
MATLAB Basics

EE 224: Signals and Systems I

1 Overview

This lab introduces the MATLAB computing environment. MATLAB is an extremely
useful tool for signals and systems as well as for many other computing tasks. Unlike
C, C++, or Java, there is no need to compile MATLAB code, making debugging and
experimenting much easier. The purpose of this lab is not to provide a comprehensive
introduction to MATLAB, but to help students get comfortable enough to learn more on
their own. Future labs will introduce new MATLAB content as necessary.

Note: Most of this lab was developed using MATLAB versions R2017b and R2019a.
Compatibility across versions is generally very good in MATLAB, but the appearance of the
GUIs tends to change.

2 Learning Objectives

By the end of this lab, students will be able to:

1. Get help and documentation for MATLAB functions

2. Solve matrix-vector equations in MATLAB

3. Manipulate complex numbers in MATLAB

4. Vectorize a simple equation

5. Use MATLAB’s plotting tools to graph signals

This lab will also preview future labs by demonstrating how to play audio signals and
display images.

3 Pre-Lab Reading

MATLAB is a commercial software product produced by MathWorks. The software in-
cludes both a numeric computing environment and a programming language, though “MAT-
LAB” often refers to the programming language. MATLAB is commonplace in industry
and academia. You will benefit from understanding the basics of using MATLAB.

1



Many university students can obtain student versions of MATLAB for free. Instructions
for Iowa State University students can be found here: https://it.engineering.iastate.
edu/how-to/installing-matlab/. Free alternatives to MATLAB include GNU Oc-
tave (https://www.gnu.org/software/octave/), Scilab (https://www.scilab.org/),
and FreeMat(http://freemat.sourceforge.net/).

MATLAB stands for “MATrix LABoratory,” as it was first developed to allow university
students to easily use numeric computing software for linear algebra. Part of what makes
MATLAB easy to use is that there is no need to compile MATLAB code before running
it. Code can be entered and executed line by line in the Command Window. Reflecting its
roots in linear algebra1, all variables are essentially matrices by default. Variables do not
have to be declared before they are used, and usually it is unnecessary to specify the class
of a variable. These factors make it easy to get started in MATLAB, though they can be
disorienting for those used to compiled languages like C, C++, and Java.

4 Lab Exercises

4.1 Getting Started

Figure 1: The MATLAB Desktop

Upon starting up MATLAB, you will see the MATLAB Desktop (see Figure 1) which
consists of the Tool Strip, Current Folder window, Command Window, Workspace, and

1Pun intended.

2

https://it.engineering.iastate.edu/how-to/installing-matlab/
https://it.engineering.iastate.edu/how-to/installing-matlab/
https://www.gnu.org/software/octave/
https://www.scilab.org/
http://freemat.sourceforge.net/


Command History. The purpose of these windows is largely self-explanatory, but we will
touch on them occasionally as necessary. Perhaps the best way to jump into MATLAB is
to learn how to get help. You can simply type help followed by the name of a function to
get help on that function. You can even get help for the function help:

1 >> help help

Another great way to get help is with the doc command. Whereas help gives you
a (usually) brief explanation in the Command Window, doc opens up more thorough
documentation in a new window. Use the doc command to find out about the many ways
to use the colon (:) in MATLAB:

1 >> doc colon

MATLAB also has built in demos to help you use various functions and tools. You can
type help demo to learn about how to run the examples, or you can just type demo to open
up a new window with featured examples. Find and click on the “Basic Matrix Operations”
demo. This will display the demo in the help window. Click the “Open Live Script” button
in the upper right. This will open the demo as a live script in MATLAB’s Live Editor.
Step through the live script by clicking the “Run Section” or “Run and Advance” buttons
in the Live Editor’s Tool Strip. Make sure you understand what is happening with each
command. (Most of you probably don’t know what it means to “convolve” two vectors yet,
but you will in a few weeks!)

4.1.1 Solving Systems of Linear Equations

Figure 2: A simple circuit

Now that you have seen an example of solving a matrix equation y = Hx for x, let’s
apply this to something you know. Consider the circuit shown in Figure 2. In EE 201, you
learned that the voltages v1, v2, and v3 in this circuit can be found via the Node Voltage
Method. Assuming you remember how to do that, you will arrive at the following set of

3



equations:

v1 − 10

100
+

v1
1000

+
v1 − v2

270
= 0

v2 − v1
270

+
v2

3300
+
v2 − v3

480
= 0

v3 − v2
480

+
v3
50

= 0.1

We can rewrite these as a matrix vector equation:
1

100
+ 1

1000
+ 1

270
−1
270

0

−1
270

1
270

+ 1
3300

+ 1
480

−1
480

0 −1
480

1
480

+ 1
50




v1

v2

v3

 =


10
100

0

0.1


Use MATLAB to solve for the voltages v1, v2, and v3. Be sure to include the code you used
in your lab report.

HINT: You can use the diary function to keep track of the commands you use in
MATLAB. Type help diary to find out how.

4.1.2 Complex Numbers in MATLAB

Figure 3: An RC circuit

Consider the A/C circuit shown in Figure 3. Recall that the steady-state response of
this circuit can be found using phasors. In the phasor domain, we can use a voltage divider

to find the phasor voltage on the capacitor: VC =
−j 100

3

50−j 100
3

56 10◦. Rearranging and recalling

that the phasor notation 5 6 10◦ means 5ej10
π

180 , we have:

VC =
1

j1.5 + 1
5ej

π
18 (1)

Let’s use MATLAB to find VC .
MATLAB naturally handles complex numbers and complex arithmetic. There are sev-

eral ways to represent the imaginary unit (
√
−1). Try typing the following in MATLAB.

4



1 >> a = i;

2 >> b = j;

3 >> c = 1i;

4 >> d = 1j;

5 >> a, b, c, d

You should see that MATLAB displays the value of each variable as 0.0000 + 1.0000i. You
can check that this is indeed

√
−1 by using the equality operator “==”:

1 >> a == sqrt(-1)

Notice the difference between assignment (=) and equality (==).
Now we can solve Equation (1) in MATLAB. Rather than just typing in the right-hand

side of the equation, we will use variables for each quantity:

1 >> om = 3000; C = 1e-5; R = 50;

2 >> Vs = 5*exp(1i*10*pi /180);

3 >> Zc = -1i/om/C;

4 >> Zr = R;

5 >> Vc = Zc/(Zr+Zc)*Vs

MATLAB should display an answer of 1.9158 - 2.0055i. Before we explore what that
means, there are a few important things to notice about MATLAB in these lines. First, we
can type lots of commands on one line; separating by a semicolon (;) stops MATLAB from
displaying the result of each. (Try using a comma (,) instead.) Second, angles in MATLAB
are assumed to be in radians, so we converted 10◦ to 10π/180 radians. Third, the number
π is built in to MATLAB. Other built-in values include infinity (inf), not-a-number (NaN),
and the output of the last command (ans)2. Fourth, MATLAB uses order of operations
the way most scientific calculators and other programming languages do. You can find out
exactly how MATLAB orders operations by typing “operator precedence” in the search bar
in the upper right corner of the MATLAB desktop.

Using MATLAB we found that VC = 1.9158 − 2.0055i V; however, we would like to
have the answer in phaser form. In MATLAB we can use abs and angle to convert VC to
polar form or phasor form. Try it yourself. Once you have the magnitude and phase of the
capacitor voltage, find the time-domain voltage, vC(t), and record this in your lab report.
Remember to use a degree sign (◦) if you choose to report the phase angle in degrees.

There are a few other commands that are useful when working with complex numbers.
You can type real(Vc) or imag(Vc) to get ther real or imaginary parts of Vc. conj(Vc)

returns the complex conjugate of Vc.

1 >> real(Vc)

2

3 ans =

4

5 1.9158

2ans is really a variable in MATLAB which automatically takes on the value of the last output.

5



6

7 >> imag(Vc)

8

9 ans =

10

11 -2.0055

12

13 >> conj(Vc)

14

15 ans =

16

17 1.9158 + 2.055i

4.1.3 Vectorization

MATLAB is optimized for operations involving matrices and vectors. For example, we
could use the following code to multiply matrices A and B and store the result in matrix
C (assuming C has been initialized to all zeros):

1 >> for x = 1:size(A,1)

2 >> for y = 1:size(B,2)

3 >> for z = 1:size(A,2)

4 >> C(x,y) = C(x,y) + A(x,z) * B(z,y);

5 >> end

6 >> end

7 >> end

Not ony is this annoying to type, but it also executes less efficiently than simply typing:

1 >> C = A*B;

Likewise, matrix-vector products can be found by typing y = H*x for matrix H and vectors
x and y. We can multiply matrices or vectors by scalars by simply typing a*H or a*y.
Almost all MATLAB operations are designed to be applied to matrices. In fact, it is
good programming practice to avoid for loops in MATLAB (though sometimes they are
unavoidable).

Let’s use vectorization to our advantage. Suppose we want to know the steady-state
output voltage VC for the circuit in Figure 3 for the following input voltages:

• vS(t) = 5 cos (3000t+ 10◦) V

• vS(t) = 5 cos (3000t+ 20◦) V

• vS(t) = 10 cos (3000t+ 25◦) V

• vS(t) = 15 cos (3000t) V

6



Since all the sources have the same frequency (3000 radians/s), we can convert these to
phasors and vectorize Equation (1):

1 >> Vs = [5* exp(1i*10*pi /180); 5*exp(1i*20*pi /180); ...

2 10* exp(1i*25*pi /180); 15];

3 >> Vc = Zc/(Zr+Zc)*Vs

This creates a column vector of source voltages in phasor form, Vs, and a column vector of
capacitor voltages in phasor form, Vc. (The ellipsis (...) allows you to write one MATLAB
command on multiple lines.) We have solved all four circuit analysis problems at once! Use
abs and angle to convert the answers to the time domain and record these in your report.

4.2 Working with Signals in MATLAB

Strictly speaking, MATLAB (and digital computers in general) can only operate on discrete-
time, discrete-amplitude signals. Furthermore, digital computers can only store a finite
number of signal values at a time. Recall that a signal is a function of one or more inde-
pendent variables, and those independent variables are integers for discrete-time signals.

Consider the discrete-time signal x[n] = cos (2π0.01n). We can represent this signal as
a vector in MATLAB for the range of integers n = 0, 1, 2, . . . , 9 as follows:

1 >> n = 0:9;

2 >> x = cos (2*pi *0.01*n)

The ten values stored in the array x should display as a row vector. We can change this to
a column vector using an apostrophe (’):

1 >> y = x’

MATLAB indexes arrays starting with the number 1, not the the number 0 as many
other programming languages do. (This can be confusing if you are used to C/C++ or
Java.) Thus, typing x(1) in MATLAB will display 1.0000, which is equal to cos (2π0.01(0)),
whereas typing x(0) will result in an error. As you saw in the documentation for the colon
operator in Section 4.1, you can access various subsets of the vector x as follows:

1 >> x(4:7)

2

3 ans =

4

5 0.9823 0.9686 0.9511 0.9298

6

7 >> x(1:2: end)

8

9 ans =

10

11 1.0000 0.9921 0.9686 0.9298 0.8763

12

7



13 >> x(2:2: end)

14

15 ans =

16

17 0.9980 0.9823 0.9511 0.9048 0.8443

These are the fourth through seventh, odd-numbered, and even-numbered elements of the
vector x, respectively.

4.2.1 Plotting Signals

Often signals of interest are functions of time. In the discrete-time case, the integers that
index a signal correspond to different points in time. Let’s create another signal:

1 >> t = -0.01:1/44100:0.01;

2 >> x = cos (2*pi *440*t); % Don ’t forget the semicolon!

The first line created an array called t, which we are using to store values of time in seconds.
The second line created an array called x, which holds the values of our signal as a function
of time.

MATLAB includes many built-in functions for plotting. We will start with the simplest:
plot.

1 >> figure; plot(t,x)

The command figure opens up a new figure window. It is good practice to use figure

before plot; otherwise the plot command will use the last figure window that was used and
overwrite whatever was plotted there. The plot command plots the values in array x as a
function of the values in array t. What happens if you omit t? Type the following to find
out:

1 >> figure; plot(x)

Describe what happens in your lab report.
Let’s recreate the first plot and add some labels.

1 >> figure; plot(t,x)

2 >> xlabel(‘time (s)’)

3 >> ylabel(‘amplitude (V)’)

4 >> title(‘A plot of voltage vs. time ’)

Describe what xlabel, ylabel, and title do in your lab report. Make sure to label your
graphs in all your lab reports!

We can plot more than one signal on the same figure. Let’s add a sinusoid at a lower
frequency and amplitude. Use the hold command to add the new signal to the plot.

1 >> hold on

2 >> y = 0.5* cos(2*pi *349.23*t);

3 >> plot(t,y)

8



Using hold on allows us to plot a new signal without erasing the signals already on the
plot. If you type hold off, the figure will no longer keep the existing signals when you
type plot. Typing hold by itself toggles the state.

Instead of plotting these two signals on top of each other, we can plot them in separate
windows in the same figure using the subplot command. Let’s plot these two signals and
their sum:

1 >> figure;

2 >> subplot (3,1,1)

3 >> plot(t,x)

4 >> xlabel(‘time (s)’), ylabel(‘voltage (V)’)

5 >> subplot (3,1,2)

6 >> plot(t,y)

7 >> xlabel(‘time (s)’), ylabel(‘voltage (V)’)

8 >> subplot (3,1,3)

9 >> plot(t,x+y)

10 >> xlabel(‘time (s)’), ylabel(‘voltage (V)’)

11 >> title(’Three signals in subplots ’)

The first two arguments to subplot specify the layout of windows within the figure. In
our example, subplot(3, 1, n) specifies a three by one layout, so we have three subplots
in a column. The third number, n, specifies which of the subplots to use. For rectangular
layouts, n itemizes subplots by column (so subplot(3,2,4) would plot in the upper right
of a three by two layout).

MATLAB offers a lot more plotting functionality. Step through the “Creating 2-D
Plots” live demo to see some examples. (Type “demo” in MATLAB to display available
demos in the help window if it is not still open.) Other useful plotting commands include
semilogx, semilogy, loglog, and axis. Use help to learn about these.

The plot command connects each data point with a straight line, making a signal appear
to be continuous-time. What plotting command from the demo could you use to emphasize
that a signal is discrete-time? Explain your answer in your report.

4.2.2 Sounds

Note: MATLAB’s ability to play sounds through speakers or headphones depends on how
the host system is configured. If you are trying this on your own machine, you may need
to change the settings.

Signals representing sound and imagery are extremely helpful for developing intuition.
Let’s use MATLAB to generate some sounds. A sampling rate of 44.1 kHz is typical for
music. We will learn later in class that this allows recording of music with frequencies up
to 22.05 kHz. Most humans cannot hear frequencies above about 20 kHz, so this sampling
rate makes sense.

1 >> Fs = 44100; % 44.1 kHz sampling rate

2 >> Ts = 1/Fs; % this is the sampling period or sampling interval

9



3 >> t = -0.5:Ts:0.5;

4 >> x = 0.3* cos (2*pi*440*t);

At this point we have created one second of audio in the vector x. The next command will
send this signal to the speakers at the appropriate sampling rate. Before you hit Enter,
be sure to turn the volume down (especially on headphones). You can turn it up latter as
necessary.

1 >> sound(x,Fs)

You should hear one second of a pure ‘A’ (440 Hz).
We can make more interesting sounds with the help of some new MATLAB commands.

The commands zeros(m, n) and ones(m, n) are extremely useful. They create m-by-n
arrays of zeros and ones, respectively:

1 >> zeros (2,5)

2

3 ans =

4

5 0 0 0 0 0

6 0 0 0 0 0

7

8 >> ones (1,3)

9

10 ans =

11

12 1 1 1

We can create a unit step signal using zeros(m, n) and ones(m, n) as follows.

1 >> u = [zeros (1 ,22050) , ones (1 ,22051)];

Notice the notation we used to create the vector u. In general, typing [A, B] will concate-
nate the matrices (or vectors) A and B. The comma (,) puts the matrices side-by-side, so A

and B must have the same number of rows for this to work. The semicolon (;) concatenates
matrices on top of one another (assuming they have the same number of columns).

Now lets make another sound signal using our unit step function.

1 >> y = 0.3* cos(2*pi *349.23*t);

2 >> s = x + u.*y;

The last line adds the vector x to another vector formed by multiplying y by a unit step.
The “dot multiply” notation (.*) tells MATLAB to multiple the vectors point-wise rather
than using a vector product. Now we are ready to play our new signal.

1 >> sound(s,Fs)

Describe what you hear in your lab report.

10



4.2.3 Images

Usually we deal with signals that are a function of one independent variable, such as the
sound signals we just created. Signals can be functions of two or more independent variables
as well. Images are two-dimensional signals where the two independent variables are the
x and y coordinates. The dependent variable is either a grayscale value or a color (often
represented by three dependent variables: R, G, and B). Future labs will explore images
and image processing; this section will briefly introduce images in MATLAB.

We can use zeros(m, n), ones(m, n), and concatenation to make a very boring image.

1 >> im = [zeros (20,20), ones (20 ,20); ones (20,20), zeros (20 ,20)];

2 >> figure; imshow(im)

We could make the image a little more exciting by repeating a few times.

1 >> board = repmat(im ,4,4);

2 >> figure; imshow(board)

The command repmat(im,4,4) repeats the matrix im in an four by four grid.
Without other arguments, imshow assumes images to be grayscale with zero correspond-

ing to black and one corresponding to white. Color images can be displayed by providing
a colormap.

1 >> load clown.mat

2 >> figure; imshow(X,map)

MATLAB also provides the commands image and imagesc to display images. These
assume color images, but the default colormap is not always appropriate. Pixel values
should range from 0 to 255 when using image (assuming a colormap of 256 values). When
using imagesc, the pixel values are automatically scaled to fit the colormap.

Try the following commands and explain any differences that you observe between
imshow, image, and imagesc.

1 >> figure; imshow(X,map)

2 >> figure; image(X)

3 >> colormap(map)

4 >> figure; imagesc(X)

5 >> colormap(map)

4.3 Report Checklist

Be sure the following are included in your report.

1. Section 4.1.1: Code to solve DC circuit and solution

2. Section 4.1.2: Solution for vC(t)

3. Section 4.1.3: Solution for vC(t) for four vS(t) input signals

11



4. Section 4.2.1: Description of what happens when plotting x without t

5. Section 4.2.1: Description of xlabel, ylabel, and title

6. Section 4.2.1: Description of how to emphasize a discrete-time signal in a plot

7. Section 4.2.2: Description of the sound you hear

8. Section 4.2.3: Explanation of the differences you observe

References

[1] MathWorks MATLAB Website. MATLAB, The MathWorks, Inc.,
https://www.mathworks.com/products/matlab.html

[2] “MATLAB Installation Instructions.” Iowa State University Information Technology,
Iowa State University of Science and Technology,
https://www.it.iastate.edu/services/software-students/matlab

[3] Eaton, John W. GNU Octave Website. GNU Octave, John W. Eaton,
https://www.gnu.org/software/octave/

[4] Scilab Website. Scilab, ESI Group,
https://www.scilab.org/

[5] FreeMat Website. FreeMat, SourceForge,
http://freemat.sourceforge.net/

12

https://www.mathworks.com/products/matlab.html
https://www.it.iastate.edu/services/software-students/matlab
https://www.gnu.org/software/octave/
https://www.scilab.org/
http://freemat.sourceforge.net/

	Overview
	Learning Objectives
	Pre-Lab Reading
	Lab Exercises
	Getting Started
	Solving Systems of Linear Equations
	Complex Numbers in MATLAB
	Vectorization

	Working with Signals in MATLAB
	Plotting Signals
	Sounds
	Images

	Report Checklist


