Veterinary Clinical Parasitology
Veterinary Clinical

PARASITOLOGY

by

Edward A. Benbrook, V. M. D.
Professor and Head of the Department of Veterinary Pathology
Iowa State College

and

Margaret W. Sloss, B. S., D. V. M., M. S.
Assistant Professor of Veterinary Pathology
Iowa State College

SECOND EDITION

THE IOWA STATE COLLEGE PRESS
Ames, Iowa, U.S.A.
Preface to the First Edition

The control of disease can be successful only when preceded by accurate diagnosis. Parasitism by animal forms is universal among domesticated animals. The objective of any parasite is to obtain food, shelter, and a chance to reproduce without imperiling the existence of the essential or the intermediate hosts. This is true parasitism.

Crowding, insanitation, inadequate nutrition, or the breeding of animals with low resistance, encourage parasites to multiply or to attack the host. Thus injury or death will follow. This results in parasitic disease (parasitosis) in a clinically detectable form. Many parasitoses may be diagnosed by the gross routine procedures applicable to disease in general, such as inspection and palpation. Laboratory techniques simply increase the accuracy of diagnosis.

Clinical parasitology is one of the branches of clinical pathology. It serves in diagnosis and prognosis; hence it paves the way toward the prevention and treatment of those diseases in which the predisposing or exciting factors are parasites belonging to the animal kingdom.

The purpose of this publication is to assist in the diagnosis of parasitism and of parasitic disease by means of laboratory techniques, and to show by illustrations the more commonly encountered forms, as well as some of those less often seen.

Because of their diagnostic importance, only three groups of
Preface

Parasites are considered in the present publication. If there is a demand for additional sections, they may be added as soon as illustrative material in sufficient quantity becomes available.

Edward A. Benbrook
Margaret W. Sloss

August, 1948

Preface to the Second Edition

Laboratory techniques are increasingly used by veterinarians for the diagnosis of animal diseases. The laboratory may provide the diagnosis when history, symptoms, or gross lesions fail to do so. On the other hand, laboratory procedure should never be used as a substitute for keen clinical inquiry and observation.

To increase the usefulness of this book, numerous additions and revisions have been made.

The photomicrographs have been increased from 247 to 271, including the replacement of four. The 190 illustrations in Section 1 have been regrouped for easier reference.

A description of the fluke egg technique has been added. Eighteen illustrations of helminth ova from man are included so that veterinarians may conduct fecal examinations as a service to physicians.

The section on mites has been revised and four new figures added.

The reference lists have been brought up to date.

It is hoped, as time and material permit, more illustrations and more sections will be added to the existing presentation.

Edward A. Benbrook
Margaret W. Sloss

August, 1955
Table of Contents

Section 1. Fecal Examination in the Diagnosis of Parasitism
Collection of Fecal Samples .. 1
Gross Examination of Feces .. 2
Microscopic Examination of Feces 2
The Simple Smear .. 2
Qualitative Methods ... 3
Modified Sugar Flotation Technique 4
Apparatus .. 5
Technique .. 14
Modified Fluke Egg Technique 16
Quantitative Methods .. 18

Section 2. Examination for Mites of the Skin and of the Internal Organs .. 108
Classification of Mites ... 109
Suborder I. Sarcoptiformes .. 109
Family 1. Sarcoptidae .. 109
Family 2. Psoroptidae .. 110
Family 3. Epidermoptidae .. 112
Family 4. Cytoditidae .. 112
Family 5. Laminosioptidae 113
Family 6. Dermoglyphidac 113
Family 7. Analgesidae ... 114
Suborder II. Trombidiiformes 114
Family 1. Demodicidae ... 114
Contents

<table>
<thead>
<tr>
<th>Family</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2. Trombiculidae</td>
<td>115</td>
</tr>
<tr>
<td>3. Myobiidae</td>
<td>116</td>
</tr>
<tr>
<td>4. Cheyletidae</td>
<td>116</td>
</tr>
<tr>
<td>5. Speleognathidae</td>
<td>117</td>
</tr>
<tr>
<td>III. Mesostigmata</td>
<td>117</td>
</tr>
<tr>
<td>1. Dermanyssidae</td>
<td>117</td>
</tr>
<tr>
<td>2. Raillietidae</td>
<td>118</td>
</tr>
<tr>
<td>3. Halarachnididae</td>
<td>118</td>
</tr>
<tr>
<td>4. Rhinonyssidae</td>
<td>119</td>
</tr>
<tr>
<td>Apparatus for Skin Examination</td>
<td>119</td>
</tr>
<tr>
<td>Technique for Skin Scrapings</td>
<td>125</td>
</tr>
</tbody>
</table>

Section 3. The Diagnosis of Louse Infestations | 156

<table>
<thead>
<tr>
<th>Technique</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Mallophaga, Chewing Lice</td>
<td>157</td>
</tr>
<tr>
<td>The Anoplura, Suctorial Lice</td>
<td>158</td>
</tr>
</tbody>
</table>

References | 169

Index | 195
SECTION 1

Fecal Examination in the Diagnosis of Parasitism

The proper examination of the feces will provide evidence of, or an accurate identification for, most of the parasites which inhabit the alimentary canal. Also, certain parasites of the respiratory tract may be diagnosed by fecal examination, because most of the sputum of animals is swallowed (Figs. 29, 30, 65, 66, 78, 79, 92, 93, 118, 119, 161, 162). Mange or scab mites may be licked or nibbled from the skin, thus accounting for their appearance in the feces (Fig. 130). Fecal examination may also reveal, to a limited extent, the status of digestion, as is shown by the presence of undigested muscle (Figs. 143, 144), of starch, or of fat droplets.

Animals may swallow certain objects that resemble parasite forms. These are known as pseudoparasites; they include such things as pollen grains, plant hairs, grain mites, mold spores, and a variety of harmless plant and animal debris (Figs. 67, 132 to 138, 141, 142, 171, 172, 189, 190). Spurious parasites are encountered in feces. For example, parasite eggs or cysts from one species of host may be found in the feces of a scavenger or predator host as the result of coprophagy (Figs. 131, 139, 140).

Collection of Fecal Samples

Fresh feces should be used whenever obtainable. Old samples may become dehydrated, making suspension difficult; also worm ova or coccidial oocysts may undergo development, hatching, or disintegration to such a degree as to interfere with diagnosis.

Animal owners may submit fecal samples in all sorts of containers, suitable or not suitable. It is suggested that clients be supplied with clean, wide-mouthed, screw-capped or stoppered jars of at least 60 ml. (2 oz.) capacity. One or two wooden tongue blades are convenient for picking up samples, after which they are discarded. Formed droppings may be transported for a few hours when well wrapped in waterproofed paper.
2 Fecal Examination

At least several grams of feces should be collected for an examination. Because of the roughage content, larger samples should be secured from herbivorous than from carnivorous animals.

If defecation does not provide sufficient material, it may be taken directly from the rectum, or, defecation may be induced quickly by inserting a suppository made from bar-soap or a paper match from an ordinary book match folder. Plain water enema samples may be obtained, but the dilution factor makes them undesirable as a rule. Soapy or oily enemas should not be used. Fecal specimens removed from rectal thermometers are seldom satisfactory in quantity.

If fecal material is to be transported for more than a few hours, it must be preserved. A 10 per cent formalin solution may be added to saturate the sample. Refrigeration will also keep samples in good condition for several days.

Fecal samples to be shipped by postal service, express, or by other means, should be enclosed in leak-proof containers. Proper identification of each sample by means of a label or a tag is necessary.

Gross Examination of Feces

Gross examination should always be made for the detection of living or dead worms or for the detection of the segments of tapeworms. Oily or soapy substances in samples will indicate that the microscopic examination will be difficult or even impossible.

Microscopic Examination of Feces

This may include several techniques such as: (A) The simple smear method; (B) Qualitative concentration methods; and (C) Quantitative concentration methods.

A. The simple fecal smear method of microscopic examination is better than no examination at all, but it has many disadvantages. It should be used only when very small samples are available or when lack of equipment or time prevents the use of a more accurate technique. The simple smear is carried out as follows:

1. Place a microslide on a small piece of newspaper.
2. Place a drop of tap water on the center of the slide.
3. With a toothpick, or some similar instrument, detach from the fecal mass a small sample, about the size of a grain of wheat.

4. Mix the sample into the drop of water on the slide until the suspension is cloudy, but not too much so to read the newspaper printing through it. By means of a finely pointed forceps, remove any larger bits of debris that may be present.

5. Gently lower a square 18 mm. or 22 mm. glass or plastic coverglass onto the specimen on the microslide.

6. Examine systematically under low power (x 100) of the microscope, using the high dry power (x 400) for the observation of details (Fig. 14).

B. Qualitative microscopic concentration methods of fecal examination. Techniques of this type will be of greatest value in routine clinical diagnosis. They will detect most alimentary-canal parasitisms and, in addition, certain of those from the respiratory tract. They may also serve to diagnose skin mange of the dog, fox, and cat (Fig. 130).

The method to be described is reasonably rapid and its usage is increasing in veterinary diagnosis. It is of value particularly in the field of small animal practice, although it may be very useful in the detection of certain parasitisms of horses, cattle, sheep, goats, swine, and poultry. Animal owners are interested, usually, in seeing parasitic forms under the microscope. Animal surgery is made more safe by postponing operations on parasitized patients until such hosts are de-parasitized. Veterinary hospital contamination, and the transfer of many parasite species from patient to patient, may be avoided through the isolation and treatment of those animals whose feces show evidence of a parasite burden.

A parasitized animal not exhibiting clinical symptoms may enter a veterinary hospital. Should parasitism develop to the clinical stage after that patient returns home, the owner may unjustly conclude that the animal acquired the parasites while in the hospital. Routine examination for parasites of all hospitalized patients would avoid such criticism.
Fecal examination methods can, and should, be conducted in such a manner as to avoid contamination of the laboratory. To prevent the dissemination of odors, keep the samples covered as much as is possible. Various commercial products are available for the masking or for the neutralization of odors.

Concentration of parasitic ova or oocysts from feces may be accomplished in a number of ways. All methods depend upon mixing the fecal sample with a liquid, the specific gravity of which is greater than that of most of such forms, yet less than the specific gravity of most of the fecal debris. Thus the parasite forms rise to the top of the flotation fluid by gravity—a process that may be hastened by centrifugation.

Flotation fluids may be of various composition. Those most commonly recommended include heavy solutions of sodium chloride, sucrose (cane or beet sugar), glycerine, zinc sulfate, zinc acetate, sodium nitrate, sodium acetate, or magnesium sulfate. None of these solutions is ideal for this purpose. Glycerine has too high a viscosity, hence flotation is slow. The saline solutions are low in viscosity but they tend to dehydrate and thus distort parasite forms; also they crystallize rather quickly on the microslide. Solutions of high specific gravity (sp. gr. 1.400) will float too much debris, thus defeating the purpose for which they are intended.

MODIFIED SUGAR FLOTATION TECHNIQUE

Sheather (1923) first proposed heavy sugar solution for fecal flotation technique. Our experience has shown that sugar solution (sp. gr. 1.200 to 1.300) is the most satisfactory flotation fluid available for routine qualitative clinical fecal examinations, employing centrifugation. This solution will fail to float most of the ova of tapeworms, flukes, and thorny-headed worms. This is not a serious objection because tapeworm ova usually leave the host enclosed within the worm's segments which may be seen grossly on or in the feces; and, except in certain localities, flukes and thorny-headed worms are not highly important parasites of domesticated animals. A technique for finding fluke eggs in feces will be found on page 16.
PREPARATION OF SUGAR FLOTATION SOLUTION

1. Materials:
 Granulated sugar 454 gm. (1 lb. avoir.)
 Tap water 355 ml. (12 fluid oz.)
 Liquefied phenol crystals 6.7 ml. (1.8 fluid dr.)

2. Place the tap water in the upper half of a double boiler.

3. Dissolve the sugar in the water by stirring. The water in the lower half of the double boiler should be close to the boiling point (do not dissolve the sugar by means of direct heat).

4. Place phenol (carbolic acid) crystals in a small graduated glass cylinder. Dissolve the crystals by immersing and rotating the graduate in water near to the boiling point.

5. Add the required quantity of liquefied phenol to the sugar solution while stirring the latter. The phenol acts as a preservative and prevents the growth of molds.

APPARATUS FOR A QUALITATIVE MICROSCOPIC CONCENTRATION METHOD OF FECAL EXAMINATION (FIG. 1)

1. The microscope. Magnifications of approximately x 100 and x 400 are most suitable for fecal examinations. Therefore, the optical equipment should include an 8X or 10X Huygenian ocular, 16-mm. and 4-mm. achromatic objectives, and a substage condenser of 1.25 numerical aperture. A mechanical stage and a binocular body tube with matched oculars are not essential, but they will save the examiner’s time and help to reduce eyestrain. The addition of an oil immersion objective will equip the microscope for all the important clinical procedures that require microscopy.

2. Lens paper. This is essential for keeping optical lenses clean. Squares of about 8 cm. (3 in.) may be stored in a covered dish or can. They should be used once, then discarded.

3. Xylene. This is the only safe lens-cleaning solvent except water. Xylene should be dispensed from a dropper-bottle.

4. Microscope lamp. Daylight should not be relied upon. There are many suitable types of microscope lamps. A simple type
FIG. 1—Apparatus for microscopic examination of feces:

1. Microscope
2. Lens paper
3. Xylene
4. Microscope lamp
5. Coverglass forceps
6. Water-dropping bottle
7. Microslides
8. Test tube block with tubes, headed glass rods, and glass-marking pencil
9. Coverglasses
10. Flotation solution
11. Tongue depressors
12. Centrifuge
13. Large paper cups
14. Small paper cups
15. Aluminum beakers
16. Rubber test tube closure
17. Sieve
18. Test tube brush
19. Jar for waste
20. Towel

to be recommended consists of a metal shade enclosing an inside-frosted 60-watt blue bulb.

5. Coverglass forceps. These should always be used when handling micro coverglasses.

6. Water-dropping bottle. Any bottle of 30 to 60 ml. (1 to 2 oz.) capacity is suitable, when provided with a medicine dropper. Fresh tap water should be used.

7. Microslides. These are the standard 75 x 25 mm. (3 x 1 in.) glass slides. They should be washed and dried before using, and they may be reused repeatedly.

8. Test tube block with tubes, headed glass rods, and glass-marking pencil. The test tube block may easily be made by boring 12 mm. (½ in.) holes in a 4 cm. (1½ in.) thick piece of wood. Corresponding 6 mm. (¼ in.) holes are bored to hold
the headed glass rods; and a 10 cm. (¾ in.) hole is bored to accommodate a glass-marking pencil.

The test tubes recommended are 10 cm. (4 in.) long by 12 mm. (½ in.) outside diameter (Fig. 2).

The headed glass rod (Fig. 2) is 5 to 7 mm. (3/16 to 1/4 in.) in diameter by 13 cm. (5 in.) in length. In making the head portion, one end of the rod is heated to redness in a Bunsen burner flame. The heated end is then quickly pressed against a warm, flat metal surface such as the head of a hammer, until the head portion of the rod spreads to a diameter of approximately 10 mm. (¾ in.). After the rod has lost its softness by cooling, it is smoothed by rotating it in the flame. The glass-marking pencil is a standard laboratory item.

9. Coverglasses. Any 18 or 22 mm. (¾ or ¾ in.) square, glass or plastic coverglass is suitable. The plastic covers are more economical and require no cleaning before they are used, after which they are discarded. Coverglasses should be stored in a covered container such as a small glass dish.

10. Flotation solution. The preparation of this fluid has been previously described (page 5).
11. **Tongue depressors.** These are a standard item of wood supplied to the medical professions. They measure 15 cm. long by 2 cm. wide by 2 mm. thick (6 in. by 3/4 in. by 1/16 in.). They are disposable and may be stored for use in a covered glass jar.

12. **Centrifuge.** This instrument may be equipped to hold two or more tubes. The tube holders should accommodate the test tubes (Item 8) as well as the conventional 15 ml. centrifuge tubes. The centrifuge should be provided with a speed regulating switch so that approximately 1,500 revolutions per minute may be maintained. The motor should be of the specifications suitable to the electric current that is available. An electric timer switch, attached to the centrifuge line, may be added in order to shut off the current automatically at the end of the centrifuging period. Angle-type centrifuges are not suitable for the preparation of feces for parasite diagnosis.

13, 14, and 15. **Large paper cups, small paper cups, and aluminum beakers.** Any of these, or similar containers may be used in preparing the fecal samples. The large paper cups have a capacity of 225 ml. (8 oz.). The small paper cups are 90 ml. (3 oz.) capacity; being more economical but less durable than the larger size. It is advisable to discard used paper cups. The aluminum beakers hold 300 ml. (10 oz.). They are comparatively economical because they should last for several years and are easily cleaned.

16. **Rubber test tube closure.** This item may be made from a discarded automobile inner tube, pieces from which are cut approximately 5 cm. (2 in.) square. A hole is punched in one corner so that it may be hung up to dry after it is rinsed clean.

17. **Sieve.** The most suitable sieve is a tea-strainer made of metal wire, approximately 30 mesh to the inch (25 mm.).

18. **Test tube brush.** The brush should be approximately 8 cm. (3 in.) long by 12 mm. (1/2 in.) in diameter. The bristles should be stiff.

19. **Jar for waste.** Any convenient receptacle having a lid closure may be used. It may contain a disinfectant solution.

20. **Towel.** Smooth cotton or linen towels are used to dry the utensils. Paper towels are a convenience for drying the hands.
FIG. 3—Transferring approximately 1 gm. of feces from the collecting container A to the mixing container B.

FIG. 4—Suspending the fecal sample in cold water in container B.
FIG. 5—The watery portion of container B is passed through the sieve into container C.

FIG. 6—Transferring sieved feces from container C to the test tube. The tube should be slightly less than half filled.
FIG. 7—Adding the flotation solution to the fecal sample in the test tube, leaving about one-fourth inch space at the top of the tube.

FIG. 8—Mixing the contents of the test tube with the rubber closure applied.
FIG. 9—Centrifuge the sample at approximately 1,500 revolutions for 3 minutes.

FIG. 10—Placing a drop of water on a microslide.
Fecal Examination

FIG. 11—Removing a drop of fluid, by means of a headed glass rod, from the surface of the centrifuged specimen.

FIG. 12—Transferring the material from the headed glass rod to the drop of water on the microslide.
TECHNIQUE FOR A QUALITATIVE CONCENTRATION METHOD OF FECAL EXAMINATION

1. Transfer approximately 1 gram of feces from the collection container to a mixing cup (Fig. 3).

2. Add small quantities of cold water until stirring results in a watery suspension thin enough to pour (Fig. 4). Too much water will decrease the chance of finding parasite forms.

3. The watery suspension of feces is poured through the sieve into a second container (Fig. 5). The debris left in the sieve is discarded and the sieve is immediately cleaned in running water (preferably hot) before the contents have a chance to dry.

4. The sieved sample is briefly agitated to mix it thoroughly before pouring it into a test tube. The tube should be filled to slightly below the halfway mark (Fig. 6).

5. To the sample in the tube there is added sugar solution to fill the tube to within one-fourth inch (6 mm.) of the top (Fig. 7). Avoid contaminating the opening of the sugar solution bottle.
6. Mix the contents by closing the tube with the rubber thumb protector, then invert the tube some five or six times (Fig. 8). The rubber closure is immediately rinsed off and hung up to dry.

7. Place the tube in the centrifuge. If necessary, place balancing tubes containing water in the centrifuge carrier. Centrifuge the specimen or specimens for three minutes at approximately 1,500 revolutions per minute (Fig. 9). An automatic electric timer switch is very convenient in carrying out this step in the technique.

8. While the centrifuge is in operation, a microslide is placed on the table and a drop of water is centered on it (Fig. 10). Also a clean, headed glass rod, coverglass forceps, and a coverglass are made available. The test tube is transferred from the centrifuge to the test tube holder, care being taken not to agitate the contents.

9. Transfer a drop of sample from the test tube to the drop of water on the microslide (Fig. 11). To do this properly, hold the headed glass rod vertically over the tube, resting the elbow on the table. Slowly lower the head of the glass rod onto the surface of the sample; then quickly withdraw the rod without making contact with the inside of the tube. This operation may require some practice. Then hold the glass rod at about a 45 degree angle and rotate the headed end in the drop of water on the microslide (Fig. 12), thus washing off any parasite eggs or oocysts adhering to the rod. Replace the rod in the test tube block. It should be rinsed and dried before further use.

10. Pick up a coverglass by means of the coverglass forceps. Lower one edge of the coverglass onto the slide near the drop of suspension; then release the forceps as the coverglass is gently lowered onto the drop. The fluid should spread out evenly under the coverglass (Fig. 13). Too rapid an application of the coverglass will probably result in the formation of air bubbles, which may interfere with the microscopic examination of the specimen. Avoid pressure on the coverglass.
11. Place the slide on the stage of the microscope so that the near right-hand corner of the coverglass is centered under the low power (16 mm.) objective. Focus on this corner. Adjust the substage condenser and diaphragm of the microscope so as to see a distinct image of the suspension under the coverglass. Using the low power magnification (x 100), systematically move the microslide back and forth until the entire area of the coverglass has been scanned (Fig. 14). Objects having a resemblance to parasite forms may be centered and examined under the high power (x 400) dry lens (4 mm.). Always return to the low power (x 100) lens for further search of the specimen.

If worm eggs and coccidial oocysts are present in the same specimen, the coccidia, being the smaller, tend to float upward until they rest directly beneath the coverglass. Therefore, when the worm eggs are in focus under high power (x 400), the coccidia may be out of focus and vice versa. Both types of parasitic forms may be brought clearly into focus by turning the fine-adjustment knob of the microscope.

MODIFIED FLUKE EGG TECHNIQUE

From the early reference of Cobb (1904) to the latest work of Dennis, Stone, and Swanson (1954), workers have attempted to find a simple, rapid method for demonstrating fluke ova in feces. Nearly all the investigators have tried some type of flotation technique but were unable to obtain consistent results because of the collapsibility of the ova in solutions of high specific gravity. In the limited number of times we have demonstrated canine lung
fluke (*Paragonimus westermanni*) ova in fecal samples, we have used the modification of Sheather's sugar solution technique and have experienced little or no difficulty with the ova collapsing.

The technique of Dennis, Stone, and Swanson (1954) appears to be a relatively simple quantitative method for demonstrating fluke ova. It requires about one-half hour to perform. The following modification of this *quantitative* method is useful for *qualitative* clinical diagnosis.

Reagents for Fluke Egg Technique

1. Detergent solution:
 - Liquid detergent ("Joy," or "Glim," or similar) . . . 5 cc.
 - Tap water .. 995 cc.
 - 1% alum (aluminum potassium sulfate U.S.P.) . . . 8 drops
2. Tincture of iodine U.S.P.

Apparatus for Fluke Egg Technique

1. Fecal containers. Samples up to 500 gm. (1 lb.) may be used.
2. Wooden tongue blades for stirring the sample.
3. A tin-coated or zinc-coated funnel, 9 cm. (3½ in.) in diameter with 80 mesh copper screen soldered 25 mm. (1 in.) from the top.
4. Test tubes of 30 cc. (1 oz.) capacity, dimensions 150 x 18 mm. (6 x ¾ in.).
5. Test tube rack or block for holding tubes.
6. Stirring rod (glass or metal), 20 cm. (8 in.) long.
7. Centrifuge tubes, capacity 50 cc. (1.7 oz.).
8. Centrifuge tube rack or block.
9. Wash bottle.
10. Pipette, 2 cc. capacity.
11. Microslides, 75 x 25 mm. (3 x 1 in.).
12. Coverglasses, 22 mm. (¾ in.) diameter.
13. Filter pump (using faucet water pressure, such as the Richards filter pump); or a decanting bottle (using mouth suction); or a bulb syringe of about 30 cc. (1 oz.) capacity.

Procedure for Fluke Egg Technique

1. Using a tongue blade, mix the fecal sample thoroughly; and, if it is very dry, add cold tap water to form a pasty mass.
2. Place about 1 gm. of the mixed feces in a 30-cc. (1-oz.) test tube.
3. Add 15 cc. (½ oz.) detergent solution. Mix well with a stirring rod. To avoid sudsing, do not shake.
4. Strain the mixture through the funnel-strainer into a 50-cc. (1.7-oz.) centrifuge tube.
5. Rinse the test tube with more detergent solution and strain.
6. Pour enough detergent solution in a flooding, swirling motion through the feces in the funnel-strainer to fill the centrifuge tube.
7. Allow the tubed mixture to stand for 5 to 15 minutes.
8. Decant three-fourths of the liquid portion from the centrifuge tube.
9. Rewash the fecal material in the funnel-strainer to refill again the centrifuge tube, in order to obtain any ova trapped previously. Discard the funnel contents.
10. Again allow the tubed mixture to stand for 5 to 15 minutes.
11. Again decant all liquid down to about 2 to 3 cc. Do not disturb the sediment.
12. Add 1 to 3 drops tincture of iodine to the sediment, allowing the tube to stand for 2 to 5 minutes.
13. Using a pipette, transfer the sediment to one or more microslides and apply coverglasses.
 (Note: Dennis, Stone, and Swanson recommend placing all of the sediment in a standard Petri dish, adding tap water to make 15 to 20 cc. and searching for ova with a binocular dissecting microscope magnifying 18 x or higher.)
14. Search the sediment on the slide or slides, using a clinical microscope magnifying 100 x.

C. Quantitative methods of fecal examination. Various techniques have been proposed for the determination of the number of parasite eggs or coccidial oocysts per gram of feces. Such methods are of value in the study of parasite life cycles, or in determining the effects of experimental therapy for the removal of gastro-intestinal parasites. Quantitative fecal techniques are of little value in clinical diagnosis; therefore, such methods are not included in this publication.

References for Section One will be found on pages 169 to 190.
FIG. 15—Ova of *Paranoplocephala mamillana*, the small tapeworm of the horse. x 100.

FIG. 16—Ova of *Paranoplocephala mamillana*. The eggs enclose a pear-shaped embryo having six hooklets. x 410.
FIG. 17—Ova of *Parascaris equorum*, the ascarid of the horse. The egg shells are rough and thick, and are yellow to brown in color. Also included are three strongyle ova. x 100.

FIG. 18—Ova of *Parascaris equorum*. x 410.
Thirty-nine species of these nematodes have been reported from the large intestine of horses, asses, and mules in North America. The eggs of all species are similar. x 100.

FIG. 20—Ova from two species of strongyles of equines. x 410.
FIG. 21—Ova of Draschia megastoma, one of the three larger gastric nematodes of the horse. These eggs are elongated; embryonated when laid and are surrounded by a very thin membranous shell. x 100.

FIG. 22—Ova of Draschia megastoma. x 410.
FIG. 23—Ova of *Habronema muscae*, one of the three larger gastric nematodes of the horse. These ova are elongated; embryonated when laid and surrounded by a very thin membranous shell. x 100.

FIG. 24—Ova of *Habronema muscae*. x 410.
FIG. 25—Ova of Strongyloides westeri, the intestinal thread-worm of the horse. The three larger eggs are those of strongyles. x 100.

FIG. 26—Ova of Strongyloides westeri. These eggs are embryonated when laid. x 410.
FIG. 27—Ova of *Oxyuris equi*, the rectal worm of the horse. These eggs may be found in the feces but the examination of anal scrapings is a more accurate method of diagnosis. x 100.

FIG. 28—Ovum of *Oxyuris equi*. Note the operculum (cap) at one end. x 410.
FIG. 29—Ova and larvae of Dictyocaulus arnfieldi, the lungworm of horses. These were taken from bronchial exudate but they may also be found in feces. The eggs are embryonated when laid. x 100.

FIG. 30—Ova, part of a larva and an empty egg shell of Dictyocaulus arnfieldi. x 410.
CATTLE

FIG. 31—A cyst of *Buxtonella sulcata* of cattle. This is the resting stage of a large ciliated protozoon of the caecum of cattle. Nothing is known regarding its possible pathogenicity. It is commonly found in cattle feces. x 100.

FIG. 32—*Buxtonella sulcata* cyst. x 410.
FIG. 33—Oocysts of *Eimeria zurnii*, one of the more pathogenic of the eleven species of coccidia of cattle in North America. x 100.

FIG. 34—Oocysts of *Eimeria zurnii*. x 410.
CATTLE

FIG. 35—Oocysts of *Eimeria auburnensis*, a coccidium of cattle. The color is yellowish-brown. One smooth-walled and two rough-walled cysts are shown. x 100.

FIG. 36—Oocysts of *Eimeria auburnensis*. Smooth-walled form at the left; rough-walled form at the right. x 410.
SHEEP, GOAT

FIG. 37—Oocysts of *Eimeria arloingi*, one of the more pathogenic of the eight species of coccidia of sheep and goats in North America. The color varies from pale yellow to yellowish-green. x 100.

FIG. 38—Oocysts of *Eimeria arloingi*. A polar cap is present at one end of the cyst. x 410.
FIG. 39—Oocysts of *Eimeria intricata* and *Eimeria arloingi*, coccidia of sheep and goats. The large oocyst is that of *E. intricata*, the color of which is dark brown. x 100.

FIG. 40—Oocysts of *Eimeria intricata* (right) and of *Eimeria arloingi* (left). x 410.
CATTLE

FIG. 41—*Giardia bovis*, a flagellate protozoan of cattle. It is motile. Similar species are found in sheep, goats, dogs, and cats. x 100.

FIG. 42—*Giardia bovis* showing the two posterior flagella. x 410.
CATTLE

FIG. 43 — Giardia bovis showing the ventral sucking disc and the two nuclei. x 410.

FIG. 44 — Giardia bovis, oblique view to show the ventral concavity and the posterior flagella. x 410.
FIG. 45—Ova of Fasciola hepatica, the common liver fluke of cattle, sheep, and goats. x 100.

FIG. 46—Ovum of Fasciola hepatica. x 410.
CATTLE

FIG. 47—Ova of Fascioloides magna, the large American liver fluke of cattle. The eggs are heavy and sink in sugar solution. x 100.

FIG. 48—Ovum of Fascioloides magna. Note the operculum at one end. x 410.
CATTLE, SHEEP

FIG. 49—Ova of *Dicrocoelium dendriticum*, the lancet liver fluke of cattle, sheep, deer, and woodchuck. x 100.

FIG. 50—Ovum of *Dicrocoelium dendriticum*. x 410.
Cattle, Sheep, Goat

CATTLE, SHEEP, GOAT

FIG. 51—Ova of *Moniezia expansa*, a tapeworm of cattle, sheep, and goats. x 100.

FIG. 52—Ovum of *Moniezia expansa*. Note the pear-shaped embryo which contains six hooklets. x 410.
FIG. 53—A packet containing ova of *Thysanosoma actinioides*, the fringed tapeworm of sheep and goats. These usually leave the host within the tapeworm segments, hence are seldom found on routine fecal examination. *x* 100.

FIG. 54—A packet containing ova of *Thysanosoma actinioides*. Five ova are visible within the packet and one ovum is free. *x* 410.
Cattle, Sheep, Goat

CATTLE, SHEEP, GOAT

FIG. 55—Ovum of *Haemonchus contortus*, the common or "twisted" stomach worm of cattle, sheep, and goats. x 100. (See footnote)

FIG. 56—Ovum of *Haemonchus contortus*. x 400.

Note: Cattle, sheep, and goats of North America are reported to harbor 39 species of nematode worms in the alimentary canal. The eggs of the following 24 species are very similar to those seen in Figs. 55 and 56: Common stomach worms (2 species); trichostrongylid worms (4 species); cooperid worms (5 species); nodule worms (3 species); hookworms (2 species); ostertagid stomach worms (7 species); large-mouthed bowel worm (1 species).
FIG. 57—Ovum of *Nematodirus spathiger*, an intestinal nematode of cattle, sheep, and goats. The two small, embryonated ova are those of *Strongyloides papillosus*. x 100.

FIG. 58—Ovum of *Nematodirus spathiger*. The embryonic mass is in the eight-celled stage. Note the thickened shell at the poles. x 400.
Cattle, Sheep, Goat

SHEEP, GOAT

FIG. 59—Ovum of *Marshallagia marshalli*, a stomach worm of sheep and goats. x 100.

FIG. 60—Ovum of *Marshallagia marshalli*. x 410.
CATTLE, SHEEP, GOAT

FIG. 61—Ova of Strongyloides papillosus, a threadworm of the small intestine of cattle, sheep, and goats. x 100.

FIG. 62—Ovum of Strongyloides papillosus. The eggs of this nematode are embryonated when laid. x 410.
CATTLE

FIG. 63—Ova of *Neoascaris vitulorum*, the ascarid of cattle. x 100.

FIG. 64—Ova of *Neoascaris vitulorum*. x 410.
FIG. 65—Ova of Dictyocaulus filaria, a lungworm of sheep and goats. These were taken from bronchial exudate, but they may also be found in feces. The eggs are embryonated when laid. x 100.

FIG. 66—Ovum of Dictyocaulus filaria. x 410.
FIG. 67—Pseudoparasite. Rat-tailed maggots from cattle feces. These are the larvae of harmless flies commonly known as drone flies. They belong in the dipterous family Syrphidae. x 1.7.
FIG. 68—Oocysts of Eimeria sp., coccida of swine. Several species are shown. The ova are those of Oesophagostomum sp., one of the nodule worms. x 100.

FIG. 69—Oocysts of Eimeria sp. Three species are shown. x 410.
FIG. 70—Ova of *Ascaris lumbricoides*, the cecalid of swine. x 100.

FIG. 71—Ova of *Ascaris lumbricoides*. Note the rough shell. The color is yellow. x 400.
FIG. 72—Ova of *Macracanthorhynchus hirudinaceus*, the thorny-headed worm of swine. x 100.

FIG. 73—Ova of *Macracanthorhynchus hirudinaceus*. The embryo is surrounded by three shells. The outer shell is dark brown. x 400.
FIG. 74—Ova of *Oesophagostomum* sp., one of the four species of nodule worms of swine. x 100.

FIG. 75—Ova of *Oesophagostomum* sp. x 410.
FIG. 76—Ovum of *Trichuris suis*, the whipworm of swine. x 100.

FIG. 77—Ovum of *Trichuris suis*. x 400.
FIG. 78—Ova of *Metastrongylus apri*, one of the lungworms of swine. These were removed from the bronchial exudate but they may also be found in the feces. The eggs are embryonated when laid. x 100.

FIG. 79—Ova of *Metastrongylus apri*. x 400.
FIG. 80—Ova of *Ascarops strongylina*, one of the stomach worms of swine. x 100.

FIG. 81—Ova of *Ascarops strongylina*. x 410.
FIG. 82—Ova of *Stephanurus dentatus*, the kidney worm of swine. These eggs are found in urinary sediment and occasionally in the feces. x 100.

FIG. 83—Ovum of *Stephanurus dentatus*. x 410.
FIG. 84—Oocysts of *Isospora* sp., one of the coccidia of dogs, cats, and foxes. This is often referred to as the smaller form of *Isospora bigemina*. The oocysts are not sporulated when found in the feces. x 100.

FIG. 85—Oocysts of *Isospora* sp. x 410.
FIG. 86—Sporulated oocysts and sporocysts of *Isospora bigemina*, a coccidium of dogs, cats, and foxes. The larger oocysts seen are those of *Isospora rivolta*. x 100.

FIG. 87—Sporulated oocysts and sporocysts of *Isospora bigemina*. This coccidium is often referred to as the larger form of this species. The oocysts sporulate before leaving the body of the host and the delicate oocyst wall frequently ruptures, liberating the two sporocysts, each of which contains four sporozoites. x 410.
DOG, CAT

FIG. 88—Oocysts of *Isospora rivolta*, one of the coccidia of dogs and cats. These oocysts are intermediate in size between those of *I. bigemina* and *I. felis*. x 100.

FIG. 89—Oocyst of *Isospora rivolta*. x 410.
FIG. 90—Oocysts of Isospora felis, the largest species of the coccidia of dogs and cats. x 100.

FIG. 91—Oocysts of Isospora felis. One shows beginning sporulation. x 410.

Note: A flagellate protozoon, Giardia canis, has been reported from the small intestine of dogs, and the same or a similar species from cats. Their morphology is similar to that of Giardia bovis, shown in Figs. 41, 42, 43, 44.
FIG. 92—Ovum of *Paragonimus westermanni*, the lung fluke of dogs, cats, foxes, goats, swine, mink, muskrat, and man. x 100.

FIG. 93—Ovum of *Paragonimus westermanni*. Note the prominent lid (operculum) at the right. x 410.
FIG. 94—Ova packets of *Dipylidium caninum*, the double-pored tapeworm of dogs, cats, foxes, and man. The smaller packets may be detected by flotation; the heavier packets sink in the centrifuge tube. x 100.

FIG. 95—An ova packet of *Dipylidium caninum*. Each egg in the packet is provided with six hooklets. x 400.
FIG. 96—Ova of *Taenia pisiformis*, one of the rabbit-cyst tapeworms of dogs, cats, and foxes. In general, tapeworm eggs leave the host in ripe tapeworm segments. However, eggs may be found by microscopic fecal examination. x 100.

FIG. 97—Ova of *Taenia pisiformis*. Note the radially striated shell and the embryonic hooklets. The egg at the right is contained within an embryonic membrane. x 400.
FIG. 98—Ova of *Taenia taeniaeformis*, a common tapeworm of cats and foxes. x 100.

FIG. 99—Ova of *Taenia taeniaeformis*. Four of these are enclosed in embryonic membranes. x 410.
DOG, CAT, FOX, BEAR, MAN, OTHER FISH-EATING MAMMALS

FIG. 100—Ova of *Diphyllobothrium latum*, the broad fish tape-worm of dogs, cats, foxes, bears, man, and other fish-eating mammals. x 100.

FIG. 101—Ova of *Diphyllobothrium latum*. x 410.
FIG. 102—Ova of *Mesocestoides variabilis*, a seldom-reported tapeworm of dogs, cats, and foxes. These eggs were removed from the egg-sac of a ripe segment. x 100.

FIG. 103—Ova of *Mesocestoides variabilis*. x 410.
FIG. 104—Ova of *Ancylostoma caninum*, the commoner hookworm of dogs, cats, and foxes. x 100.

FIG. 105—Ova of *Ancylostoma caninum*. x 410.
DOG, CAT, FOX

FIG. 106—Ova of *Uncinaria stenocephala* (larger ova) and *Ancylostoma caninum* (smaller ova) hookworms of dogs, cats, and foxes. At the upper right is an ovum of *Toxocara canis*, one of the ascarids (see Figs. 108, 109). x 100.

FIG. 107—Ova of *Uncinaria stenocephala* (larger ova) and *Ancylostoma caninum* (smaller ova). x 410.
FIG. 108—Ova of *Toxocara canis* and *Toxascaris leonina*, both species of ascarids of dogs and foxes. The latter species also occurs in cats. Included are five ova of *Ancylostoma caninum*, the hookworm of dogs, cats, and foxes. x 100.

FIG. 109—Ova of *Toxocara canis* (left) and of *Toxascaris leonina* (right). The eggs of *Toxocara canis* are yellow. x 410.
FIG. 110—Ovum of *Toxocara mystax*, an ascarid of cats. Also included are two oocysts of *Isospora felis*. x 100.

FIG. 111—Ovum of *Toxocara mystax* and an oocyst of *Isospora felis*. x 410.
FIG. 112—Ova of *Toxocara mystax*, an ascarid of cats; and an ovum of *Ancylostoma caninum*, a hookworm of cats, dogs, and foxes. x 100.

FIG. 113—Ovum of *Toxocara mystax* and an ovum of *Ancylostoma caninum*. x 410.
DOG, FOX

FIG. 114—Ova of *Trichuris vulpis*, the whipworm of dogs and foxes. x 100.

FIG. 115—Ova of *Trichuris vulpis*. Note the larger size and the smooth shell compared with lungworm ova (see Fig. 119). x 410.
FIG. 116—Rhabditiform larva of Strongyloides stercoralis, the threadworm of dogs and cats. The ova hatch in the intestinal mucosa. x 100.

FIG. 117—Rhabditiform larva of Strongyloides stercoralis. x 410.
FIG. 118—Ova of Capillaria aerophila, the more common lungworm of dogs, cats, and foxes. x 100.

FIG. 119—Ova of Capillaria aerophila. The color is yellowish. The shells are finely granular and there is an operculum at each end. The size and the granular shell differentiate them from ova of Trichuris vulpis, the whipworm (Fig. 115). x 410.
DOG, FOX

FIG. 120—Ova of *Spirocerca lupi*, the esophageal worm of dogs and foxes. x 100.

FIG. 121—Ova of *Spirocerca lupi*. These eggs are embryonated when laid. x 410.
FIG. 122—Ova of *Physaloptera rara*, a stomach worm of dogs, cats, and foxes. x 100.

FIG. 123—Ova of *Physaloptera rara*. These eggs are embryonated when laid. x 410.
FIG. 124—Ova of Physaloptera praeputialis, a stomach worm of dogs, cats, and foxes. x 100.

FIG. 125—Ova of Physaloptera praeputialis. These eggs are embryonated when laid. x 410.
FIG. 126—Ova of *Dioctophyma renale*, the giant kidney worm of dogs and foxes. These eggs are usually found in urinary sediment (note triple phosphate crystals). x 100.

FIG. 127—Ova of *Dioctophyma renale*. The shells are thick and rough. The color is yellowish-brown. x 410.
DOG

FIG. 128—Ova of *Onicola canis*, the thorny-headed worm of dogs. × 100.

FIG. 129—Ova of *Onicola canis*. Note the three shells enclosing the embryo. × 410.
FIG. 130—A larva of *Sarcoptes scabiei* var. *canis*, the sarcoptic mange mite of dogs; also several ova of *Ancylostoma caninum*, a hookworm, in dog feces. Mange, especially in dogs and cats, may be diagnosed by fecal examination if the host happens to ingest mites when biting the skin lesions. x 100.

FIG. 131—Spurious parasites. The feces of this dog contains ova and oocysts of sheep parasites. The dog's food was contaminated by sheep feces. The field contains ova of *Nemadirus spathiger*, *Moniezia expansa*, *Strongyloides papillosus*, also an unidentified nematode ovum and a coccidial oocyst. x 100.
FIG. 132—Pseudoparasite. An adult and a larval "grain" mite in the feces of a dog. x 100.

FIG. 133—Pseudoparasite. An adult "grain" mite and two ova of *Toxocara canis* appear in this sample of dog feces. x 100.
FIG. 134—Pseudoparasite. An ovum of a "grain" mite and three ova of *Toxocara canis* appear in this sample of dog feces. x 100.
FIG. 135—Pseudoparasite. Pine pollen in dog feces. The color is pale brown. x 100.

FIG. 136—Pine pollen in the feces of a dog. Side view of a pollen grain (left), showing the two wing-like floats. View from above at the right. x 410.
FIG. 137—Pseudoparasite. Plant hairs from dog feces. These resemble the groups of hair-like projections seen on the under surface of oak leaves. x 100.

FIG. 138—Plant hairs from dog feces. x 338.
FIG. 139—Spurious parasite. The feces of this dog contains ova of *Hymenolepis diminuta*, a tapeworm of rats, mice, and man. Presumably the dog ingested the small intestine of an infected rodent. These eggs are yellow in color. x 100.

FIG. 140—*Hymenolepis diminuta* ova in dog feces. Note the six hooklets in each embryo. x 410.
FIG. 141—Pseudoparasite. Corn smut spores in the feces of a dog. These resemble certain tapeworm ova under low power. x 100.

FIG. 142—Corn smut spores in feces. Note the spiny covering. x 410.
FIG. 143—Undigested muscle in a dog's feces. x 100.

FIG. 144—Undigested muscle in a dog's feces. x 410.
FIG. 145—Oocysts of *Eimeria tenella*, the cecal coccidium of chickens. x 100.

FIG. 146—Oocysts of *Eimeria tenella*. x 410.
FIG. 147—Oocysts of *Eimeria meleagridis* and *Eimeria meleagrimitis*, two species of coccidia of turkeys. x 100.

FIG. 148—Two oocysts of *Eimeria meleagridis* and four oocysts of *Eimeria meleagrimitis*. x 410.
PHEASANT, TURKEY

FIG. 149—Oocysts of *Eimeria dispersa* and *Eimeria phasiani*, coccidia of pheasants. *Eimeria dispersa* is also a coccidium of turkeys. x 100.

FIG. 150—Oocysts of *Eimeria dispersa* and *Eimeria phasiani*. The latter species is slightly the larger. x 410.
FIG. 151—Oocysts of *Eimeria labbeana*, the coccidium of pigeons. x 100.

FIG. 152—Oocysts of *Eimeria labbeana*. x 410.
FIG. 153—Ova of Ascaridia galli, the ascarid of the chicken and rarely of the turkey. x 100.

FIG. 154—Ova of Ascaridia galli. x 400.
CHICKEN, TURKEY, GUINEA FOWL, QUAIL, PHEASANT

FIG. 155—Ova of *Heterakis gallinae*, the cecal worm of chickens, turkeys, guinea fowl, quail, and pheasants. x 100.

FIG. 156—Ova of *Heterakis gallinae*. x 410.
FIG. 157—Ova of *Capillaria contorta*, the crop capillarid of turkeys, ducks, quail, and pheasants. x 100.

FIG. 158—Ova of *Capillaria contorta*. There is an operculum at each pole. x 410.
FIG. 159—Ova of *Capillaria caudinflata*, a capillarid worm of the small intestine of chickens, turkeys, and pheasants. x 100.

FIG. 160—Ova of *Capillaria caudinflata*. Note the operculum at each pole. x 410.
FIG. 161—Ova of *Syngamus trachea*, the gapeworm of poultry. x 100.

FIG. 162—Ovum of *Syngamus trachea*. There is an operculum at both of the poles. x 410.
CHICKEN

FIG. 163—Ova of *Tetrameres americana*, the globular stomach worm of chickens. x 100.

FIG. 164—Ovum of *Tetrameres americana*. The eggs of this nematode are embryonated when laid. x 410.
CHICKEN, TURKEY, GUINEA FOWL, PIGEON

FIG. 165—Ova of Dispharynx nasuta, the spiral stomach worm of chickens, turkeys, guinea fowl, and pigeons. x 100.

FIG. 166—Ova of Dispharynx nasuta. The ova are embryonated when laid. x 410.
FIG. 167—Oocysts of *Eimeria stiedae*, the hepatic coccidium of rabbits and hares. These were removed from the bile duct. They may also be found in the feces. x 100.

FIG. 168—Oocysts of *Eimeria stiedae*. x 410.
RABBIT

FIG. 169—Oocysts of several Eimeria species, intestinal coccidia of rabbits. A long plant hair is present. x 100.

FIG. 170—Oocysts of three Eimeria species, coccidia of rabbits. x 410.
RABBIT, GUINEA PIG

FIG. 171—Pseudoparasite. *Saccharomyces guttulatus*, a yeast commonly found in the feces of rabbits and guinea pigs. It is not believed to be pathogenic. Arrows point to the yeasts. x 100.

FIG. 172—Pseudoparasite. *Saccharomyces guttulatus*. x 410.
FIG. 173—Oocyst of *Isospora hominis*, the coccidium reported as occurring in man. From human feces. x 100.

FIG. 174—Oocyst of *Isospora hominis*. x 410.
FIG. 175—Ova of *Taenia saginata*, the beef tapeworm of man. X 100.

FIG. 176—Ova of *Taenia saginata*. The egg at the right is contained within an embryonic membrane. X 410.
FIG. 177—Ova of *Hymenolepis nana*, the dwarf tapeworm of man, rats, and mice. x 100.

FIG. 178—Ova of *Hymenolepis nana*. There are from four to eight slender filaments on each polar thickening of the inner shell membrane. x 385.
FIG. 179—Ovum of *Ascaris lumbricoides*, the ascarid of man. x 100.

FIG. 180—Ovum of *Ascaris lumbricoides*. x 410.
FIG. 181—Ova of *Necator americanus*, the new-world hookworm of man. Simple smear. x 100.

FIG. 182—Ovum of *Necator americanus*. x 410.
FIG. 183—Ova of Enterobius vermicularis, the pinworm or rectal worm of man. x 100.

FIG. 184—Ova of Enterobius vermicularis. x 410.
FIG. 185—Larvae of Strongyloides stercoralis, the threadworm of man. x 100.

FIG. 186—Larva of Strongyloides stercoralis. x 410.
FIG. 187—Ovum of *Trichuris trichiura*, the whipworm of man. x 100.

FIG. 188—Ovum of *Trichuris trichiura* of man. Note the resemblance to the ova of the swine whipworm (Fig. 77). x 410.
FIG. 189—Pseudoparasite. Banana seeds in human feces. Grossly these resemble small brownish tapeworm segments. x 3.

FIG. 190—Banana seeds in human feces. x 100.
More than 50 species of mites have been reported to live on or in domesticated mammals and birds of North America. These include the parasitic mange and scab mites, scaly-leg mite, depluming mite, ear mites, feather and quill mites, flesh mite, air-sac mite, chigger mites, roost mite, sinus mite, and nasal mites.

For a discussion of parasitic (and nonparasitic) mites, reference is made to the book by Baker and Wharton (1952): *An Introduction to Acarology*.

The mites (also the ticks) belong in the phylum Arthropoda (animals with an exoskeleton and jointed limbs). Arthropods without antennae and mandibles belong in the class Arachnida (spider-like animals). In the class Arachnida is the order Acarina, which includes the mites and the ticks; this order comprises "arachnides with mouthparts set off from the rest of the body on a false head (capitulum or gnathosoma)" and in which body segmentation is greatly reduced or absent.

Mites are smaller than ticks, most species being either microscopic or under 1 mm. in length. They are covered by a relatively soft, often translucent skin through which respiration takes place, in the smaller species. The larger species breathe through skin openings (stigmata) connected with tracheal tubes.

The body may be ornamented by spines or hairs (setae), or by scale-like plates. The legs (4 pairs for adults and nymphs; 3 pairs for larvae) are provided with claw-like hooks or suckorial cups (Figs. 227, 235).

Depending upon the species, the food of parasitic mites includes mainly blood, lymph, living and dead epithelial cells, or feathers. Mouthparts are adapted for either piercing or chewing.

The mite life cycle usually begins with the laying of the egg, from which a six-legged larva emerges. After feeding, the skin is shed and the eight-legged but sexually immature nymph appears.
Following one or more skin molts, the sexually mature adult mite is formed. Variations occur in the life cycle of certain mite species. For example, the air-sac mite, *Cytodites nudus* of poultry is viviparous; the sinus mite, *Pneumonyssus caninum* of dogs has not been observed to have a nymph stage.

According to Baker and Wharton (1952) the parasitic mites are grouped under three suborders:

I. Suborder SARCOPTIFORMES (7 families)
II. Suborder TROMBIDIFORMES (5 families)
III. Suborder MESOSTIGMATA (4 families)

Following is a brief listing and description of the parasitic mites of domesticated animals; by suborders and families.

I. Suborder SARCOPTIFORMES

Family 1. SARCOPTIDAE

Three important genera of mange and scab mites belong in this family, namely the genera (1) Sarcoptes, (2) Notoedres, and (3) Cnemidocoptes.

(1) *Sarcoptic mange mites*. These mites are the cause of sarcoptic mange or itch. The fertilized females work their way deeply into the epidermis, forming tunnels where they deposit their eggs. Close proximity to nerve endings results in intense irritation. The skin thickens and rather dense crusts form (Fig. 208). The infestation usually involves thin-skinned areas first. There is considerable loss of hair. These mites cause the most common form of mange in swine and horses. The morphologic characteristics of sarcoptic mites are shown in Table 1, page 128, and Fig. 201.

Species and hosts:

Sarcoptes scabiei var. *equi* — Horse
Sarcoptes scabiei var. *bovis* — Cattle (Fig. 207)
Sarcoptes scabiei var. *ovis* — Sheep
Sarcoptes scabiei var. *caprae* — Goat
Sarcoptes scabiei var. *suis* — Swine (Figs. 209 to 213)
Sarcoptes scabiei var. *canis* — Dog (Figs. 214 to 218)
Sarcoptes scabiei var. *vulpis* — Fox
(2) *Notoedric mange mites.* These resemble the sarcoptic mites but they are somewhat smaller; and the anus is located on the dorsal abdominal area rather than terminally (Fig. 221). Notoedric mange is fairly common on cats and rabbits. Lesions are first noticed on the face and other areas of the head, later spreading to various parts of the body, particularly to the forelegs. Advanced lesions give cats an appearance of old age because of the wrinkling of the skin of the face. See Table 1, page 128, for morphology.

Species and hosts:

* Notoedres cati — Cat, fox (Figs. 219 to 223)
* Notoedres cati var. cuniculi — Rabbit

(3) *Cnemidocoptic mites.* Scaly-leg and depluming scabies of birds are caused by mites of this genus. In the rather common disease, scaly-leg, the mites burrow under the scales of the legs and toes, causing dense crusts to form (Fig. 224). Scaly-leg mites are approximately 0.5 mm. in diameter. They are globular in shape. The legs of the adult female are very short; whereas the legs of the male are longer and are provided with suckers. See Table 1, page 128, and Fig. 202.

The depluming mite inhabits the skin at the bases of the feathers, especially around the head and neck. Infested birds pick out or scratch out the affected feathers because of the intense irritation. The morphology of depluming mites is much like that of scaly-leg mites, except that the size of the female is approximately 0.35 mm.

Species and hosts:

* Cnemidocoptes mutans. Scaly-leg mite — Chicken, turkey, pheasant, caged birds (Figs. 225, 226)
* Cnemidocoptes gallinae. Depluming mite — Chicken

Family 2. *PSOROPTIDAE*

(1) *Psoroptic mites.* The mites of this genus are the cause of sheep scab, cattle scab, and similar infestations on other hosts. They differ from the sarcoptic mites in morphology (Table 1, page 128) and in their manner of producing lesions. Psoroptic
mites do not burrow into the epidermis, but remain upon the surface or under scabs and scaly accumulations. In sheep, the thickly-wooled areas are attacked first. Itching is fairly pronounced and there is considerable loss of wool. In rabbits, a species of psoroptic mite infests the ear canals, resulting in severe otitis externa which is accompanied by thick scab formation. The psoroptic mites may be as large as 0.8 mm., hence they may be seen with or without the use of a hand lens. See Table 1, page 128, and Figs. 203 and 227 for morphology.

Species and hosts:

- *Psoroptes equi* var. *equi* — Horse
- *Psoroptes equi* var. *bovis* — Cattle (Fig. 228)
- *Psoroptes equi* var. *ovis* — Sheep (Figs. 229 to 231)
- *Psoroptes equi* var. *caprae* — Goat
- *Psoroptes equi* var. *cuniculi* — Rabbit (Figs. 232, 233)

(2) *Chorioptic mites*. These were formerly known as symbiotic mites. They are the cause of so-called leg, foot, or tail mange. In heavy infestations the abdomen and other parts of the body are involved. Chorioptic mange is more common in the horse than in other domesticated animals. The lesions resemble those produced by psoroptic mites; in fact, the mites themselves are quite similar, except for the leg details (Table 1, page 128, and Figs. 204, 235) and for size. Chorioptic mites reach a maximum length of approximately 0.4 mm.

Species and hosts:

- *Chorioptes equi* — Horse (Fig. 234)
- *Chorioptes bovis* — Cattle (Figs. 236 to 239)
- *Chorioptes ovis* — Sheep
- *Chorioptes caprae* — Goat

(3) *Otodectic mites*. As their name implies, these mites invade the ear canals. They are parasites of dogs, cats, foxes, and other carnivora. Their presence is characterized by otitis externa, accompanied by bacterial decomposition of the secretions and of the exudate. Ear mites may be seen grossly or with the aid of an otoscope, their size being approximately 0.5 mm. in diameter.
For specific diagnostic features, see Table 1, page 128, and Fig. 205.

Species and hosts:
Otodectes cynotis. Ear mite — Dog, cat, fox, other carnivores (Figs. 240 to 243)

Family 3. EPIDERMOPITIDAE

This family contains two genera of uncommon skin mites infesting chickens, namely the genus *Epidermoptes* and the genus *Rivolta*, each including one species.

Epidermoptes bilobatus causes a rare form of avian scabies which is characterized by brownish-yellow, elevated scabs on the body and upper portions of the legs. The mites of both sexes have suckers on all of the leg-terminations. The length of the adult female is approximately 0.2 mm.

The other species of epidermoptic mite is *Rivolta*, a feather-eating form, rarely reported from chickens. Apparently only slight damage is done to the infested feathers. These mites are approximately 0.25 mm. in length.

Species and hosts:
Epidermoptes bilobatus. Scaly skin mite — Chicken
Rivolta. Feather-eating mite — Chicken

Family 4. CYTODITIDAE

This family of mites contains only one species, the air-sac mite of birds. Cytoditid mites belong to a small group of ectoparasites which have adapted their mode of living to the deeper tissues of the body. Therefore they are not, in a strict sense, skin parasites.

Cytodites nudus appears to be a fairly common inhabitant of the air-sacs, bronchi, lungs, and the bony cavities connected with the respiratory system. It is commonly called the air-sac mite. Hosts include chickens, turkeys, pigeons, and pheasants. Unless air-sac mites are abundant, they apparently do little harm; but in large numbers they may be associated with emaciation and anemia. Infected chickens have been known to show symptoms suggestive of avian tuberculosis. Close inspection of the air-sacs,
Skin Examination
soon after the host dies, is necessary in order to detect air-sac mites. They may be seen as minute transluscent dots, slowly moving about. These mites are less than 0.6 mm. in length. They resemble the sarcoptic mites.

Species and hosts:

Cytodites nudus. Air-sac mite—Chicken, turkey, pigeon, pheasant (Figs. 246, 247)

Family 5. LAMINOSIOPTIDAE

Laminosioptes cysticola is commonly called the subcutaneous mite or flesh mite of birds. Very little is known of its habits. Perhaps it is a skin parasite with a tendency to penetrate to the loose subcutaneous tissues, where it dies. The living mites are seldom observed, probably because they do not produce gross lesions until they die. Most frequently their presence is indicated by yellowish nodules several millimeters in diameter in the subcutis. These nodules appear to be caseo-calcareous enclosures around the mites, thus representing a defensive mechanism of the host. Subcutaneous mites are elongated, measuring approximately 0.25 mm. long by 0.1 mm. wide. A distinctive microscopic feature is the transverse constriction around the body posterior to the second pair of legs.

Species and hosts:

Laminosioptes cysticola. Subcutaneous mite—Chicken, turkey, goose, pigeon, pheasant

Family 6. DERMOGlyphIDAE

These are uncommonly reported inhabitants of the feathers of birds, where they apparently feed, hence the name feather-eating mites.

(1) *The genus Falculifer.* One species, *Falculifer rostratus,* is a feather-damaging mite of pigeons. It is usually found between the barbs of the large wing feathers, causing the loss of barbules. Its length is approximately 0.5 mm.

Species and host:

Falculifer rostratus — Pigeon (Fig. 249)
(2) *The genus Freyana*. One species, *Freyana chaneyi*, has been reported from turkeys in Maryland, Texas, and Louisiana. It is said to congregate in the grooves under the shafts of the wing feathers. Little else is known about this mite.

Species and host:

Freyana chaneyi — Turkey

Family 7. ANALGESIDAE

The genus Megninia. This genus of analgesid feather mites is represented by three species in North American domesticated birds.

Megninia gallinulae has been reported only from Canada and then rarely. It is associated with loss of scales from the lower portions of the legs of chickens, and with a crusty dermatitis in the region of the head.

Megninia cubitalis is a similar mite which has been briefly mentioned as occurring on the feathers of chickens in southern United States. It is approximately 0.4 mm. in length.

Megninia columbae is approximately 0.3 mm. in length, and has been reported as occurring on the feathers of the neck and body of pigeons in South Carolina.

Species and hosts:

Megninia gallinulae — Chicken
Megninia cubitalis — Chicken, turkey
Megninia columbae — Pigeon

II. Suborder TROMBIDIFORMES

Family 1. DEMODICIDAE

These mites are the cause of demodectic, follicular, or red mange in a variety of hosts. The mites have a distinct appearance. The non-hairy body is elongated; the very short four pairs of legs are situated anteriorly; and the abdomen is transversely striated (Fig. 206). The adults are approximately 0.1 to 0.39 mm. in length. Demodectic mites live in the hair follicles and the sebaceous glands where they reproduce quite rapidly. Loss of hair is usually the first symptom of infestation, later to be followed by
dermal hyperemia, and eventually by the formation of pustules. The latter are caused by secondary pyogenic bacterial infection.

Although demodectic mange is quite common in dogs, it may also occur in horses, cattle, sheep, goats, and swine. In these less common hosts the only observable lesions may be the formation of cutaneous nodules, varying in size up to 10 or 15 mm. in diameter. These nodules are filled by caseous pus containing an abundance of the mites.

Species and hosts:

Demodex equi — Horse
Demodex bovis — Cattle
Demodex canis var. ovis — Sheep
Demodex caprae — Goat
Demodex phylloides — Swine
Demodex canis — Dog (Figs. 244, 245)

Family 2. Trombiculidae

This family includes the chigger mites, also called redbugs. Only the larval stage is parasitic; the adults and nymphs being free-living or predaceous on insects and other arthropods. Larval chiggers may infest the skin of many mammals, including man, and also the skin of many avian hosts. It is believed that their principal hosts are snakes, lizards, turtles, ground birds, and rabbits.

In attacking the host, chiggers insert the mouthparts (chelicerae) and inject a tissue-liquefying saliva. Within a few hours intense pruritus with swelling occurs. The pruritus lasts for days to weeks. Chiggers do not bodily enter the skin while feeding on liquefied tissues. Usually after several hours' attachment they release their hold and drop to the ground for further development. Larval chiggers are difficult to detect on animals. They vary in color from yellowish to red and their length is about 0.45 mm.

Species and hosts:

Eutrombicula (= Trombicula) alfreddugesi. North American chigger — Various mammals and birds (Fig. 248)
Neoschongastia americana. Chicken chigger — Chicken, other birds, rabbits, lizards, snakes. Found in southern United States.
Family 3. MYOBIIDAE

(1) *Syringophilus bipectinatus*, a quill mite, is an inhabitant of the quills of domesticated and wild birds. Its presence is indicated by a powdery accumulation inside the quills of the larger feathers, causing their partial to complete loss. The adult female measures about 0.9 mm. in length by about 0.15 mm. in width. It is seldom reported.

(2) *Psorergates ovis*, a so-called itch mite of sheep, was first reported by Carter (1941) in Australia. Its first occurrence in North America was noted by Bell *et al.* in Ohio in 1952. Davis (1954) has also studied the sheep itch mite.

Infested sheep rub, scratch, or bite at the wool because of a mild chronic dermatitis. Tags of wool hang from the fleece or drop off.

Psorergates mites have legs more or less equidistant apart, whereas the legs of the common mange and scab mites are in groups of two. The adult itch mite of sheep may be as large as 0.189 by 0.162 mm.

Species and host:

Syringophilus bipectinatus. Quill mite — Chicken, turkey, pheasant, other birds

Psorergates ovis. Sheep itch mite — Sheep

Family 4. CHEYLETIIDAE

Mites of this family are elongated and possess pincer-like feather-clasping organs (palpi) on each side of the mouthparts. Most of the cheyletid mites are free-living predators of insects or of other mites. One species, *Cheyletiella parasitivorax*, has been reported from the skin of cats and rabbits of North America in recent years (Cooper, 1946; Roth, 1947).

This mite may be found in large numbers in the fur. In North America no gross lesions have been attributed to its presence. Cheyletid dermatitis of cats and humans has been reported in Europe. Probably this mite preys upon parasitic mange mites. It has also been found attached to fleas, possibly as a means of transportation. The adults are about 0.45 mm. long.

Species and hosts:

Cheyletiella parasitivorax — Cat, rabbit
Family 5. SPELEOGNATHIDAE

A speleognathid mite, *Speleognathus striatus*, was reported in North America from the nasal cavity of the domestic pigeon by Crossley (1952). Its pathogenicity is unknown. Probably it is transmitted through contaminated drinking utensils. The length is about 0.5 mm.

Species and host:
Speleognathus striatus. A nasal mite — Pigeon

III. Suborder MESOSTIGMATA

Family 1. DERMANYSSIDAE

Two genera of this family, Dermanyssus and Bdellonyssus, contain parasites of domesticated birds.

(1) *The genus Dermanyssus*. One important species, *Dermanyssus gallinae*, is the common chicken mite (red mite, roost mite). Its hosts include chickens, turkeys, pigeons, English sparrows, and other birds. Man and other mammals may be attacked if the mites are abundant. This mite has needle-like mouthparts for sucking blood. Red mites breed in the hosts’ surroundings, attacking mostly at night or when the birds are nesting. Adult females, engorged with blood, may reach a length of 1 mm.

Species and hosts:
Dermanyssus gallinae. Common red mite — Chicken, turkey, pigeon, other birds, occasionally mammals (Fig. 250)

(2) *The genus Bdellonyssus (= Liponyssus)*. Three species of feather mites have been reported from North America. Although resembling mites of the preceding genus, they differ mainly in that they are found on their bird hosts both day and night, where they suck blood.

The most common feather mite is *Bdellonyssus sylviarum*, or Northern feather mite. A second species, *Bdellonyssus canadensis*, was reported from Canada by Hearle (1938). A third species, *Bdellonyssus bursa*, the tropical feather mite, occurs in the South Atlantic and South Central states. Many birds, in addition to chickens are reported to harbor these mites. Adult feather mites are about 0.7 mm. in length.
Skin Examination

Species and hosts:

Bdellonyssus sylviarum. Northern feather mite — Chicken and many other bird species (Fig. 251)

Bdellonyssus canadensis. Canadian feather mite — Chicken and other bird species

Bdellonyssus bursa. Tropical feather mite — Chicken and other bird species

Family 2. RAILLIETIDAE

One species of mite belonging to this family has been rarely reported from cattle in North America. Probably it is more common than the records show. Leidy in 1872 found *Raillietia auris* in the external ear canal of cattle near Philadelphia. It was not until 1950 that it was again reported, this time by Olsen and Bracken in Colorado. Benbrook (unpublished data), in 1925, identified this mite from the ear canals of a steer that had been shipped into Iowa from Minnesota. This steer showed incoordination and apathy. At necropsy, the mites were seen moving rapidly over and near the tympanic membrane. No other evidence was found to account for the symptoms. The adults are approximately 1.5 mm. in length.

Species and host:

Raillietia auris. Ear mite — Cattle (Fig. 252)

Family 3. HALARACHNIDAE

The mites of this family occur in the respiratory passages of marine mammals (seals, walruses) and land mammals (carnivores, monkeys, rodents).

One species, *Pneumonyssus caninum*, is of interest to the veterinarian. This mite occurs quite commonly in the frontal sinuses of dogs. Chandler and Ruhe (1940) first described it as a new species. Later references are those of Martin and Deubler (1943), Douglas (1951), Koutz *et al.* (1953), Olds (1953), and Furman (1954).

As yet its significance as a pathogen is not clear. Catarrhal or purulent sinusitis is often observed in the affected dogs. No nymphal stage is known. The mature mites are white, and 1 mm. long.
Species and host:

Pneumonyssus caninum. Frontal sinus mite — dog (Fig. 253)

Family 4. RHINONYSSIDAE

Rhinonyssid mites are parasitic in the nasal passages of various birds. Two species, *Neonyssus columbae* and *Neonyssus melloi*, have been reported in pigeons from Texas by Crossley (1950 and 1952). No further information is available. These mites are viviparous, producing larvae in which the nymphs are already developed. The adult length is about 0.7 mm.

Species and host:

Neonyssus columbae. Nasal mite — Pigeon
Neonyssus melloi. Nasal mite — Pigeon

Apparatus and Technique for the Examination of the Skin To Detect Parasitic Mites

Some species of mites that live on the skin, also those that inhabit the internal organs, can usually be seen with the unaided eye. A hand lens, of x 3 or greater magnification, is a useful agent for detection when used in a bright light. Any mites seen may be placed in a drop of water on a microslide. Then a coverglass is applied and the preparation is examined under low power (x 100) and high power (x 400) of the microscope. The substage condenser and the diaphragm are adjusted so as to provide a relatively low degree of light in order to reveal details of structure.

For the detection and identification of the various species of mange and scab mites, it is advisable to make scrapings of the skin, using the following apparatus and technique:

APPARATUS FOR SKIN SCRAPINGS (FIG. 191)

1. *The microscope*. Magnifications of approximately x 100 and x 410 are most suitable for the detection of skin mites. Therefore, the optical equipment should include an 8X or 10X Huyghenian ocular, 16 mm. and 4 mm. achromatic objectives, and a substage condenser of 1.25 numerical aperture. A mechanical stage and a binocular body tube with matched
oculurs are not essential, but they will save the examiner's time and help to reduce eyestrain. The addition of an oil immersion objective will equip the microscope for all the important clinical procedures that require microscopy.

2. Xylene. This is the only safe lens-cleaning solvent, except water. It should be dispensed from a dropper-bottle.

3. Lens paper. This is essential for keeping optical lenses clean. Squares of about 8 cm. (3 in.) may be stored in a covered container. They should be used once, then discarded.

4. Microscope lamp. Daylight should not be relied upon. There are many suitable types of microscope lamps. A simple type to be recommended consists of a metal shade enclosing a 60 watt, inside-frosted, blue bulb.

5. Coverglass forceps. These should always be used when handling micro coverglasses.
6. **Scalpel.** A detachable-blade surgical scalpel is preferred for scraping the skin. The blade should be convexly curved.

7. **Coverglasses.** Any 18 mm. or 22 mm. (¾ or ¾ in.) square, glass or plastic coverglass is suitable. The plastic covers are more economical and they require no cleaning before they are used, after which they are discarded. Coverglasses should be stored in a covered container, such as a small glass dish.

8. **Microslides.** These are the standard 75 x 25 mm. (3 x 1 in.) glass slides. They should be washed and dried before using, and they may be used repeatedly.

9. **Black paper.** A sheet of dull-surfaced black paper is used as a background in preparing the specimens on the microslides.

10. **Mineral oil and dispensers.** Any light-bodied mineral oil may be used to prepare the skin scraping. It may be dispensed from a dropper-bottle or from a small lubricating oilcan.

11. **Ear swabs.** Wooden applicator sticks 15 cm. (6 in.) in length are tipped with absorbent cotton for the removal of specimens from ear canals.

12. **Hand magnifier.** This should provide a magnification of x 3, or greater, for the examination of skin parasites, ear canal surfaces, or ear swabs.

13. **Jar for waste.** Skin mites may live for hours in mineral oil or in water. Discarded slides and swabs may be placed in a jar containing a disinfectant, such as 3 per cent aqueous saponified cresol solution.

14. **Towels.** Soft linen or cotton towels are used for cleaning the hands and equipment.
FIG. 192—Placing a drop of mineral oil on a microslide.

FIG. 193—Cleaning the scalpel blade.
FIG. 194—Dipping the cleaned scalpel blade into the drop of mineral oil before scraping the skin.

FIG. 195—Scraping a fold of a suspected facial lesion with the oiled scalpel blade.
FIG. 196—Scraping a fold of a suspected lesion on the leg.

FIG. 197—Transferring the scraping from the scalpel blade to the drop of oil on the microslide.
FIG. 198—Applying the coverglass, using forceps.

FIG. 199—Removing ear mites on a dry cotton swab. The patient is under restraint in a canvas roll.
FIG. 200—A black paper background and a hand magnifier are used in examining the cotton swab for ear mites.

TECHNIQUE FOR SKIN SCRAPINGS

1. Place a drop of mineral oil on a microslide (Fig. 192).
2. Clean the scalpel blade by wiping it with paper (Fig. 193).
3. Dip the clean scalpel blade into the drop of oil on the microslide (Fig. 194).
4. Pick up a fold of the patient’s skin at the edge of the suspected area, pinching it firmly between the thumb and forefinger. With the oily scalpel, scrape the crest of the fold several times in the same direction. Scrapings will adhere to the blade. Stop scraping when a slight amount of blood appears (Figs. 195 and 196).
5. Transfer the scraping from the scalpel blade into the drop of oil on the microslide, using a slight rotary motion (Fig. 197).
6. Apply a coverglass to the scraping on the microslide by gently lowering it by means of a coverglass forceps. Additional oil may be added at the coverglass edge in order to fill the space beneath it. Do not press on the coverglass (Fig. 198).
7. Examine the preparation under low power (x 100) in a methodical manner so that all portions of the coverglass area are seen (Fig. 14). For best results, manipulate the substage condenser and diaphragm of the microscope so as to provide a relatively low degree of light, evenly distributed.
Oily preparations of mites may be kept for days as demonstration specimens. The mites show motion for many hours.

8. For the detection of ear mites in the dog, cat, fox, and rabbit, the patient may be restrained in a canvas sheet (Fig. 199). A cotton swab is introduced into the external auditory canal and gently rotated. The swab is then placed on a piece of black paper and examined by means of a hand lens (Fig. 200). Living and dead ear mites may be seen. If necessary, individual ear mites may be transferred on the tip of the scalpel blade from the cotton swab to a drop of oil on a microslide for microscopic examination. For best results a coverglass should be applied.

An electrically illuminated otoscope may be introduced directly into the ear canal for the detection of ear mites, thus making microscopic examination unnecessary.

The more rapidly-moving, larger skin mites may be captured by touching them with an oily cotton swab. This slows them down so that they may then be transferred to a drop of oil on a microslide for microscopic examination.

References for Section One will be found starting on page 169.
TABLE 1
MICROSCOPIC CHARACTERISTIC OF THE SARCOPTIFORM MANGE AND SCAB MITES

<table>
<thead>
<tr>
<th>Group</th>
<th>Leg Characteristics</th>
<th>Anus</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Egg-laying Female</td>
<td>Male</td>
</tr>
<tr>
<td>SARCOPHTIC</td>
<td>Suckers on a long</td>
<td>Suckers on a long unjointed pedicle on pairs 1 and 2, Fig. 201</td>
</tr>
<tr>
<td></td>
<td>unjointed pedicle on pairs 1 and 2, Fig. 201</td>
<td>1, 2, and 4, Fig. 201</td>
</tr>
<tr>
<td>NOTOEDRIC</td>
<td>As above</td>
<td>As above</td>
</tr>
<tr>
<td>CNEMIDO-</td>
<td>No suckers, Fig. 202</td>
<td>Suckers on an unjointed pedicle on pairs 1, 2, 3 and 4, Fig. 202</td>
</tr>
<tr>
<td>COPTIC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PSOROPTIC</td>
<td>Suckers on a long</td>
<td>Suckers on a long jointed pedicle on pairs 1, 2, and 4, Fig. 203</td>
</tr>
<tr>
<td></td>
<td>jointed pedicle on pairs 1, 2, and 4, Fig. 203</td>
<td>1, 2, and 3, Fig. 203</td>
</tr>
<tr>
<td>CHORILOPTIC</td>
<td>Suckers on a short</td>
<td>Suckers on a short unjointed pedicle on pairs 1, 2, 3, and 4. Pair 4 rudimentary, Fig. 204</td>
</tr>
<tr>
<td></td>
<td>unjointed pedicle on pairs 1, 2, and 4. Pair 4 rudimentary, Fig. 204</td>
<td></td>
</tr>
<tr>
<td>OTODECTIC</td>
<td>Suckers on a short</td>
<td>Suckers on a short unjointed pedicle on pairs 1 and 2, Pair 4 rudimentary, Fig. 205</td>
</tr>
<tr>
<td></td>
<td>unjointed pedicle on pairs 1 and 2, Pair 4 rudimentary, Fig. 205</td>
<td>1, 2, 3, and 4, Fig. 205</td>
</tr>
</tbody>
</table>

FIG. 202—Female and male mites of the genus Cnemidocoptes, drawn to show the diagnostic features listed in Table 1.
FIG. 203—Female and male mites of the genus Psoroptes, drawn to show the diagnostic features listed in Table 1.
FIG. 204—Female and male mites of the genus Chorioptes, drawn to show the diagnostic features listed in Table 1.

FIG. 205—Female and male mites of the genus Otodectes, drawn to show the diagnostic features listed in Table 1.
Skin Examination

FIG. 206—Female mite of the genus Demodex, drawn to show the diagnostic features.

CATTLE

FIG. 207—Adult female *Sarcoptes scabiei* var. *bovis*, the sarcoptic mange mite of cattle. x 130.
FIG. 208—Sarcoptic mange lesion on the hind quarter of a pig.

FIG. 209—Ovum of *Sarcoptes scabiei* var. *suis*, the sarcoptic mange mite of swine, x 100.
FIG. 210—Larval *Sarcoptes scabiei* var. *suis*, the sarcoptic mange mite of swine. x 100.

FIG. 211—Nymph of *Sarcoptes scabiei* var. *suis*, the sarcoptic mange mite of swine. x 100.
FIG. 212—Adult female *Sarcoptes scabiei* var. *suis*, the sarcoptic mange mite of swine. x 100.

FIG. 213—Adult male *Sarcoptes scabiei* var. *suis*, the sarcoptic mange mite of swine. x 100.
FIG. 214—Ova of *Sarcoptes scabiei* var. *canis*, the sarcoptic mange mite of dogs. x 100.

FIG. 215—Larval *Sarcoptes scabiei* var. *canis*, the sarcoptic mange mite of dogs. x 100.
FIG. 216—Nymph of *Sarcoptes scabiei* var. *canis*, the sarcoptic mange mite of dogs. x 100.

FIG. 217—Adult female *Sarcoptes scabiei* var. *canis*, the sarcoptic mange mite of dogs. x 100.
DOG

FIG. 218—Adult male *Sarcoptes scabiei* var. *canis*, the sarcoptic mange mite of dogs. x 100.

CAT, FOX, RABBIT

FIG. 219—Adult female *Notoedres cati*, the notoedric mange mite of cats, foxes, and rabbits. x 100.
FIG. 220—Adult female *Notoedres cati*, the notoedric mange mite of cats, foxes, and rabbits. $\times 110$.

FIG. 221—Posterior dorsal abdomen of *Notoedres cati*, the notoedric mange mite of cats, foxes, and rabbits. The arrow shows the slitlike anus, located dorsally rather than terminally as in the genus *Sarcoptes*. $\times 410$.
FIG. 222—Ovum of *Notoedres* sp., a notoedric mange mite of foxes. x 110.

FIG. 223—Larva of *Notoedres* sp., a notoedric mange mite of foxes. x 110.
FIG. 224—Lesions of scaly-leg of poultry, caused by *Cnemidocoptes mutans*.
CHICKEN

FIG. 225—Larva of *Cnemidocoptes mutans*, the scaly-leg mite of poultry. x 200.

FIG. 226—Adult female *Cnemidocoptes mutans*, the scaly-leg mite of poultry. x 145.
FIG. 227—Leg detail of *Psoroptes equi* var. *bovis*. The suckers are on long jointed pedicles. x 188.

FIG. 228—Adult female *Psoroptes equi* var. *bovis*, the psoroptic or scab mite of cattle. x 80.
FIG. 229—Ovigerous female *Psoroptes equi* var. *ovis*, the scab mite of sheep. x 90.

FIG. 230—Larval *Psoroptes equi* var. *ovis*, the scab mite of sheep. x 130.
FIG. 231—Pubescent female *Psoroptes equi* var. *ovis*, the scab mite of sheep. The posterior pairs of legs are shortened until after copulation. x 120.
FIG. 232—Adult female *Psoroptes equi* var. *cuniculi*, an ear scab mite of rabbits. x 75.

FIG. 233—Adult male *Psoroptes equi* var. *cuniculi*, an ear scab mite of rabbits. x 75.
FIG. 234—Adult male (left) and female (right) *Chorioptes equi*, the chorioptic mange mite of horses. x 90.

FIG. 235—Leg detail of *Chorioptes equi*. The suckers are on short, unjointed pedicles. x 350.
CATTLE

FIG. 236—Larva of *Chorioptes bovis*, the chorioptic mange mite of cattle. Note that there are only three pairs of legs in the larval stage of mites. x 100.

FIG. 237—*Chorioptes bovis*, the chorioptic mange mite of cattle, in copulation. x 100.
FIG. 238—Adult female *Chorioptes bovis*, the chorioptic mange mite of cattle. x 100.

FIG. 239—Adult male *Chorioptes bovis*, the chorioptic mange mite of cattle. x 100.
FIG. 240—Ovum of *Otodectes cynotis*, the ear mange mite of dogs, foxes, and cats. x 100.

FIG. 241—Larva of *Otodectes cynotis*, the ear mange mite of dogs, foxes, and cats. x 100.
FIG. 242—Adult female *Otodectes cynotis*, the ear mange mite of dogs, foxes, and cats. x 100.

FIG. 243—Adult male *Otodectes cynotis*, the ear mange mite of dogs, foxes, and cats. x 100.
FIG. 244—Adults and an ovum (right) of Demodex canis, the demodectic mange mite of dogs. x 100.

FIG. 245—Adult female Demodex canis, the demodectic mange mite of dogs. x 410.
FIG. 246—Adult female *Cytodites nudus*, the air-sac mite of poultry. A portion of an air-sac appears in the background. x 100.

FIG. 247—Adult male *Cytodites nudus*, the air-sac mite of poultry. x 100.
FIG. 248—Larva of Eutrombicula alfreddugési, the chigger mite of mammals and poultry. x 130.

FIG. 249—Falculifer rostratus, nymph, from subcutis of a pigeon. x 60.
FIG. 250—Adult female *Dermanyssus gallinae*, the common red mite of poultry. x 65.

FIG. 251—Adult female *Bdellonyssus sylviarum*, the northern feather mite of poultry. x 75.
CATTLE

FIG. 252—Adult female *Raillietia auris*, a rarely reported ear mite of cattle. From the tympanic membrane of a steer at Ames, Iowa, March 10, 1925. x 35.

DOG

FIG. 253—*Pneumonyssus caninum*, the frontal sinus mite of dogs. Adults and larvae are seen; also an ovum at the lower left. Note the millimeter scale below the mites. x 7.
SECTION 3

The Diagnosis of Louse Infestations

Lice are wingless, dorso-ventrally flattened insects of the order Anoplura. They are important skin parasites of all domesticated mammals and birds. Lice are usually quite host-specific, that is, with few exceptions, each species of lice can live and reproduce on only one host species. The entire life cycle is spent on the host, and transmission is almost entirely by means of host contacts. The size of adult lice varies from slightly more than 1 mm. for the smaller species, to approximately 5 mm. in length for the larger species. Their bodies are distinctly divided into head, thorax, and abdomen. The three pairs of legs are attached to the thorax. All lice fasten their eggs (nits) to the hair of mammals and to the feathers of their avian hosts. The nymphs, which emerge from the eggs, are quite similar to the adults except that they are smaller, paler-colored, and do not possess mature sexual organs. Most species of lice complete a generation in about three weeks.

Technique for the Diagnosis of Lice Infestation

Most species of lice may easily be seen with the unaided eye. Louse eggs (nits) may likewise be observed, attached to the hair or feathers (Figs. 262, 265). Bird lice often attach their eggs in clusters at the feather bases (Fig. 271). Biting lice attract attention by their rapid movements. The examiner may acquire biting lice on his hands, arms, or body, especially if he handles the cadaver of a louse-infested animal several hours after death.

A hand lens of at least x 3 magnification is very helpful in the detection of lice and their eggs. If microscopic observation is desired, lice may be captured by means of a finely-pointed forceps, placed in a drop of water or mineral oil on a slide, and immobilized by means of a coverglass. Low power (x 100) is usually sufficient for the demonstration of morphologic details.

Lice are separated into two suborders, Mallophaga and Anoplura, depending upon feeding habits.
(1) *The Mallophaga.* These are the chewing or biting lice, so called because the anteriorly-rounded head is provided with mandible-like mouth parts (Fig. 270). They eat skin scales, feathers, skin secretions, and other organic debris found upon the skin. Certain of the bird lice apparently puncture the bases of the young quills, thus obtaining blood. It is quite probable that the biting lice will eat the blood that comes from skin wounds. In general, biting lice are yellow. Their legs are adapted for rapid movement over the skin and its coverings. All species of bird lice and the cat louse are of the biting type.

Species of chewing (biting) lice and their hosts:

- *Bovicola pilosa* – Horse (Fig. 254)
- *Bovicola bovis.* Red louse – Cattle (Fig. 256)
- *Bovicola ovis* – Sheep (Fig. 260)
- *Bovicola peregrina* – Sheep
- *Bovicola caprae* – Goat
- *Bovicola limbata.* Large yellow louse – Goat
- *Bovicola hermsi* – Goat
- *Trichodectes canis* – Dog, wolf (Fig. 266)
- *Trichodectes floridanus* – Dog
- *Heterodoxus longitarsus.* Marsupial louse – Dog, kangaroo, opossum (?) (Fig. 267)
- *Felicola subrostrata* – Cat
- *Eomenacanthus stramineus.* Body louse – Chicken, turkey (Figs. 269, 270)
- *Menopon gallinae.* Shaft, or small body louse – Chicken, turkey, guinea fowl
- *Lipeurus heterographus.* Head louse – Chicken
- *Lipeurus caponis.* Wing louse – Chicken
- *Goniocotes gigas.* Large louse – Chicken, guinea fowl
- *Goniocotes hologaster.* Fluff louse – Chicken, guinea fowl
- *Goniodes dissimilis.* Brown louse – Chicken
- *Lipeurus gallopavonis.* Slender louse – Turkey
- *Goniodes meleagridis.* Large louse – Turkey
- *Goniodes numidae.* Feather louse – Guinea fowl
- *Lipeurus numidae.* Slender louse – Guinea fowl
- *Anaticola crassicornis* – Duck
Anatoecus dentatus – Duck, goose
Anaticola anseris. Slender louse – Goose
Trinoton anserinum. Body louse – Goose
Columbicola columbae. Slender louse – Pigeon
Goniocotes bidentatus. Small louse – Pigeon
Goniodes damnicornis. Little feather louse – Pigeon
Colpocephalum turbinatum. Narrow body louse – Pigeon

(2) *The Anoplura.* These include the suctorial lice. In general they are larger than the chewing lice, and are colored gray to dusky red, depending upon the amount of host’s blood they contain. The head of the suctorial louse is elongated in order to accommodate the protrusible, piercing mouth parts. They are comparatively slow-moving insects, and are most frequently seen head down close to the skin surface. Their legs are adapted for firmly clasping the hair of the host. Suctorial lice are more pathogenic than the chewing lice because of their blood-sucking habits. All species of domesticated mammals, except cats and birds, harbor suctorial lice.

Species of suctorial lice and their hosts:

Haematopinus asini – Horse (Fig. 255)
Haematopinus eurysternus. Short-nosed louse – Cattle (Fig. 257)
Haematopinus quadripertussus. Tail louse – Cattle
Linognathus vituli. Long-nosed louse – Cattle (Fig. 258)
Solenopotes capillatus. Hairy, or little blue louse – Cattle (Fig. 259)
Linognathus pedalis. Foot louse – Sheep (Fig. 261)
Linognathus ovillus. Body louse – Sheep
Linognathus africanus. Blue louse – Goat, sheep
Linognathus stenopsis. Blue louse – Goat
Haematopinus suis. Common louse – Swine (Figs. 262 to 265)
Linognathus setosus – Dog, fox, coyote, ferret (Fig. 268)
FIG. 254—Adult female *Bovicola pilosa*, the biting louse of horses. x 32.

FIG. 255—Adult female *Haematopinus asini*, the suctorial louse of horses. x 25.
FIG. 256—Adult female *Bovicola bovis*, the biting louse of cattle. x 32.

FIG. 257—Adult female *Haematopinus eurysternus*, the short-nosed suctorial louse of cattle. x 40.
FIG. 258—Adult female *Linognathus vituli*, the long-nosed suctorial louse of cattle. x 40.

FIG. 259—Adult female *Solenopotes capillatus*, the little blue cattle louse. x 40.
FIG. 260—Adult female *Bovicola ovis*, one of the species of biting lice of sheep. x 50.

FIG. 261—Adult female *Linognathus pedalis*, the suctorial foot louse of sheep. x 37.
FIG. 262—Egg and nymphal stages of *Haematopinus suis*, the swine louse. x 10.

FIG. 263—Adult female (left) and male (right) swine lice, *Haematopinus suis*. x 15.
FIG. 264—Swine lice, *Haematopinus suis*, and their eggs on the skin. x 1.3.

FIG. 265—Eggs of *Haematopinus suis*, the swine louse, attached to hairs. x 2.
FIG. 266—Adult female *Trichodectes canis*, the common biting louse of dogs and wolves. x 35.

FIG. 267—Adult female *Heterodoxus longitarsus*, one of the biting lice of dogs, kangaroos, and probably opossums. x 40.
FIG. 268—Adult female Linognathus setosus, the suctoridal louse of dogs, foxes, coyotes, and ferrets. x 40.
FIG. 269—Adult female *Eomenacanthus stramineus*, the body louse of chickens and turkeys. x 25.

FIG. 270—Head of a biting louse, *Eomenacanthus stramineus*, the body louse of chickens and turkeys. x 100.
FIG. 271—Louse eggs on the bases of the feathers of a chicken. x 2.7.
References for Section 1

Fecal Examination in the Diagnosis of Parasitism

References

References

References

References

173

---. 1929. The weighted mean egg count as an index of the amount of hookworm infection in a community. Am. Jour. Hyg. 9:480-89.

Chopra, R. N., and A. C. Chandler. 1928. (Synopsis of the commoner and more important tapeworm segments, nematode adults, nematode larvae and helminthic ova found in the faeces or other excreta or in the tissues of man and domestic animals.) In: Anthelmintics and their uses. Williams and Wilkins Co., Baltimore, Md., pp. 19-68.

References

References

Giles, G. M. J. 1890. A report of an investigation into the causes of the diseases known in Assam as Kála-azár, and beri-beri. Shillong, 156 pp. (Staining technic for fecal examination.)

References

References

Manalang, C. 1928. Trichuriasis: relation between the number of ova per gram of formed stool and the number of females harbored by the host. Philippine Jour. Sci. 36:11–22.

References

References

Rebrassier, R. E. 1940. Identification and life cycles of parasites affecting domestic animals. Ohio State Univ. Press, Columbus, Ohio, 89 pp.

References 185

Ross, I. C., and H. M. Gordon. 1936. (Diagnostic methods based on fecal examination and culture.) In: The internal parasites and parasitic diseases of sheep, their treatment and control. Angus and Robertson, Ltd., Sydney, Australia, pp. 195-208.

Seifried, O., and E. Heidegger. 1933. (Untersuchung auf Parasiten.) In: Pathologische Mikroskopie für Studierende und Tierärzte, pp. 16-17.

———. 1924. The detection of worm eggs and Protozoa in the faeces of animals. Vet. Rec. 4:552-57.

Sloss, M. W. 1939. Spurious parasites in a dog. (Sheep parasite ova and oocysts.) The Vet. Student, 1:54.

References

References

References

References for Section 2

EXAMINATION FOR MITES OF THE SKIN AND OF THE INTERNAL ORGANS

Cooper, K. W. 1946. The occurrence of the mite Cheyletiella parasitivorax (Mégéin) in North America, with notes on its synonymy and “parasitic” habit. Jour. Parasit. 32:480–82.

[191]
References

Koutz, F. R. 1953. Demodex folliculorum studies. II. Comparison of various diagnostic methods. The Speculum, 6:8-9; 23, 26, 55.

References for Section 3

THE DIAGNOSIS OF LICE INFESTATIONS

Index

Acarina, order, 108
Air-sac mite, poultry, 109, 112, 152
Aplacidae, family, 114
Anaticola anseris, 158
Anaticola crassicornis, 157
Anatobus dentatus, 158
Ancylostoma caninum, ova, 64, 65, 66, 68, 77
Anoplura, order, 156, 158
Apparatus
 fecal examination, 5, 6
 fluke egg examination, 17
 skin examination, 119, 156
Arachnida, 108
Arthropod, 108
Ascarid, ova
 cat, 66, 67, 68
 cattle, 43
 chicken, 89
 dog, 65, 66, 78, 79
 fox, 65, 66, 78, 79
 horse, 20
 man, 102
 swine, 47
 turkey, 89
Ascaridia galli, ova, 89
Ascaris lumbricoides, ova
 man, 102
 swine, 47
Ascarops strongylina, ova, 52
Auricular mange mites, 111, 128, 149, 150
Banana seeds, 107
Bdellonyssus
 bursa, 117, 118
 canadensis, 117, 118
 sylviarum, 117, 118, 154
Bdellonyssus (=Liponyssus), genus, 117
Bear
 Diphyllobothrium latum, ova, 62
Beef tapeworm, ova, man, 100
Biting lice
 cat, 157
 cattle, 157
 chicken, 157
 dog, 157
 duck, 157, 158
 goat, 157
 goose, 158
 guinea fowl, 157
 kangaroo, 157
 pigeon, 157, 158
 sheep, 157
 turkey, 157
 wolves, 157
Biting louse (continued)
 cattle, 160
 chicken, 167
 dog, 165
 kangaroo, 165
 horse, 159
 opossum, 165
 sheep, 162
 turkey, 167
 wolves, 165
Body louse, chicken, 157, 167
Bovicola
 bovis, female, 157, 160
 caprae, 157
 hermsi, 157
 limbata, 157
 ovis, female, 157, 162
 peregrina, 157
 pilosa, female, 157, 159
Buxtonella sulcata, cyst, 27
Caged birds, scaly-leg mite, 110, 140, 141
Canadian feather mite, 118
Canary, scaly-leg mite, 110
Capillaria
 aerophila, ova, 71
 caudinflata, ova, 92
 contorta, ova, 91
Capillarid worm, ova
 chicken, 92
 duck, 91
 guinea fowl, 90
 pheasant, 91, 92
 quail, 91
 turkey, 91, 92
Cat
 Ancylostoma caninum, ova, 64, 65, 66, 68, 77
 ascarid, ova, 66, 67, 68
 Capillaria aerophila, ova, 71
 cheyletid mite, 112
 Cheyletiella parasitivorax, 116
 coccidia, 54, 55, 56, 57, 67
 Diphyllobothrium latum, ova, 62
 Dipylidium caninum, ova, 59
 ear mites, 111, 149, 150
 Felicola subrotata, 157
 fluke, lung, ova, 58
 Giardia sp., 57
 hookworm, ova, 64, 65, 66, 68, 77
 Isospora
 bigemina, oocysts, 54, 55
 felis, oocysts, 57, 67
 rivolta, oocysts, 55, 56
 sp., oocysts, 54
 lung fluke, ova, 58
 lungworm, ova, 71
Index

Cat (continued)
mange mites, 137, 138, 139, 151
Mesocestoides variabilis, ova, 63
Notoeodex cati, 137, 138
notoedric mange mites, 137, 138, 139
Otodectes cynotis, 112, 149, 150
otodectic mange mites, 111, 149, 150
Paragonimus westermanni, ova, 58
Physaloptera praeputialia, ova, 74
rara, ova, 73
stomach worm, ova, 73, 74
Strongyloides stercoralis, larva, 70
Taenia pisiformis, ova, 60
Taenia taeniaeformis, ova, 61
tapeworm, ova, 59, 60, 61, 62, 63
threadworm, larvae, 70
Toxascaris leonina, ova, 66
Toxocara mystax, ova, 67, 68
Uncinaria stenocephala, ova, 65

Cattle
ascarid, ova, 43
biting louse, 157, 160
Bovicola bovis, 157, 160
Buxtonella sulcata, cyst, 27
chewing lice, 157
Chorioptes bovis, 111, 147, 148
chorioptic mange mites, 111, 147, 148
coccidia, 28, 29
common liver fluke, ova, 34
demodicetic mange mite, 115, 151
demodex bovis, 115
Dicrocoelium dendriticum, ova, 36
drone fly, larvae, 45
ear mite, 118, 155
Eimeria auburnensis, oocysts, 29
E. zurni, oocysts, 28
Fasciola hepatica, ova, 34
Fascioloides magna, ova, 35
flake, ova, 34, 35, 36
follicular mange mite, 115, 151
Giardia bovis, 32, 33
Eimeria tenella, oocysts, 85
Haemomatopus eurysternus, 158, 160
Haemomatopus quadrirpertussis, 158
Haemonchus contortus, ova, 39
lancet liver fluke, ova, 36
large liver fluke, ova, 35
Linognathus vituli, 158, 161
little blue louse, 158, 161
long-nosed louse, 158, 161
mange mites 131, 142, 147, 148, 151
Moniezia expansa, ova, 37
Nematodirus, ova, 40
Nematodirus spathiger, ova, 40
Neoascaris vitulorum, ova, 43
Psoroptes equi var. bovis, 111, 142
psoroptic scab mites, 111, 142
Railletia auris, 118, 155

Cattle (continued)
rat-tailed maggots, 45
Sarcoptes scabiei var. bovis, 109, 131
sarcoptic mange mites, 109, 131
scab mites, 110, 142
short-nosed louse, 158, 160
Solenopotes capillatus, 158, 161
stomach worm, ova, 39
Strongyloides papillosus, ova, 40, 42, 77
suctorial lice, 158, 160, 161
Syrphidae larvae, 45
tail louse, 158
tapeworm, ova, 37
threadworm, ova, 40, 42, 77
“twisted” stomach worm, ova, 39

Cecal coccidia, chicken, 85
Cecal worm, ova
chicken, 90
guinea fowl, 90
pheasant, 90
quail, 90
turkey, 90
Centrifuge, 6, 8, 15
timer switch, 15
Cheyletiidae, family, 116
Cheyletiella parasitovorax, 116
Chicken
air-sac mite, 109, 113, 152
ascarid, ova, 89
Ascaridia galli, ova, 89
Bidellonyssus bursa, 118
canadensis, 118
sylviorum, 118, 154
hocly louse, female, 157, 327
brown louse, 157
Canadian feather mite, 118
Capillaria caudinflata, ova, 92
capillarid worm, ova, 92
cecal worm, ova, 90
chigger mite, 153
Cnemidocoptes gallinae, 110
mutans, 110, 140, 141
coccidia, 85
Cytodites nudus, 109, 113, 152
depluming mite, 110
Deinonyssus gallinae, 117, 151
Deinonyssus mite, 117, 154
Dispharynx nasuta, ova, 95
Eimeria tenella, oocysts, 85
Eomenacanthus stramineus, 157, 167
Epidermoptes bilobatus, 112
Epidermoptes mites, 112
Eurombicula alfredugesi, 115, 153
feather mites, 117, 118
feather-eating mites, 112
flesh mite, 113
fluff louse, 157
Chicken (continued)
gapeworm, ova, 93
globular stomach worm, ova, 91
Goniocotes
gigas, 157
hologaster, 157
Goniodes dissimilis, 157
head louse, 157
Heterakis gallinae, ova, 90
intestinal capillarid worm, ova, 92
Laminostepes cysitecola, 113
large louse, 157
lice, 157, 167
ova, 168
Lipeurus
caponis, 157
heterographus, 157
Liponyssus, 117
Megninia
cubitalis, 114
gallinulae, 114
Menopon gallinae, 157
Neoschongastia americana, 115
Northern feather mite, 118, 154
quill mite, 116
red mite, 117, 154
Rivoltaia bifurcata, 112
roost mite, 108
scabies mites, 112
scaly-leg
lesions, 140
mites, 141
spiral stomach worm, ova, 95
stomach worm, ova, 94, 95
subcutaneous mite, 113
Syngamus trachea, ova, 93
Syriophillus bipectinatus, 116
Tetrameres americana, ova, 91
tropical feather mite, 118
wing louse, 157
Chigger mites, 115, 153
larva, 153
Chorioptes bovis, 111
copulation, 147
female, 148
larva, 147
male, 148
Chorioptes caprae, 111
Chorioptes equi, 111
female, 146
leg detail, 146
male, 146
Chorioptes ovis, 111
Chorioptes, genus, 130
line drawing, 130
Chorioptic mites
leg, characteristics, 128
detail, 146
line drawings, 130
Cnemidocoptes, genus, 109
line drawing, 128
Cnemidocoptes gallinae, 110
Cnemidocoptes mutans, 110
female, 141
larva, 141
lesions, 140
Cnemidocoptic mites, 110, 141
leg characteristics, 128
line drawings, 128
Coccidial oocysts
cat, 54, 55, 56, 57, 67
cattle, 28, 29
duck, 85
dog, 54, 55, 56, 57, 67
fox, 54, 55
goat, 30, 31
hare, 96
man, 99
pheasant, 87
pigeon, 88
rabbit, 96, 97
sheep, 30, 31
swine, 46
turkey, 86, 87
Collection of fecal samples, 1
Colpoccephalum turbinatum, 158
Columbicola columbae, 158
Concentration methods for feces, 3, 14
Containers, fecal, 1
Coprophagy, 1, 77, 82
Corn smut in feces, 83
Crop capillarid ova
duck, 91
pheasant, 91
quail, 91
turkey, 91
Cytodites nudus, 109, 112, 113
female, 152
male, 152
Cytoditidae, family, 112
Demodectic mange mites, 114, 151
line drawing, 131
Demodex
bovis, 115
canis, 115
adults, 151
female, 151
ovum, 151
canis var. ovis, 115
caprae, 115
equi, 115
phylloloides, 115
Demodex, genus, 115
line drawing, 131
Demodicidae, family, 114
Depluming scabies, poultry, 110
Dermanyssidae, family, 117
Dermanyssus, genus, 117
Dermanyssus gallinae, 117
female, 154
Dermoglyphidae, family, 113
Dicrocoelium dendriticum, ova, 96
Dictyocaulus arnfieldi, ova, larvae, 26
flaria, ova, 44
Dioctophyma renale, ova, 75
Diphyllobothrium latum, ova, 62
Dipylidium caninum, ova, 59
Disinfectant, 8, 121
Dispharynx nasuta, ova, 95
Dog
Ancylostoma caninum, ova, 64, 65, 66, 68, 77
ascarid ova, 65, 66, 78, 79
biting lice, 157, 165
Capillaria aerofilia, ova, 71
chigger mite, 115, 153
coccidia, 54, 55, 56, 57, 67
demodectic mange mites, 114, 151
demodex canis, 114, 151
Diesophytoma renale, ova, 75
Diphyllobothrium latum, ova, 62
Dipylidium caninum, ova, 59
ear mites, 111, 149, 150
esophageal worm, ova, 72
fluke, lung, ova, 58
follicular mange mite, 109
frontal sinus mite, 109, 119, 155
giant kidney worm, ova, 75
Giardia sp., 57
grain mite in feces, 77
Heterodoxus longitarsus, 157, 165
hookworm, ova, 64, 65, 66, 68, 77
Hymenolepis diminuta, ova, 82
Iospora
bigemina, oocysts, 54, 55
felis, oocysts, 57, 67
rivolta, oocysts, 55, 56
sp., oocysts, 54
lice, 157, 158, 165, 166
Linognathus setosus, 158
lung fluke, ova, 58
lungworm, ova, 71
mange mites, 109, 112, 115, 135, 136, 137, 149, 150, 151
Mesocestoides variabilis, ova, 63
muscle in feces, 84
Onicola canis, ova, 76
Otodectes cynotis, 112, 149, 150
otodectic mange mites, 111, 149, 150
Paragonimus westermanni, ova, 58
Physaloptera
praeputialis, ova, 74
rara, ova, 73
pine pollen in feces, 80
plant hairs in feces, 81
Pneumonyssus caninum, 109, 119, 155
pseudoparasites in feces, 78, 79, 80, 81, 83
Dog (continued)
rat tapeworm, ova, 82
red mange mite, 114, 151
Sarcoptes scabiei var. canis, 109, 135, 136, 137
sarcoptic mange mite, 135, 136, 137
in feces, 77
sheep parasites in feces, 77
sinus mite, 109, 119, 155
Spirocera lupi, ova, 72
spurious parasites in feces, 77, 82
stomach worm, ova, 73, 74
Strongyloides stercoralis, larva, 70
Taenia pisiformis, ova, 60
tapeworm, ova, 59, 60, 62, 63
thorny-headed worm, ova, 76
threadworm, larva, 70
Toxascaris leonina, ova, 66
Toxocara canis, ova, 66, 78, 79
Trichodectes
canis, 157, 165
floridanus, 157
Trichuris vulpis, ova, 69
Uncinaria stenocephala, ova, 65
ungallenged muscle, in feces, 84
whipworm, ova, 69
Dpraschia megastoma, ova, 22
Duck
Anaticola crassicornis, 157
Anatoecus dentatus, 158
Capillaria contorta, ova, 91
crop capillarid worm, ova, 91
lice, 157, 158
Dwarf tapeworm, ova, man, mouse, rat, 82
Ear mites
cat, 111, 149, 150
cattle, 118, 155
dog, 111, 149, 150
fox, 111, 149, 150
rabbit, 111, 149, 150
Ear swab technique, 125, 126, 127
Eimeria
arloingi, oocysts, 30, 31
auburnensis, oocysts, 29
dispersa, oocysts, 87
intricata, oocysts, 31
labheana, oocysts, 88
meleagridis, oocysts, 86
melagrinitis, oocysts, 86
phasiani, oocysts, 87
sp., oocysts, rabbit, 97
sp., oocysts, swine, 46
stiedae, oocysts, 96
tenella, oocysts, 85
zurnii, oocysts, 28
Enema samples, feces, 2
Enterobius vermicularis, ova, 104
Index

Entrombicula alfredugesi, 115
larva, 153
Eomenacanthus stramineus, 157
larva, 153
Epidermoptes, genus, 112
Epidermoptes bilobatus, 112
Epidermoidae, family, 112
Esophageal worm, ova

dog, 72
fox, 72
Falculifer, genus, 113
Falculifer rostratus, 113, 153
Fasciola hepatica, ova, 34
Fascioloides magna, ova, 35
Fat, undigested, in feces, 1
Feather mites, 117
Feather-eating mites, 112
Feathers, lice ova on, 118
Fecal examination, apparatus for, 5
pre-surgical, 3
Feces
banana seeds in, 107
collection of samples, 1
containers for, 1, 6
corn smut in, 83
fat in, 1
gross examination, 2
microscopic examination, 2
mites in, 77
mold spores in, 1, 83
muscle in, 84
odor prevention from, 4
oily or soapy substances in, 2
plant hairs in, 81
pollen in, 80
preservative for, 2
pseudoparasites in, 1, 78, 79, 80, 81, 83
qualitative concentration method for, 3
quantitative methods for, 18
rat-tailed maggots in, 45
refrigeration of, 2
simple smear method, 2
spurious parasites in, 77, 82
starch in, 1
transportation of, 1, 2
undigested food in, 1, 84
Felicola subrostrata, 157
Flesh mites, poultry, 113
Flotation fluids, 4, 7
Fluke ova in feces, 34, 35, 36, 58
Fluke ova technique, 16
Follicle mites, 114
mites, 114, 151
Foot louse, sheep, 158, 162
Foot mange, 111
Formalin preservative, for feces, 2
Fox
Ancylostoma caninum, ova, 64, 65, 66, 68, 77
ascarid ova, 66, 78, 79
Capillaria aerophila, ova, 71
coccidia, 54, 55
Dioctophyma renale, ova, 75
Diphyllobothrium latum, ova, 62
Dipylidium caninum, ova, 59
ear mites, 112, 149, 150
esophageal worm, ova, 72
fluke, lung, ova, 58
giant kidney worm, ova, 75
hookworm, ova, 64, 65, 66, 68, 77
Isospora
bigemina, oocysts, 54, 55
sp., oocysts, 54
lice, 158, 166
Linognathus setosus, 158
lung fluke, ova, 58
lungworm, ova, 71
mange mites, 109, 110, 112
Mesocestodes variabilis, ova, 63
Notoedres cati, 110, 138
notoedric mange mites, 137, 138, 139
Otodectes cynotis, 112, 149, 150
corticidal mange mites, 111, 149, 150
Paragonimus westermani, ova, 58
Physaloptera
praeputialis, ova, 74
tara, ova, 73
Sarcopes scabiei var. vulpis, 109
Spirocerca lupi, ova, 72
stomach worm, ova, 73, 74
suctorial louse, female, 166
Taenia
pisiformis, ova, 60
taeniaeformis, ova, 61
tapeworm, ova, 59, 60, 61, 62, 63
Toxascaris leonina, ova, 66
Toxocara canis, ova, 66, 78, 79
Trichuris vulpis, ova, 69
Uncinaria stenocephala, ova, 65
whipworm, ova, 69
Freyana, genus, 114
Freyana chancyi, 114
Frontal sinus mite, 109, 118, 155
Gapeworm, ova, 93
Giardia bovis, 32, 33
Globular stomach worm, ova, chicken, 94
Goat
blue lice, 158
Bovicola
caprae, 157
hernis, 157
limbata, 157
Chorioptes caprae, 111
chorioptic mange mites, 111
Goat (continued)
coccidia, 30, 31
demodectic mange mites, 115
Demodex caprae, 115
Dictyocaulus filaria, ova, 44
Eimeria arloingi, oocysts, 30, 31
Eimeria intricata, oocysts, 31
Fasciola hepatica, ova, 34
fluke ova, 34
follicular mange mite, 115
Giardia sp., 32, 33
Haemonchus contortus, ova, 39
large yellow louse, 157
lice, 157, 158
Linognathus
africanus, 158
stenopis, 158
lungworm, ova, 44
mange mites, 109, 111
Marshallagia marshalli, ova, 41
Moniezia expansa, ova, 37
Nematodirus spathiger, ova, 40
Psoroptes equi var. caprae, 111
psoroptic scab mites, 110
Sarcoptes scabiei var. caprae, 109
scab mites, 110
stomach worm, ova, 39, 41
Strongyloides papillosus, ova, 40, 42, 77
tapeworm, ova, 37, 38
threadworm, ova, 40, 42, 77
Thysanosoma actinioides, ova, 38
Goniocotes
bidentatus, 158
gigas, 157
hologaster, 157
Goniodes
dannicornis, 158
dissimilis, 157
meleagridis, 157
numidae, 157
Goose
Anaticola anseris, 158
Anatoecus dentatus, 158
body louse, 158
Laminosioptes cysticola, 113
mite, 110
slender louse, 158
subcutaneous mite, 113
Trinoton anserinum, 158
Grain mites, in feces, 78, 79
Gross examination of feces, 2
Guinea fowl
cecal worm, ova, 90
Dispharynx nasua, ova, 95
feather louse, 157
fluff louse, 157
gapeworm, ova, 93
Guinea fowl (continued)
Goniocotes
gigas, 157
hologaster, 157
Heterakis gallinae, ova, 90
large louse, 157
lice, 157
Lipeurus numidae, 157
Menopon gallinae, 157
mites, 115, 116, 117, 118
shaft or small body louse, 157
slender louse, 157
spiral stomach worm, ova, 95
Syngamus trachea, ova, 93
Guinea pig
pseudoparasites, 98
Saccharomyces guttulatus, 98
yeast in feces, 98
Habronema muscae, ova, 23
Haematopinus
asi, 158
female, 159
eurysternus, 158
female, 160
quadripertussus, 158
suis, 158
adults, 163, 164
ova, 163, 164
nymph, 163
Haemonchus contortus, ova, 39
Halarachnidae, family, 118
Hare
coccidia, hepatic, 96
Eimeria stiedae, oocysts, 96
Heterakis gallinae, ova, 90
Heterodoxus longitarsus, 157
female, 165
Hookworm, ova,
cat, 64, 65, 66, 68
dog, 64, 65, 66, 68, 77
fox, 64, 65, 66, 68, 77
man, 103
Horse
ascarid, ova, 20
biting louse, female, 159
Bovicola pilosa, 157
Chorioptes equi, 111, 146
leg detail, 146
chorioptic mange mites, 111, 146
Demodex equi, 115
Dictyocaulus arnfieldi, ova, 26
Draschia megastoma, ova, 22
Habronema muscae, ova, 23
Haematopinus asi, 158
lice, 157, 158, 159
lungworm, ova, 26
mange mites, 109, 111, 115
Oxyuris equi, ova, 25
Horse (continued)

Paranoplocephala manuillana, ova, 19
Parascaris equorum, ova, 20

Psoroptes equi var. equi, 111
psoroptic scab mite, 110
rectal worm, ova, 25
Sarcoptes scabiei var. equi, 109
scab mites, 111
stomach worm, ova, 22, 23
strongyle, ova, 20, 21, 24
Strongyloides westeri, ova, 24
suctorial louse, female, 1.59

Sarcoptes scabiei var. equi, 109
scab mites, 111

stomach worm, ova, 22, 23
strongyle, ova, 20, 21, 24
Strongyloides westeri, ova, 24
suctorial louse, female, 159
tapeworm, ova, 19
threadworm, ova, 24

Hymenolepis
diminuta, ova, 82
nana, ova, 101

Isospora
bigemina, oocysts, 54, 55
fels, oocysts, 57, 67
hominis, oocysts, 99
rivolta, oocysts, 55, 56
sp., oocysts, 54

Itch mites, 109, 116

Kangaroo
Heterodoxus longitarsus, 157
louse, marsupial, 157

Kidney worm, ova
dog, 75
fox, 75
swine, 53

Laminosioptes cysticola, 113
Laminosiptididae, family, 113

Leg mange, 112

lice
chewing, 157, 159, 160, 162, 165, 167
eggs, 163, 164, 168
life cycle, 156
morphology, 156, 157
suctorial, 158, 159, 160, 161, 162, 163, 164, 166
technique for detection, 156

Linognathus
africanus, 158
ovillus, 158
pedalis, 158, 162
setosus, 158, 166
stenopis, 158
vituli, 158, 161

Lipeurus
caponis, 157
gallophavonis, 157
heterographus, 157
numidae, 157

Little blue louse, cattle, 158, 161

Long-nosed louse, cattle, 158, 161
Louse head, biting, 167

Lungworm
larae
in feces, 1
horse, 26

ova
cat, 71
dog, 71
in feces, 1
fox, 71
goat, 44
horse, 26
sheep, 44
swine, 51

Macracanthorhynchus hirudinaceus, ova, 48

Mallophaga, 157

Man
ascarid, ova, 102
Ascaris lumbricoides, ova, 102
banana seeds, in feces, 107
beef tapeworm, ova, 100
broad fish tapeworm, ova, 62
chigger mite, 153
coccidium, 99
Diphyllobothrium latum, ova 62
Dipylidium caninum, ova, 59
dwarf tapeworm, ova, 101
Enterobius vermicularis, ova, 104
Eutrombicula alfrededuglesi, 115, 153
hookworm, ova, 103
Hymenolepis
diminuta, ova, 82
nana, ova, 101

Isospora hominis, oocysts, 99

Necator americanus, ova, 103
pinworm, ova, 104
pseudoparasites in feces, 107
rat tapeworm, ova, 82, 101
rectal worm, ova, 104
Strongyloides stercoralis, larvae, 105
Strongyloides worm, larvae, 105
Taenia saginata, ova, 100
tapeworm, ova, 59, 62, 82, 100, 101
threadworm, ova, 105
Trichuris trichiura, ovum, 106

Mange
lesions, sarcoptic, swine, 132
mites, 108, 109

cat, 110, 157, 138
cattle, 109, 111, 131, 147, 148
chorioplastic, 110, 146, 147, 148
chremidocoptics, 110
demodectic, 114, 151
dog, 109, 135, 136, 137, 151
in feces, 77
Mange (continued)
mites (continued)
 fox, 109, 110, 117, 138, 139
 goat, 109, 111
 horse, 109, 111, 116
dipterocercic, 110
 pigeon, 119, 133
 psoroptic, 110, 142-45
 rabbit, 110, 137, 138
 sarcoptic, 109
 sheep, 109, 111, 143, 144
 swine, 109, 115, 132, 133, 134

Marshallagia marshalli, ova, 41

Match suppository, 2

Megninia
 columbæ, 114
 cubitalis, 114
 gallinulae, 114

Megaquagia, genus, 114

Menopon gallinae, 157

Mesoderes variabilis, ova, 63\n
Mesostigmata, suborder, 109, 117

Metastrongylus apri, ova, 51

Microscope, 5, 6, 119, 120

Microscopic examination
 feces, 2
 skin, 119

Mink
 Paragonimus westermani, ova, 58

Mites
 air-sac, 109, 112, 113, 152
 cheyletid, 116
 cat, 116
 chigger, 115, 153
classification, 109
 Cytoditidae, family, 112
depluming, 110
ear, 112, 149, 150
 feather, 113, 114
 feather-eating, 112
 in feces, 77
 life cycle, 108
 mange, 109, 110, 111, 115, 131, 132, 133, 134, 135, 136, 137, 138, 139, 151
 morphology, 108
 nasal, 117
 quill, 116
 roost, 108, 117, 154
 scab, 110, 112, 129, 142, 143, 144, 145
 scaly-leg, 110
 scaly-skin, 112
 sinus, 109, 119, 155
 subcutaneous, 113
technique for detection, 119

Mold spores, in feces, 83

Moniezia expansa, ova, 37, 77

Mouse
 Hymenolepis
 diminuta, ova, 82
 nana, ova, 101
tapeworm, ova, 82, 101

Muscle, undigested, 84

Muskrat
 Paragonimus westermani, ova, 58

Myoblastidae, family, 116

Nasal mites, 119

Necator americanus, ova, 103
Nematodirus spathiger, ova, 40, 77
Neascus vitulorum, ova, 43
Neoschongastia arnericana, 119
Neoschongastia meli, 119

Neoschongastia americana, 115
Nits, 156, 163, 164, 168
Nodule worm, ova, swine, 49
Northern American chigger, 115, 153
Northern feather mite, 117, 154

Notoedres, genus, 109

Notoedres cati, 110
 female, 137, 138
 posterior dorsal abdomen of, 138

Notoedres cati var. cuniculi, 110

Notoedres sp.
 larva, fox, 139
 ova, fox, 139

Notoedric mange mites, 110, 137, 138, 139
 leg characteristics, 128

Odors, prevention, 4
Oesophagostomum sp., ova, swine, 46, 49
Onchocerca canis, ova, 76
Otitis externa, 111
Otodectes, genus, 130
 line drawing, 130
Otodectes cynotis, 112
 female, 150
 larva, 149
 male, 150
 ova, 149

Otodectic mites, 111, 149, 150
 leg characteristics, 128
 line drawings, 130

Otoscope, 127
Oxyuris equi, ova, 25

Paragonimus westermani, ova, 58
Paranoplocephala manillana, ova, 19
Parascaris equorum, ova, 20
Partridge, gapeworm, ova, 93

Pheasant
 air-sac mites, 109, 112, 113, 152

Capillaria
 caudinflata, ova, 92
 contorta, ova, 91
Index 203

Pheasant (continued)
capillarid worm, ova, 92
cecal worm, ova, 90
Cnemidocoptes mutans, 110, 140, 141
coccidia, 87
crop capillarid, ova, 91
Cyllodites nudus, 109, 113, 152
Eimeria
dispersa, oocysts, 87
Phasiani, oocysts, 87
gape worm, ova, 93
Heterakis gallinacea, ova, 90
intestinal capillarid worm, ova, 92
Laminosioptes cysticola, 113
quill mite, 116
scaly-leg mite, 110, 141
subcutaneous mite, 113
Syngamus trachea, ova, 93
Syringophilus bipectinatus, 116
Physaloptera
praeputialis, ova, 74
rara, ova, 73
Pigeon
air-sac mite, 109, 112, 113, 152
Bdellonyssus sylviarum, 118
body louse, 158
coccidia, 88
Colopocephalus turbinatum, 158
Columbicola columbae, 158
Cytodites nudus, 109, 112, 113, 152
Dermanyssus gallinacea, 117
Dermanyssus mite, 117
Dispharynx nasuta, ova, 95
Eimeria labbeana, oocysts, 88
Falculifer rostratus, 113
feather louse, 158
feather mite, 117
flesh mite, 113
Goniocotes bidentatus, 158
Goniodes damnicornis, 158
Laminosioptes cysticola, 113
lice, 158
Megninia columbae, 114
nasal mite, 117
red mite, 154
roost mite, 108
slender louse, 158
small louse, 158
Speleognathus striatus, 117
spiral stomach worm, ova, 95
subcutaneous mite, 113
Pine pollen, in feces, 80
Pinworm ova
horse, 25
man, 104
Plant hairs, in feces, 81
Pneumonyssus caninum, 109, 118, 155
Pollens, in feces, 80
Preservatives
for feces, 2
for sugar solution, 5
Pseudoparasites, in feces, 45, 78, 79, 80, 81, 83, 98, 107
Psorergates ovis, 116
Psoroptes, genus, 110
line drawing, 129
Psoroptes equi var.
bovis, 111
female, 142
leg detail, 142
caprae, 111
cuniculi, 111
female, 145
male, 145
equi, 111
ovis, 111
female
ovigerous, 143
pubescent, 144
larva, 143
Psoroptic mites, 110
leg characteristics, 128
line drawings, 129
Quail
Capillaria contorta, ova, 91
cecal worm, ova, 90
crop capillarid, ova, 91
Heterakis gallinacea, ova, 90
Qualitative fecal methods, 3, 14
Quantitative fecal methods, 18
Quill mites, 116
Rabbit
cheyletid mite, 116
Cheyletella parasitivorax, 116
chigger mite, 115, 153
coccidia, hepatic, oocysts, 96
coccidia, oocysts, 97
ear mites, 111
Eimeria sp., oocysts, 97
Eudemius stiedae, oocysts, 96
Eutrombicula alfreddugesi, 115, 153
mange mites, 110, 111
Notoedres cati var. cuniculi, 110, 138
pseudoparasites, 98
Psoroptes equi var. cuniculi, 111, 145
psoroptic scab mite, 111, 145
Saccharomyces guttulatus, 98
yeast, in feces, 98
Raidlettia aurea, 118
female, 155
Raidlettidae, family, 118
Rat
Hymenolepis
diminuta, ova, 82
Index

Rat (continued)
 Hymenolepis (continued)
 nana, ova, 101
 tapeworm, ova, human, 82, 101
Rat-tailed maggots, 45
Reagents for fluke egg technique, 17
Rectal worm, ova
 horse, 25
 man, 104
Red bugs, 115
Red mange, 114
Red mange mite, dog, 115, 151
Red mites, poultry, 117
Refrigeration of fecal samples, 2
Restraint, for ear examination, 125
Rhinonyssidae, family, 119
Rivolta, genus, 112
Rivoltasia bifurcata, 112
Robin
 gapeworm, ova, 93
 Syngamus trachea, ova, 93
Saccharomyces guttulatus, cells, 98
Samples, fecal, collection of, 1
Sarcoptes, genus, 127
Sarcoptes scabiei var.
 bovis, 109
 female, 131
 canis, 109
 female, 136
 larva, 77, 135
 male, 137
 nymph, 136
 ova, 135
 cuniculi, 109
 equi, 109
 ovis, 109
 suis, 109
 female, 131
 larva, 135
 male, 134
 nymph, 133
 ovis, 132
 vulpis, 109
Sarcoptic mange
 leg characteristics, 128
 lesions, swine, 132
 line drawings, 127
 mites, 77, 109, 131, 132, 133, 134, 135, 136, 137
Sarcoptidae, family, 109
Sarcoptiformes, suborder, 109
Scab mites, 110, 112
 cattle, 111, 142
 chicken, 112
 epidermoptere, 112
 goat, 111
 horse, 111
 in feces, 77
 line drawings, 129
Scab mites (continued)
 psoroptic, 110
 rabbit, 111, 145
 sheep, 111, 143, 144
Scaly-leg mites
 line drawing, 128
 poultry, 110, 140, 141
Sheather's sugar solution, 4
Sheep
 biting louse, 157, 162
 Bovicola
 ovis, 157
 peregrina, 157
 blue louse, 158
 body louse, 158
 Chorioptes ovis, 111
 coccidia, 30, 31, 77
 common liver fluke, ova, 34
 demodectic mange mite, 115, 151
 Demodex canis var. ovis, 115
 Dicrocoelium dendriticum, ova, 36
 Diococidium filaria, ova, 41
 Eimeria arloingi, oocysts, 30, 31
 Eimeria intricata, oocysts, 31
 Fasciola hepatica, ova, 34
 fluke, ova, 34, 36
 follicular mange mite, 115
 foot louse, 158, 162
 Giardia sp., 32, 33
 Haemonchus contortus, ova, 39
 intestinal nematode, ova, 40, 77
 lancet liver fluke, ova, 36
 lice, 157, 158
 Linognathus
 africanus, 158
 ovillus, 158
 pedalis, 158
 lungworm, ova, 44
 mange mites, 109, 111, 115
 Marshallagia marshalli, ova, 41
 Moniezia expansa, ova, 37, 77
 Nematodirus, ova, 40
 Nematodirus spathiger, ova, 40, 77
 Psoroptes equi var. ovis, 111, 143, 144
 psoroptic scab mites, 143, 144
 Sarcoptes scabiei var. ovis, 109
 scab mites, 111, 143, 144
 stomach worm, ova, 39, 41
 Strongyloides papillosus, ova, 40, 42, 77
 suctorial louse, female, 158, 162
 tapeworm, ova, 37, 38
 threadworm, ova, 40, 42, 77
 Thysanosoma actinioide, ova, 38
Short-nosed louse, cattle, 158, 160
Sinus mite, dog, 109, 119, 155
Skin examination
 apparatus for, 119
 for lice, 156
 for mites, 119
Smear method, for feces, 2
Solenopotes capillatus, 158
female, 161
Speleognathidae, family, 117
Speleognathus striatus, 117
SPIrocera lupi, ova, 72
Spurious parasites, in feces, 77, 82
Starch, undigested, 1
Stephanurus dentatus, ova, 53
Stomach worm, ova
cat, 73, 74
cattle, 39
chicken, 94, 95
dog, 73, 74
fox, 73, 74
goat, 39, 41
guinea fowl, 95
horse, 22, 23
pig, 95
sheep, 39, 41
swine, 32
turkey, 95
Strongyle ova, horse, 20, 21, 24
Strongyloides
papillosus, ova, 40, 42, 77
stercoralis
larvae, 105
westeri, ova, 24
Subcutaneous mite, poultry, 113
Suctorial lice
cattle, 158, 160, 161
goat, 158
sheep, 158, 162
Suctorial louse
coyotes, 158, 166
dog, 158, 166
ferrets, 158, 166
fox, 158, 166
horse, 158, 159
swine, 158, 163, 164
Sugar solution
preparation of, 5
preservation of, 5
storage of, 5
Suppository, for obtaining fecal sample, 2
Surgery and fecal examination, 3
Swine
ascarid, ova, 47
Ascaris lumbricoides, ova, 47
Ascarops strongylina, ova, 52
coccidia, 46
demodectic mange mite, 115
Demodex phylloides, 115
Eimeria sp., oocysts, 46
follicular mange mite, 115
Haematopinus suis, 158, 163, 164
kidney worm ova, 53
louse
eggs, 163, 164
female, 163
Swine (continued)
louse (continued)

male, 163
nymph, 163
lung fluke, ova, 58
lungworm, ova, 51
Macracanthorhynchus hirudinaceus
ova, 48
mange mites, 109, 115, 132, 133, 134
Metastrongylus apri, ova, 51
nodule worm, ova, 46, 49
Oesphagostomum sp., ova, 46, 49
Paragonimus westermani, ova, 58
Sarcoptes scabei var. suis, 109
sarcotic mange
lesions, 132
mite, 133, 134
ova, 132
Stephanurus dentatus, ova, 53
stomach worm, ova, 52
thorny-headed worm, ova, 48
Trichuris suis, ova, 50
whipworm, ova, 50
Symbiotic mites, 111
Syngamus trachea, ova, 93
Syringophilus bipectinatus, 116
Syphidae fly, larvae, 45
Table, mite, characteristics, 128
Taenia
pisiformis, ova, 60
saginata, ova, 100
taeniaeformis, ova, 61
Tail mange, 111
Tapeworm, ova
cat, 59, 60, 61, 62, 63
cattle, 37
dog, 59, 60, 62, 63
fox, 59, 60, 61, 62, 63
goat, 37, 38
horse, 19
man, 59, 62, 82, 100, 101
mouse, 82, 101
rat, 82, 101
sheep, 37, 38

Technique
fecal examination, 4, 5, 14, 16
louse examination, 156
skin examination, 119, 126
Tetrameres americana, ova, 94
Thorny-headed worm, ova
dog, 76
swine, 48
Threadworm, larva
cat, 70
dog, 70
man, 105
Threadworm, ova
cattle, 42
Threadworm, ova (continued)
 goat, 42
 horse, 24
 sheep, 42

Thysanosoma actinioides, ova, 38

Ticks, compared with mites, 108

Toxocara
 canis, ova, 66, 78, 79
 mystax, ova, 67, 68

Transportation of fecal samples, 1, 2

Trichostrongylus
 canis, 157
 female, 165
 floridanus, 157

Trichuris
 suis, ova, 50
 trichiura, ova, 106
 vulpis, ova, 69

Trinoton anserinum, 158

Trombiculidae, family, 115

Trombiculiformes, suborder, 109, 114

Turkey
 air-sac mite, 109, 113, 152
 ascarid, ova, 89
 Ascaridia galli, ova, 89
 Bdellonyssus sylviarum, 118, 154

Capillaria
 caudinflata, ova, 92
 contorta, ova, 91
 capillarid worm, ova, 92
 cecal worm, ova, 90
 Cnemidocoptes mutans, 110, 140, 111
 coccidia, 86, 87
 crop capillarid, ova, 91
 Cytodites nudus, 109, 113, 152

Turkey (continued)
 Dermanyssus gallinae, 117, 154
 Dermanyssus mite, 117, 154
 Dispharynx nasuta, ova, 95
 Eimeria
 dispersa, oocysts, 87
 meleagridis, oocysts, 86
 meleagritmitis, oocysts, 86
 phasiani, oocysts, 87
 Eomenacanthus stramineus, 157, 167
 feather mites, 117, 118
 flesh mite, 113
 Freyana chaneyi, 114
 gapeworm, ova, 93
 Goniodes meleagridis, 157
 Heterakis gallinae, ova, 90
 intestinal capillarid worm, ova, 92
 Laminostyptes cysticola, 113
 Lipeturus gallopavonis, 157
 Megninia cubitalis, 114
 Menopon gallinae, 157
 quill mite, 116
 red mite, 117, 154
 roost mite, 108
 scaly-leg mite, 141
 spiral stomach worm, ova, 95
 subcutaneous mite, 113
 Syngamus trachea, ova, 93
 Syringophilus bipectinatus, 116

Uncinaria stenocephala, ova, 65

Undigested muscle, in feces, 81

Whipworm, ova
 dog, 69
 fox, 69
 man, 106
 swine, 50