using a different optimization function, removing

Nagle An introduction to fitting and evaluating mixed-effects models in R

Pronunciation in Second Language Learning and Teaching 10 94

covariances among random effects, and simplifying the random effects. For the purpose of this

guide, we will instruct R to use the BOBYQA optimizer instead of the default nloptwrap

implemented in lme4 version 1.1-20 (for more information on convergence, see the FAQ section

at the end of this guide). We can do this using the following code. For the sake of readability, I

will move the data and fit specifications to a separate line.

quadratic.p <- lmer(log_vot ~ session +
session_sq +
(session + session_sq | id),
data = data.p, REML = F, lmerControl(optimizer = "bobyqa "))

Now we compare the three models (null, linear growth, and quadratic growth, each with the

accompanying by-subject random effects) using the anova() function. This function performs a

chi-square test on the change in the deviance statistic for nested models, or models that can be

derived from one another by setting one or more parameters to zero.

anova(null.p, linear.p, quadratic.p)

The output in R (Figure 6) shows that each model is an improvement over its predecessor, which

is not surprising since our plotting already revealed a quadratic trend in both the group and

individual data. We can also see that the change in degrees of freedom (the Df column) is 3 for the

comparison between the null.p and linear.p models, and 4 for the comparison between the linear.p

and quadratic.p models. This may seem odd since we only added two terms, one representing the

fixed effect and one representing the random effect, to each model. When we added those terms,

R also included covariances among the random effects: between session and the intercept for the

linear.p model; between session_sq and the intercept, and session_sq and session for the

quadratic.p model.

Figure 6. Screenshot of output for model comparisons using the ANOVA() function. Rows represent

model comparisons (i.e., linear.p reports the null.p vs. linear.p comparison, and quadratic.p reports

the linear.p vs. quadratic.p comparison).

Nagle An introduction to fitting and evaluating mixed-effects models in R

Pronunciation in Second Language Learning and Teaching 10 95

We can request a summary (Figure 7) of our unconditional quadratic growth model using the

summary() function.

summary(quadratic.p)

The first part of the summary shows the formula for the model we fit, followed by fit statistics

(e.g., AIC, BIC, and deviance), and residuals. The random effects summarize the variance in

intercepts, linear slopes (session), and quadratic slopes (session_sq), as well as the residual within-

subjects variance in the model. The fixed effects, listed below the random effects portion of the

model, demonstrate that there is a negative trajectory over the course of the study (i.e., the

coefficient for session is negative), which in this case indicates improvement. The positive

coefficient for the session_sq, when interpreted with respect to the negative coefficient for session,

indicates that development decelerated over time. These findings align with the initial plots we

generated. We can compare the magnitude of the coefficients and their directionality, but we must

remember that we are fitting models to log_vot, so the coefficients do not refer to the intercept or

rate of change on the original VOT scale.

Figure 7. Screenshot of summary of quadratic.p.

We are now ready to integrate our remaining fixed-effect predictors (stress, task, aol_c, and pe_c)

as a block and backwards test them. In the following code, I have included our time predictors,

session and session_sq, on the same line so that you can more easily see the four new fixed effects

we have added.

Nagle An introduction to fitting and evaluating mixed-effects models in R

Pronunciation in Second Language Learning and Teaching 10 96

fm1.p <- lmer(log_vot ~ session + session_sq +
task + stress + aol_c + pe_c +
(session + session_sq | id),
data = data.p, REML = F, lmerControl(optimizer = "bobyqa "))

Again, we ask for a summary of the model using the summary() function. In the list of fixed effects,

task is labeled “taskreading” and stress is labeled “stressyes.” R interprets categorical predictors

alphabetically. Thus, the sentence formation task, “formation,” and the unstressed context, “no,”

have been set as the baseline conditions against which the reading task and stressed context are

compared (for information on contrast coding categorical predictors, see Linck & Cunnings, 2015).

In other words, the intercept refers to VOT production on the formation task when the stop occurs

in an unstressed syllable. If we have installed the “lmerTest” package, then summary() will return

p value estimates for each predictor.

We can see from our summary that task is significant; the negative coefficient for “taskreading”

indicates that on average, participants produced lower VOT values on the reading task than on

sentence formation, and the large t value suggests that this effect was relatively robust. In contrast,

stress was not significantly related to VOT production, and neither were our grand-mean centered

covariates, aol_c and pe_c. We now have two options. Following the principle of backward-testing

fixed effects, we could rank these predictors in terms of their t value and begin dropping them

from the model in the following order: pe_c, stress, and aol_c. In this case, we would need to

report the order in which we dropped the nonsignificant fixed effects and the corresponding

anova() model comparisons at each stage. The second option would be to retain all effects,

reporting our final model so that readers can more easily compare and contrast estimates, standard

errors, and t values for all of the fixed effects included in the study. In my view, it is important to

create a parismonious model that does not include a large number of nonsignificant fixed effects,

but it is not always advisable to strive for the minimally adequate model, or a model that contains

only those fixed effects that enhance fit (i.e., only significant fixed effects).

For our data set, we will refit the model without stress and compare the simpler model to its more

complex predecessor. However, we will keep aol_c and pe_c since we have included them as

control covariates.

fm2.p <- lmer(log_vot ~ session + session_sq +
task + aol_c + pe_c +
(session + session_sq | id),
data = data.p, REML = F, lmerControl(optimizer = "bobyqa "))

anova(fm1.p, fm2.p)

The chi-square statistic (χ2(1) = .35, p = .56) indicates that including stress does not significantly

change model fit, so we can drop it from the model. However, in discussing the models, we would

still report and interpret stress since lack of significance is an important finding that should not be

ignored.

Now we can focus on our random effects. Some scholars have advocated for a maximal approach,

which means including a random effect for every fixed effect (Barr et al., 2013; Cunnings &

Nagle An introduction to fitting and evaluating mixed-effects models in R

Pronunciation in Second Language Learning and Teaching 10 97

Finlayson, 2015). In my view, fitting an appropriate set of random effects can be challenging, so I

would not recommend taking a maximal approach. For the sake of our model, we will add a

random effect for task to see if it improves the model, keeping in mind that as we add more random

effects, the model may take longer to converge (i.e., random effects and their covariances can be

computationally intensive). When we model task as a by-subject random effect, we are allowing

R to estimate unique coefficients for task for each participant. Put another way, for some

participants, task may have had a strong impact on VOT production (i.e., large differences in VOT

by task), whereas for others its effect may have been comparatively weak (i.e., small differences

in VOT by task). We test this possibility by including task as a random effect.

fm3.p <- lmer(log_vot ~ session + session_sq +
task + aol_c + pe_c +
(session + session_sq + task | id),
data = data.p, REML = F, lmerControl(optimizer = "bobyqa "))

anova(fm2.p, fm3.p)

Including task as a by-subject random effect has significantly improved fit (χ2(4) = 93.05, p <

.001), so we will keep it in the model. We can now consider this our “final” model, or the model

that is the best representation of our data given our research aims and predictors. Now that we have

a final model, we should calculate 95% confidence intervals for fixed effects using the confint()
function. Profiling confidence intervals can take a very long time depending on the complexity of

the model and the computer’s processor. Using an older desktop with eight gigabytes of RAM, I

waited nearly 15 minutes for R to produce confidence intervals before stopping confint().

confint(fm3.p)

We can speed up the process by approximating the confidence intervals using the Wald method,

which is far quicker (less than one second on the same machine). If we approximate the intervals,

then we should report this in the manuscript.

confint(fm3.p, method = "Wald")

Table 1 reports the final model following Linck and Cunning’s (2015) format, including a note to

indicate that the confidence intervals are approximate. I have assigned the fixed effects (i.e.,

parameters) a more informative label instead of using the variable names as they appear in our data

set.

Nagle An introduction to fitting and evaluating mixed-effects models in R

Pronunciation in Second Language Learning and Teaching 10 98

Table 1

Summary of components in mixed-effects model of VOT development in L2 /p/

 Random effects

 Fixed effects By Subject

Parameter Estimate SE 95% CI t p SD

Intercept 3.70 .13 [3.45, 3.95] 28.91 < .001 .62

Linear slope –.31 .08 [–.47, –.16] –4.02 .001 .37

Quadratic slope .06 .01 [.03, .08] 4.11 .001 .06

Task: Reading –.17 .04 [–.24, –.10] –4.64 < .001 .17

Age of learning .05 .08 [–.10, .20] .63 .53

Previous experience .05 .10 [–.15, .24] .46 .65

Note. 95% CI were approximated using the Wald method.

Finally, there are a number of ways to evaluate how well our model fits the data, such as plotting

fitted against residual values. In my experience, the latter typically works well for linear

relationships but can be misleading when modeling polynomial change, such as the quadratic term

(session_sq) we included in our models. One simple alternative is to generate a set of predicted

values based on our model and then compare predicted growth to observed growth over time.

Including this type of plot as an appendix or supplementary file can be helpful. We can generate

predicted values and add them to our data set using the predict() function.

data.p$predicted <- predit(fm3.p)

We currently have two dependent variables, log_vot and predicted, that are stored in two separate

columns. If we want to plot the predicted and observed data on the same plot, we need to transform

the data into a new longitudinal data set by merging the two dependent variables into a single

column and creating a new identifier variable. There are many packages and approaches we could

take, but I prefer the “tidyverse” package (Version 1.2.1). In the R code below, I use the gather()
function. We include the data set (data.p), the name of the new identifier column (type, for type of

data: observed vs. predicted), the name of the new outcome variable (log_vot2), and the variables

to be merged (log_vot and predicted). We also use c() to tell R that we are dealing with multiple

variables.

install.packages("tidyverse")
library(tidyverse)
data.predicted <- gather(data.p, type, log_vot2, c(log_vot, predicted), factor_key = TRUE)

We can now plot the data as before, using our code to generate individual plots while mapping

type to line type:

Nagle An introduction to fitting and evaluating mixed-effects models in R

Pronunciation in Second Language Learning and Teaching 10 99

plot.predicted.p <- ggplot(data.predicted, aes(session, log_vot2, linetype = type)) +
 stat_summary(fun.y = mean, geom = "line") +
 theme_bw() +
 theme(strip.background = element_blank()) +
 theme(panel.grid.major = element_blank(), panel.grid.minor = element_blank()) +
 xlab("Session") +
 ylab("Log VOT") +
 facet_wrap(~id, ncol = 6) +
 theme(legend.position="bottom")

Figure 8. Observed (log_vot) vs. model-predicted individual trajectories.

Comparing the dotted lines in Figure 8, which represent the model-estimated values, we can see

that each individual plot displays different rates of linear and quadratic change. This serves as a

visual reminder that we instructed R to estimate unique rates of change for each participant in the

data set by including session and session_sq in the random-effects structure of our model. We can

also see that the model represents the data reasonably well.

One last plot that we might be interested in generating is the model-estimated group trajectory.

This plot is similar to Figure 3, but we will graph the model trajectory as a dashed line. In general,

I use solid lines for observed data and dashed lines for model-estimated data as appropriate.

Nagle An introduction to fitting and evaluating mixed-effects models in R

Pronunciation in Second Language Learning and Teaching 10 100

plot.model.p <- ggplot(data.p, aes(session, log_vot)) +
stat_summary(aes(y = fitted(fm3.p)), fun.y = mean, geom = "line", linetype = "dashed", size
= 2) +
stat_summary(aes(session, log_vot, group = id), fun.y = mean, geom = "line", alpha = 0.2) +
theme_bw() +
theme(strip.background = element_blank()) +
theme(panel.grid.major = element_blank(), panel.grid.minor = element_blank()) +
xlab("Session") +
ylab("Log VOT")

Figure 8. Model-estimated group trajectory vs. observed individual trajectories.

MODELING NESTED DATA

Up until now, we have assumed that we have drawn a random sample of students from a variety

of sections of the same course, and that these students over time have had different instructors.

Now we will consider another case. Let’s assume that we recruited students from two different

sections of Spanish, labeled a and b in the data set, and followed them over a single semester of

coursework. In this scenario, we can say that the students are nested in classes. If we had a multisite

design, then students would be nested in classes and classes nested in schools (the latter would be

a three-level model). Modeling nesting is important because each class (or school) may display a

unique growth rate, and we would expect growth rates for students in the same class to be more

similar to one another than to growth rates for students in different classes (e.g., higher correlation

within classes). The R code for creating nesting is a forward slash with the higher-order group first

Nagle An introduction to fitting and evaluating mixed-effects models in R

Pronunciation in Second Language Learning and Teaching 10 101

and the lower-order group second, such as class/id or school/class/id. This syntax gets included as

a grouping factor for the random effects (i.e., on the right side of the vertical bar).

fm.p.nested <- lmer(log_vot ~ session + session_sq +
task + aol_c + pe_c +
(session + session_sq + task| class/id),
data = data.p, REML = F, lmerControl(optimizer = "bobyqa "))

If we generate a summary of the nested model using the summary() function, we can see that the

random effects structure now includes both “id:class” and “class.” We now have estimates for

the variance among classes and the variance among students, taking into consideration the fact

that students were nested in classes. However, when we fit the model, R returned a singular fit

warning, which means that the model was over-specified. Singular fit is not surprising since in

our data set we have very few observations for class (n = 2). Thus, estimating unique linear and

quadratic slopes for each class would not be advisable. If we were interested in variance among

classes, we would probably want to achieve a sample size of at least 10–20 classes, with 10–20

students in each class.

FREQUENTLY ASKED QUESTIONS

1. What if one of the variance components in the random effects structure of my model is very

small?

Interpret the variance components with respect to their corresponding fixed effect. A variance

component that is very small relative to its fixed effect indicates that there is virtually no

between-subjects variance in that parameter. In that case, even if the inclusion of the random

effect significantly improves model fit, it may be advantageous to select a simpler model

without that term. In our final model reported in Table 1, the between-subjects variance in

quadratic slopes (session_sq) is .004. This is small relative to some of the other variance

components, but proportionate relative to the fixed effect estimate (.06). For more information

on model selection, see Murakami (2016).

2. What if my model fails to converge?

More complex models may fail to converge. There are a number of solutions you can attempt.

First, you can change the default optimizer, which is what we did using lmerControl(optimizer
= "bobyqa"). You could also try fitting the model using all optimizers by fitting the model

using the default optimizer and then running the allFit() function on your model object.

Simplifying the random effects can also facilitate convergence. You can eliminate covariances

among the random effects by including a double vertical bar: (1 + session + session_sq || id).
If the model stills fails to converge, then simplifying the random effects could help (i.e.,

eliminating higher-order random effects such as interaction terms). For more information, see

Barr et al. (2013) and Linck and Cunnings (2015).

Nagle An introduction to fitting and evaluating mixed-effects models in R

Pronunciation in Second Language Learning and Teaching 10 102

3. What if my outcome variable is categorical?

Linear models are appropriate for continuous outcome variables. Generalized linear models

(glimmer) are appropriate for categorical outcomes. Thus, glimmer would be appropriate for

perception data that are coded as correct/incorrect, for production data that are coded as

intelligible/unintelligible, etc. You can fit a generalized linear model using the glmer()
function. The specification for glmer() is essentially the same as lmer(), but the interpretation

of glimmer is not as straightforward. For more information on glmer(), see Baayen (2008) and

Linck and Cunnings (2015).

4. What about ratings data?

When comprehensibility, accentedness, and other ratings are carried out on a 1000-point

sliding scale, they can be considered continuous. In that case, the same procedure outlined

above can be followed, and rater would be included as a grouping for random effects. In other

words, two sets of random effects would be expected: one grouping for speakers and another

for raters. For example, had this study been a ratings study, we might expect the following

random effects structure.

(1 + session + session_sq | speaker) +
(1 + session + session_sq | rater)

When ratings are carried out on a shorter scale, such as a 9-point scale, then the data is ordinal.

The best approach for modeling this type of data is to pool data over raters, in which case rater

would not be included as a random effect. This will linearize the scale and make it suitable for

modeling with lmer().

5. What if my data is not longitudinal?

Most of my research is longitudinal, which is why I have concentrated on modeling

longitudinal data. You can model cross-sectional data following the exact same procedure, but

you will not need to introduce time predictors, such as session and session_sq, into the model.

6. What if I do not know or remember the R code for a particular function or analysis?

First, if you are confused about a particular function, you can type a ? before the function and

R will give you a description of what it does, such as ?lmer. The R community is also very

large. In general, you can find what you are looking for by consulting the R cookbook

(http://www.cookbook-r.com/) or searching R forums. For online searching, start by including

the package and/or function you are using and a short description (e.g., fitting piece-wise

growth models using lmer, modifying the x-axis in ggplot2). Do not be afraid to experiment

with R code you find online, modifying it to meet your needs (this is precisely why I have

included code in this document and in the accompanying R script). I look up information nearly

every time I use R, so I now have a list of helpful bookmarks. You will acquire a similar set of

bookmarks as you become more familiar with R and/or modeling.

Nagle An introduction to fitting and evaluating mixed-effects models in R

Pronunciation in Second Language Learning and Teaching 10 103

7. How do I know if I have fit my model correctly and/or that the model is correct?

Mixed-effects modeling is complicated because it involves some trial and error, and modeling

experts from different disciplinary traditions recommend different approaches. Moreover, as

the field evolves, recommendations will change. All of these factors can make modeling

intimidating, but do not feel intimidated! The best way to learn modeling, and to learn R, is to

start modeling your own data with this guide and the other excellent introductions that have

been published (Cunnings & Finlayson, 2015; Linck & Cunnings, 2015). As you model and

write up results for publication, report your process and results as clearly as possible so that

reviewers can offer assistance. Over time, you will become more confident and develop a more

intuitive sense of how to fit and evaluate models. In short, learning how to model takes time.

8. What other resources can you recommend?

First, know that you can always write me with questions related to modeling and I will do my

best to answer them. In general, to help someone fit and evaluate models, it is helpful to have

a description of the study and data set as well as the R code that is being used. You should also

consult the references contained in this introduction. If you are interested in step-by-step

guides, see Linck and Cunnings (2015) for a general overview, Cunnings and Finlayson (2015)

for modeling longitudinal data, and Baayen (2008). The latter is very comprehensive and

especially helpful for working with reaction time data but could be overwhelming for

beginners. If you are interested in the theory behind mixed-effects models, especially as

applied to longitudinal data, see Singer and Willett (2003). If you are interested in a general R

statistics book that includes information on mixed-effects models, see Field, Miles, and Field

(2013). Finally, there are many recent publications featuring mixed-effects models that can

serve as excellent resources such as Barrios, Namyst, Lau, Feldman, and Idsardi (2016) and

Offerman and Olson (2016).

ACKNOWLEDGMENTS

I would like to thank Nick Pandža (Faculty Research Specialist, University of Maryland Center

for Advanced Study of Language) for first introducing me to mixed-effects modeling in R. Over

the past five years, his expertise, encouragement, and friendship have proven invaluable. I would

also like to thank Dr. Jared Linck (Research Scientist, University of Maryland Center for

Advanced Study of Language) for his help during the early stages of modeling and Dr. Philip

Dixon (University Professor of Statistics, Iowa State University) for helping me review and

interpret models when I arrived at Iowa State. Finally, I am grateful to Dr. John Levis (Professor

of TESL and Applied Linguistics, Iowa State University) and Dr. Pavel Trofimovich (Professor of

Applied Linguistics, Concordia University) for encouraging me to present and publish on

modeling and for supporting my broader research program. I am lucky to have had the help I have

had over the years, and I hope I can provide similar assistance and encouragement to other

researchers in the future.

Nagle An introduction to fitting and evaluating mixed-effects models in R

Pronunciation in Second Language Learning and Teaching 10 104

ABOUT THE AUTHOR

Charles Nagle is an Assistant Professor of Spanish and the Director of the Spanish Language

Program at Iowa State University. His main area of research is in second language pronunciation

and individual differences. He is particularly interested in how learners’ pronunciation develops

over time, including the extent to which changing patterns of motivation and language use affect

development, and the relationship between the perception and production of second language

sounds. He is also passionate about statistics, particularly mixed-effects modeling. At Iowa State,

he teaches all levels of Spanish language and upper-level linguistics courses such as “Introduction

to Spanish Phonology” and “Bilingualism in the Spanish-Speaking World.”

REFERENCES

Baayen, H. R. (2008). Analyzing Linguistic Data: A Practical Introduction to Statistics Using R.

New York: Cambridge University Press.

Bates, D., Maechler, M., Bolker, B., & Walker, S. (2015). Fitting linear mixed-effects models

using lme4. Journal of Statistical Software, 67(1), 1–48. doi: 10.18637/jss.v067.i01

Barr, D. J., Levy, R., Scheepers, C., & Tily, H. J. (2013). Random effects structure for

confirmatory hypothesis testing: Keep it maximal. Journal of Memory and Language,

68(3), 255-278. doi:10.1016/j.jml.2012.11.001

Barrios, S. L., Namyst, A. M., Lau, E. F., Feldman, N. H., & Idsardi, W. J. (2016). Establishing

new mappings between familiar phones: Neural and behavioral evidence for early

automatic processing of nonnative contrasts. Frontiers in Psychology, 7, 1-16.

doi:10.3389/fpsyg.2016.00995

Cunnings, I., & Finlayson, I. (2015). Mixed effects modeling and longitudinal data analysis. In

L. Plonsky (Ed.), Advancing Quantitative Methods in Second Language Research (pp.

159-181). New York: Routledge.

Field, A., Miles, J., & Field, Z. (2013). Discovering statistics using R. Los Angeles: Sage.

Kuznetsova, A., Brockhoff, P. B., & Christensen, R. H. B. (2017). lmerTest package: Tests in

linear mixed effects models. Journal of Statistical Software, 82(13), 1–26. doi:

10.18637/jss.v082.i13

Linck, J. A., & Cunnings, I. (2015). The utility and application of mixed-effects models in

second language research. Language Learning, 65(S1), 185-207. doi:10.1111/lang.12117

Murakami, A. (2016). Modeling systematicity and individuality in nonlinear second language

development: The case of English grammatical morphemes. Language Learning, 66(4),

834-871. doi:10.1111/lang.12166

Nagle An introduction to fitting and evaluating mixed-effects models in R

Pronunciation in Second Language Learning and Teaching 10 105

Nagle, C. (2017a). Individual developmental trajectories in the L2 acquisition of Spanish

spirantization. Journal of Second Language Pronunciation, 3(2), 219-242.

Nagle, C. (2017b). A longitudinal study of voice onset time development in L2 Spanish stops.

Applied Linguistics. doi:10.1093/applin/amx011

Offerman, H. M., & Olson, D. J. (2016). Visual feedback and second language segmental

production: The generalizability of pronunciation gains. System, 59, 45-60.

doi:10.1016/j.system.2016.03.003

R Core Team. (2019). R: A language and environment for statistical computing (Version 3.5.3).

Vienna, Austria: R Foundation for Statistical Computing. Retrieved from http://www.R-

project.org/

Singer, J. D., & Willett, J. B. (2003). Applied longitudinal data analysis. New York: Oxford

University Press.

Wickham, H. (2016). ggplot2: Elegant graphics for data analysis. New York: Springer.

