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This paper demonstrates the feasibility of a tool for measuring the intelligibility of 
English speech utilizing an automated speech system. The system was tested with 
eighteen speakers from countries representing six Englishes (American, British, Indian, 
South African, Chinese, and Spanish) who were carefully selected to represent a range of 
intelligibility. Intelligibility was measured via two different methods: transcription and 
nonsense. A computer model developed for automated oral proficiency scoring based on 
suprasegmental measures was adapted to predict intelligibility scores. The Pearson’s 
correlation between the human assessed and computer predicted scores was 0.819 for the 
nonsense construct and 0.760 for the transcription construct. The inter-rater reliability 
Cronbach’s alpha for the nonsense intelligibility scores was 0.956 and 0.932 for the 
transcription scores. Depending on the type of intelligibility measure, the computer 
utilized different suprasegmental measures to predict the score. The computer employed 
11 measures for the nonsense intelligibility score and eight for the transcription score. 
Only two features were common to both constructs. These results can lead L2 researchers 
to different perspectives of measuring intelligibility in future research.   

INTRODUCTION 

In L2 pronunciation, the importance of intelligible speech has been emphasized both in 
classroom and assessment contexts. Researchers have aimed to determine the specific features 
that affect intelligibility (Field, 2005; Hahn, 2004) and assessment scores for listeners (Iwashita, 
Brown, McNamara, & O’Hagan, 2008; Kang, 2013). However, there has been no universally 
accepted method of measuring intelligibility (Munro & Derwing, 1999). Intelligibility has been 
ascertained most commonly using transcription or other methods (e.g., true/false statements in 
Munro and Derwing, (1995) or nonsense, or filtered speech (Kang, Thomson, & Moran, 2015). 
Due to the technical aspects of such measures, their operationalization has often been 
supplemented by other constructs, i.e., comprehensibility or accentedness. Currently, advances in 
computing technology and artificial intelligence have produced automated systems (e.g., 
SpeechRaterSM) that can assess oral proficiency of accented speech, but not intelligibility. The 
advantages of automated systems are that they can be faster, less expensive, more consistent, and 
equitable scoring. 

This paper introduces an exploratory method of providing an alternative and complementary tool 
for measuring the intelligibility of different varieties of World Englishes using an automated 
speech system. The system was tested with 90 sentences from a corpus representing the three 
circles of World Englishes (Kachru, 1992). Eighteen speakers from countries representing six 
English varieties (American, British, Indian, South African, Chinese, and Spanish) are included. 
Sixty listeners from the respective countries listened to speech stimuli to determine the 
intelligibility of the speech using transcriptions and scalar judgments. The computer system used 
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a machine learning model with suprasegmental measures being the input and the output being an 
intelligibility measure. The model was trained using the annotated World Englishes corpus and 
tested on the World Englishes corpus with k-fold cross-validation. Correlations were conducted 
to compare the computer’s calculated intelligibility scores with those of humans. We will discuss 
how different sets of phonological features influenced the computer’s determination of the 
intelligibility of different varieties of English. These results suggest different perspectives for 
measuring intelligibility that can be applied in future research.  

Intelligibility Measures  

There is a growing recognition that L2 speech should aim for intelligibility rather than nativeness 
(Levis, 2005). In light of this trend, various methods have been utilized in measuring 
intelligibility in the field of L2 pronunciation.  Currently the most commonly used method is a 
transcription test, which requires a participant to listen to a sound file and transcribe it. 
Intelligibility scores are based on the percentage of an utterance or word that is transcribed 
correctly by listeners (Derwing & Munro, 1997). A less-frequently-used method is a cloze test 
that asks listeners to fill in blanks from a transcript of speech (Smith & Nelson, 1985). The 
number of words correctly identified determines intelligibility scores. Munro and Derwing 
(1995) also used True/False judgments in which listeners are asked to make true/false decision 
about a short sentence they hear. This approach assumes that more intelligible speech will allow 
listeners to correctly understand the intended message and to correctly evaluate the truth or 
falsity of sentences. More recently, Kang et al. (2015) introduced exploratory methods of 
measuring intelligibility, i.e., nonsense statement and filtered speech methods. The nonsense 
statement task involves decontextualized sentences, which do not make sense semantically (e.g., 
“Our deaf ads traced my ants.”). Listeners were asked to type missing content words into blank 
boxes provided. Each nonsense sentence receives a score based on the number of correct content 
words.  

Overall, even though varied techniques are available for assessing L2 speech intelligibility, how 
best to measure intelligibility is still not well understood nor are some intelligibility measures 
necessarily easy to implement. In the current study, we attempted to explore a new way of 
measuring intelligibility by adopting a computer model developed for automated oral proficiency 
scoring to predict intelligibility scores. The findings of the study are exploratory and should not 
be over-generalized to other contexts of speech corpora or language assessment.  

METHODS  

World Englishes Speech Corpus 

The data set we used is from a project investigating intelligibility of different varieties of World 
Englishes. Because we wanted to do an exploratory experimental study that could simply 
compare human vs. machine's intelligibility ratings, for the sake of convenience, we used the 
World Englishes corpus. 

The World Englishes speech files were developed as part of a TOEFL listening test project 
supported by Educational Testing Service. Eighteen speakers (ages 30-50) were carefully 
chosen, one female and two males from each of six countries: United States and England (Inner 
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Circle), India and South Africa (Outer Circle), and Mexico and China (Expanding Circle). All of 
the Inner Circle and Outer Circle speakers were highly proficient in English but retained a 
noticeable foreign accent. The speakers were selected to represent a range of intelligibility, as 
determined by nine trained raters’ scalar judgments. The speakers were either currently teaching 
in English as professors or graduate students. 

The speakers were asked to record in a quiet location 72 nonsense sentences, 72 true/false 
sentences, and 18 iBT listening passages (4-5 minutes) to be utilized for the intelligibility test 
and computer model training. Using Audacity, a research assistant acoustically edited noises and 
sound quality for practical uniformity and added three seconds of pause time before and after 
each passage. 

The intelligibility of the speakers was scored by 60 listeners, consisting of ten listeners 
representing each of the six World English varieties. The listeners were recruited both nationally 
and internationally. Listeners of non-inner circle English varieties were highly proficient with 
TOEFL iBT scores greater than 100. They were undergraduate and graduate students (43% 
males and 57% females). The intelligibility scoring was administered via computer, using 
headphones, and in a highly controlled laboratory setting under careful supervision. The speech 
files were randomly presented to the listeners. Two measures of intelligibility were used: 
transcription (Derwing & Munro, 1997) and nonsense (Kang et al., 2015).   

For the transcription measure, listeners heard each of the 18 speakers read four sentences (72 
sentences total), four to eight words in length, that were syntactically correct, but semantically 
incorrect. An example of the sentences is ‘gasoline is an excellent drink’. They listened to each 
sentence one time only and then were asked to transcribe what was said. Each speaker received 
an intelligibility score of 0-100% based on the number of words the listeners transcribed 
correctly in all four sentences. The actual transcription intelligibility scores ranged from 88.02 to 
99.14%.  

The nonsense intelligibility score was determined by listening to four nonsense sentences recited 
by each of the 18 speakers. The nonsense sentences were semantically meaningless, though 
syntactically normal, containing frequently used monosyllabic words. The sentences were 
adopted from studies on native language (L1) intelligibility (Nye & Gaitenby, 1974; Picheny, 
Durlach, & Braida, 1985). To score intelligibility, the listeners were asked to type missing words 
from the nonsense sentences into each of four text boxes. An example nonsense sentence with 
the missing words underlined is ‘The tall kiss can draw with an oak’. The speaker’s nonsense 
intelligibility score was then calculated as the total number of blanks out of 16 correctly filled in 
by the listeners. 8.62 to 13.62 was the actual range of the nonsense intelligibility scores. Scores 
from the both methods were normalized for comparison. Table 1 shows the raw and normalized 
values for both measures of intelligibility assessed by the humans: nonsense and transcription. 
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Table 1 

Raw and normalized intelligibility scores 

Speaker Gender World 
English 

Nonsense 
Raw 

Nonsense 

Normalized 

Transcription 

Raw 

Transcription 

Normalized 

1 M Inner 13.62 6 98.31 6 

2 M Inner 13.17 6 98.65 6 

3 F Inner 12.62 5 98.25 6 

4 F Inner 12.52 5 99.14 6 

5 M Inner 11.47 4 98.93 6 

6 M Inner 11.35 4 99.13 6 

7 M Outer 13.28 6 98.82 6 

8 M Outer 11.70 4 95.91 5 

9 M Outer 10.90 3 98.46 6 

10 F Outer 9.88 2 93.37 3 

11 M Outer 8.75 1 88.02 1 

12 F Outer 8.62 1 92.27 3 

13 M Emerging 13.13 6 94.30 4 

14 F Emerging 12.92 5 97.91 5 

15 M Emerging 10.45 3 95.80 4 

16 F Emerging 10.33 3 96.85 5 

17 M Emerging 10.12 3 92.62 3 

18 M Emerging 9.10 1 96.71 5 
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Intelligibility Score: Computer Prediction 

Figure 1 illustrates the computer model employed to predict the intelligibility scores. 

 

Figure 1.  Computer model for predicting intelligibility scores 

To predict the intelligibility scores, the computer first analyzed the 144 speech files with an 
automatic speech recognizer (ASR). From the output of the ASR, the computer calculated 35 
suprasegmental measures of rate (e.g., syllables per second, articulation, phonation ratio), pause 
(e.g., silent and filled pauses per minute and mean length), stress (e.g., pace, space, percent tone 
units with termination), pitch (e.g., pitch range, mean prominent syllable pitch), paratone (e.g., 
low terminations followed by high key resets), and intonation (e.g., percent of tone choice and 
relative pitch). Then, the computer utilized AI (artificial intelligence) machine learning 
techniques to predict normalized intelligibility scores from one to six.  The computer utilized a 
genetic algorithm to select the most salient suprasegmental measures and then built a decision 
tree classifier to predict the intelligibility scores from salient suprasegmental measures. The 
classifier was trained to achieve the best human-computer correlation by 3-fold cross-validation 
of the speech files. Each set of the 72 speech files was used to train a separate computer model 
for the two different intelligibility measures: transcription and nonsense. The computer model 
was developed for automated oral proficiency scoring (Johnson, Kang, & Ghanem, 2015), but in 
this case the output was the intelligibility score instead of the proficiency score. 

RESULTS 

First, we examined the Pearson’s correlation between the intelligibility scores assessed by the 
humans and those predicted by the computer model. Figure 2 gives the Pearson’s correlation 
between the human assessed intelligibility scores and the computer predicted scores. The 
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correlation between the human and computer nonsense intelligibility scores is 0.819; the 
correlation between the two transcription intelligibility scores is 0.760. 

 

Figure 2.  Human-computer correlation (r) 

Next, we analyzed the individual correlations between humans for the nonsense intelligibility 
score as depicted in Figure 3. The pair-wise correlations between the 60 humans ranged from 
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Figure 3.  Human-human correlation vs. human-computer correlation (r) for nonsense scores 

Next, we investigated interrater reliability with Cronbach’s alpha. Figure 4 shows that the 
Cronbach’s alpha (α=0.85) for the nonsense intelligibility scores was 0.956 (N=60) and 0.710 
(N=5). 

 

Figure 4.  Interrater reliability for nonsense intelligibility scores 
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As described in Figure 5, the Cronbach’s alpha for the transcription intelligibility scores was 
0.932. 

 

Figure 5.  Inter-rater reliability for transcription intelligibility scores  

After comparing the intelligibility scores appraised by the humans and those calculated by the 
computer model, we looked at what salient suprasegmental features were selected by the 
computer model. Table 2 gives the salient suprasegmental features selected by the genetic 
algorithm of the computer model to forecast each of the two intelligibility scores (marked with 
an X).  

Table 2 

Salient suprasegmentals in the computer model 

Type Suprasegmental Nonsense Transcription 

Rate 
phonation time ratio 

 
X 

syllables per second 
 

X 

Pause 

mean length of filled pauses X 
 

mean length of silent pauses X 
 

number of silent pauses per minute X 
 

Stress 

number of prominent syllables per run (pace) X 
 

prominence characteristics 
 

X 

proportion of prominent syllables (space) 
 

X 

0.932
0.760

0.000
0.100
0.200
0.300
0.400
0.500
0.600
0.700
0.800
0.900
1.000

Humans (N=60) Computer (N=1)
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Pitch 

average pitch of new prominent syllables X 
 

overall pitch range X X 

average height of terminating pitch X 
 

Tone 
choice 

% mid falling tone choices X 
 

% high falling tone choices X 
 

% mid fall-rise tone choices 
 

X 

% high fall-rise tone choices X 
 

% low rising tone choices X X 

% mid rising tone choices 
 

X 

 

We found that, depending on the type of intelligibility measure, the computer picked different 
features. For the nonsense intelligibility score, the computer employed 11 features: mean length 
of filled pauses, mean length of silent pauses, number of silent pauses per minute, number of 
prominent syllables per run (pace), average pitch of new prominent syllables, overall pitch range, 
average height of terminating pitch, % falling mid tone choices, % falling high tone choices, % 
fall-rise high tone choices, and % rising low tone choices. On the other hand, the computer 
utilized only eight features for the transcription intelligibility score: phonation time ratio, 
syllables per second, prominence characteristics, proportion of prominent syllables (space), 
overall pitch range, % fall-rise mid tone choices, % rising low tone choices, and % rising mid 
tone choices. Only two features, overall pitch range and % rising low tone choices, were 
common to both nonsense and intelligibility predictions. 

DISCUSSION 

The results show there is a correlation between the human assessed and computer predicted 
scores for both intelligibility constructs, nonsense (r =  0.819) and transcription (r = 0.760). The 
computer utilized different suprasegmental measures to predict the score for each construct, 11 
measures for nonsense and eight for transcription, with two the same for both constructs (i.e., 
pitch range and mid rising). In comparing this work with other similar research, Kang et al. 
(2015) found mean length of run, expected pause ratio, number of prominent syllables per run, 
word stress errors, % of falling tone choice, and vowel and consonant substitution/deletion errors 
as the salient variables in human ratings when the nonsense sentence was utilized to gauge 
intelligibility. Table 3 compares these with the ones selected by the computer model in this study. 
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Table 3 

Salient pronunciation features that predict intelligibility with the nonsense sentence construct 

Human Ratings 
(Kang et al., 2015) 

Computer Modeling 

mean length of run 
 

expected pause ratio 
mean length of silent and filled pauses 
number of silent pauses 

number of prominent syllables per run 
word stress errors 

number of prominent syllables per run 

 
overall pitch range 

% of falling tone choice 
% of falling tone choice 

% of rising tone choice 

vowel & consonant substitution/deletion 
errors 

The computer model is only trained for 
suprasegmental features at the moment. 

 

The salient variables for the human and computer ratings for the nonsense sentence intelligibility 
measure differ in four areas: pausing, prominence, pitch, and tone choice. (Note: the computer 
model was only trained for suprasegmental measures; therefore, any discussion of segmentals is 
excluded). For pausing, the salient variables in human ratings were mean length of run and 
expected pause ratio. One could argue that these are very similar to the measures selected by the 
computer because they gauge how a speaker uses pausing (both filled and silent) to articulate the 
speech. Thus, from this perspective both humans and the computer model found pausing to be a 
salient predictor of intelligibility. Both discourse and intonation units are delineated by pauses 
(Brazil, 1997; Wagner & Watson, 2010). Previous studies have recognized that non-native 
speakers pause silently more frequently, longer, and more unevenly than native speakers 
(Anderson-Hsieh & Venkatagiri, 1994; Riggenbach, 1991; Rounds, 1987).  

With regard to prominence, pace (number of prominent syllables per run) was a salient variable 
for humans and the computer model. The computer did not measure word stress errors; 
accordingly, this variable could not be compared. It appears that both humans and the computer 
model agree that prominence significantly predicts the intelligibility of accented speech. The 
prominent syllable is a basic aspect of Brazil’s (1997) model of English prosody. The proper use 
of prominent syllables by speakers should then be an important suprasegmental measure of 
intelligibility. Thus, it is consistent that the computer model employed number of prominent 
syllables per run as a predictor of intelligibility.  

The computer model also used average pitch of new prominent syllables, overall pitch range, and 
average height of terminating pitch as predictors of intelligibility. The saliency of average pitch 
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of new prominent syllables and average height of terminating pitch is suspect because these are 
paratone measures and the nonsense test did not really include paratones. Thus, more research is 
necessary to determine if these are salient or an anomaly. Likewise, overall pitch range is more 
likely an indication of the variation in voice pitch between speakers, rather than an indication of 
an individual speaker utilizing intonation as a discourse signal to begin, maintain, and end a 
thought group or as a means of differentiating the information content of specific lexical items 
(Cutler, Dahan, & Donselaar, 1997; Kang, Rubin, & Pickering, 2010).  

In the category of tone choice, the computer model and the human study mutually found falling 
tone choices to be indicative of relative intelligibility. This is in harmony with earlier research 
which puts forward that lower proficiency speakers tend to overuse falling tones until they learn 
that it has a negative impact on intelligibility (Kang, 2012). Additionally, the computer model 
found the use of rising tone to be a significant predictor of NNS intelligibility. That is, 
intelligible speech tends to contain more use of rising tone but less use of falling tone.  Overall, 
when employing the nonsense intelligibility test, the human raters and computer model agreed 
that pausing, prominence, and tone choice are salient features of intelligibility. 

Mean length of filled pauses is the only one of the computer model’s predictors not supported by 
other research. According to Goldman-Eisler (1968), filled pauses may imply more regarding a 
speaker’s style of articulation and cognitive load and less about speaking proficiency. Similarly, 
Fulcher (1996) said that more capable speakers make an impression on listeners because they 
pause for distinct reasons, not because they pause at a different rate than less capable speakers.  

Kang et al. (2015) also found mean length of run, syllable per second, proportion of prominent 
syllables (space), word stress error, % of rising tone choice, vowel consonant 
substitution/deletion errors, consonant deletions, syllable reductions, and consonant cluster errors 
to be the salient variables when assessing intelligibility with the transcription construct. These 
are contrasted with those utilized by our computer model in Table 4. 
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Table 4 

Salient pronunciation features that predict intelligibility with the transcription construct 

Human Ratings 

(Kang et al., 2015) 
Computer Modeling 

mean length of run 

syllable per second 

phonation time ratio 

syllables per second 

proportion of prominent syllables (space) 

word stress error 

proportion of prominent syllables (space) 

prominence characteristics 

 
overall pitch range 

% of rising tone choice % of rising tone choice 

vowel consonant substitution/deletion errors 
& consonant deletions, syllable reductions, 
consonant cluster errors 

The computer model is only trained for 
suprasegmental features at the moment. 

 

Like the nonsense construct, except for overall pitch range, the human study and the computer 
model seem to agree on the salient features for measuring intelligibility by the transcription 
method. They both found prominence (prominence characteristics and space), falling tone choice 
(% fall-rise mid tone choices), and rising tone choice (% rising low and mid tone choices) to be 
prognosticators of intelligibility, all of which are consistent with prior research as discussed 
above.  

In the area of speech rate, both concur on syllables per second as salient. This is in line with the 
conjecture of Kormos and Dénes (2004) that proficiency is a speech rate phenomenon in addition 
to an intonational one. Ginther, Dimova, and Yang (2010) noted strong to moderate correlations 
linking oral English proficiency scores and speech rate (i.e., syllables per second or syllable 
rate), articulation rate, and mean length of run (i.e., the average number of syllables per run). The 
computer also found that speech rate and phonation time ratio, which is speech rate divided by 
articulation, were predictive of intelligibility. Mean length of run was a leading measure in the 
human study. However, the computer did not find mean length of run to be an indicator of 
intelligibility. This may be because of the study’s use of sentences rather than extended 
discourse. Even though the computer did not end up using it in its scoring, one could argue that 
speech rate, articulation rate, and mean length of run are inter-related and it is not necessary to 
consider all three of them. 

With regard to prominence, the computer model is consistent with the human study in the 
salience of space as a predictor of intelligibility. The human study also found word stress error to 
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be salient and the computer model found prominence characteristics to be. The human study did 
not measure prominence characteristics, nor did the computer model consider word stress errors, 
so it is impossible to compare these two aspects. Hence, rate, stress, and tone choice emerge as 
salient features in both the computer model and human study when the measuring intelligibility 
via the transcript construct. 

CONCLUSION 

This paper presents an exploratory approach to automating intelligibility scoring using a 
computer model that predicts scores based on suprasegmental measures derived from an 
automated speech system. The results suggest the importance of suprasegmentals in human 
judgments as well as machine scoring. We also found that the salient suprasegmental measures 
used by the computer model depend on which intelligibility measurement method is employed, 
either nonsense or transcription. Further research is needed on this topic, however. First, 
additional work is necessary to improve the accuracy of our current computer modeling. The 
accuracy of the underlying components of the suprasegmental measures (e.g., prominent 
syllables) obtained from the output of the ASR varies due to the inherent error rates of the 
instrumentation, algorithms, and machine learning techniques applied. Second, the current 
computer model only made use of suprasegmental features. Incorporating segmental features 
along with other linguistic properties (e.g., grammatical and lexical features) into the computer 
model could improve its prognostic capabilities.  

Currently, the computer model predicts a normalized intelligibility score ranging from one to six. 
This could be expanded to the full range of the intelligibility measures which is 0-100 for the 
transcription score and 0-16 for the nonsense score. The model could also be enhanced to predict 
intelligibility based on other assessment constructs such as accentedness or comprehensibility. A 
larger corpus of speakers is also recommended to validate the computer model. Although the 
corpus was carefully created to represent a wide range of World Englishes speakers, it only 
provided a training set of 12 speakers and a testing set of 6 speakers.  

ABOUT THE AUTHORS 

Okim Kang is an Associate Professor in the Applied Linguistics Program at Northern Arizona 
University, Flagstaff, AZ, USA. Her research interests are speech production and perception, L2 
pronunciation and intelligibility, L2 oral assessment and testing, automated scoring and speech 
recognition, World Englishes, and language attitude.  
Author’s contact information: okim.kang@nau.edu 
 

David O. Johnson is a Lecturer in the Electrical Engineering and Computer Science department 
at the University of Kansas in Lawrence, KS, USA. At the time of this research, he was a post-
doctoral researcher in the Applied Linguistics Speech Laboratory at Northern Arizona 
University, Flagstaff, AZ, USA developing software and computer models to automatically score 
English language proficiency and intelligibility. He received his BSEE and MSEE from Kansas 
State University and his PhD in Computer Science from the University of Kansas. Prior to a 
post-doctoral research appointment at the Eindhoven University of Technology in the 
Netherlands, he was an Adjunct Professor in the Computer Science Electrical Engineering 



Johnson & Kang   Measures of Intelligibility  
	

Pronunciation in Second Language Learning and Teaching 
 
	

71 

department at the University of Missouri – Kansas City. He is interested in natural language 
processing and human-robot interaction.  
Author’s contact information: Email: davidojohnson@aol.com 
 

REFERENCES 
Anderson-Hsieh, J., & Venkatagiri, H. (1994). Syllable duration and pausing in the speech of 

Chinese ESL speakers. TESOL Quarterly, 28, 807–812. 
Brazil, D. (1997). The communicative value of intonation in English. Cambridge: Cambridge 

University Press. 
Cutler, A., Dahan, D., & Donselaar, W. (1997). Prosody in the comprehension of spoken 

language: A literature review. Language and Speech, 40, 141–201. 
Derwing, T. M., Munro, M. J. (1997). Accent, intelligibility, and comprehensibility: Evidence 

from four L1s. Studies in Second Language Acquisition 19, 1–16. 
Field, J. (2005). Intelligibility and the listener: The role of lexical stress. TESOL Quarterly, 

39(3), 399-423.  
Fulcher, G. (1996). Does thick description lead to smart tests? A data-based approach to rating 

scale construction. Language Testing, 13, 208–238. 
Ginther, A., Dimova, S., & Yang, R. (2010). Conceptual and empirical relationships between 

temporal measures of fluency and oral English proficiency with implications for 
automated scoring. Language Testing, 27(3), 379-399. 

Goldman-Eisler, F. (1968). Psycholinguistics: Experiments in spontaneous speech. London: 
Academic Press. 

Hahn, L.D. (2004). Primary stress and intelligibility: Research to motivate the teaching of 
suprasegmentals. TESOL Quarterly, 38, 201–223.  doi: 10.2307/3588378. 

Iwashita, N., Brown, A., McNamara, T., & O’Hagan, S. (2008). Assessed levels of second 
language speaking proficiency: How distinct? Applied Linguistics, 29(1), 24-49. 

Johnson, D. O., Kang, O., & Ghanem, R. (2015). Language proficiency ratings: human vs. 
machine. In J. Levis, H. Le, I. Lucic, E. Simpson, & S. Vo (Eds). Proceedings of the 7th 
Pronunciation in Second Language Learning and Teaching Conference, (pp. 119-129), 
ISSN 2380-9566, Dallas, TX, October 2015. Ames, IA: Iowa State University. 

Kachru, B. B. (1992). The other tongue: English across cultures. University of Illinois Press. 
Kang, O. (2012). Impact of rater characteristics and prosodic features of speaker accentedness on 

ratings of international teaching assistants' oral performance. Language Assessment 
Quarterly, 9(3), 249-269. 

Kang, O. (2013). Relative impact of pronunciation features on ratings of non-native speakers’ 
oral proficiency. In J. Levis & K. LeVelle (Eds.), Proceedings of the 4th Pronunciation 
in Second Language Learning and Teaching Conference (pp. 10-15). Ames, IA: Iowa 
State University. 



Johnson & Kang   Measures of Intelligibility  
	

Pronunciation in Second Language Learning and Teaching 
 
	

72 

Kang, O., Thomson, R., & Moran, M. (2015), Intelligibility of different varieties of English:  The 
effects of incorporating "accented" English into high stakes assessment. Presentation at 
American Association of Applied Linguistics Conference, Toronto, ON, Canada, March 
21–24, 2015. 

Kang, O., Rubin, D., & Pickering, L. (2010). Suprasegmental measures of accentedness and 
judgments of language learner proficiency in oral English. The Modern Language 
Journal, 94(4), 554-566. 

Kormos, J., & Denes, M. (2004). Exploring measures and perceptions of fluency in the speech of 
second language learners. System, 32, 145–164. 

Levis, J. M. (2005). Changing contexts and shifting paradigms in pronunciation teaching. TESOL 
Quarterly, 39(3), 369-377. 

Munro, M. J., & Derwing, T. M. (1995). Foreign accent, comprehensibility, and intelligibility in 
the speech of second language learners. Language Learning, 45(1), 73-97. 

Munro, M. J., & Derwing, T. M. (1999). Foreign accent, comprehensibility, and intelligibility in 
the speech of second language learners. Language Learning, 49(s1), 285-310. 

Nye, P. W., & Gaitenby, J. H. (1974). The intelligibility of synthetic monosyllabic words in 
short, syntactically normal sentences. Haskins Laboratories Status Report on Speech 
Research, 37(38), 169-190. 

Picheny, M. A., Durlach, N. I., & Braida, L. D. (1985). Speaking clearly for the hard of hearing 
intelligibility differences between clear and conversational speech. Journal of Speech, 
Language, and Hearing Research, 28(1), 96-103. 

Riggenbach, H. (1991). Towards an understanding of fluency: A microanalysis of nonnative 
speaker conversation. Discourse Processes, 14, 423–441. 

Rounds, P. (1987). Characterizing successful classroom discourse for NNS teaching assistant 
training. TESOL Quarterly, 21, 643–672. 

Smith, L. E., & Nelson, C. L. (1985). International intelligibility of English: Directions and 
resources. World Englishes, 4(3), 333-342. 

Wagner, M., & Watson, D. G. (2010). Experimental and theoretical advances in prosody: A 
review. Language and Cognitive Processes, 25(7-9), 905-945. 

 




