Index

Acentric chromatid, 78
Acentric fragment, 78
Adaptability, hybrids, 99
Adaptedness, upper attainable level, 219
Adaptive evolutionary phenomenon, 173
Additive gene effects, 168
Additive genetic variance, 511
Additivity of heterotic gene effects, 483
Adenine relation to histidine synthesis, 278
Adenine requirer, 278
Agglutination titer, 280
Albinism, 237
Alcaptonuria, 237
Alcohol dehydrogenase, 110
Alfalfa cross- and self-fertilization, 81
Alleles, 481
divergent, 173, 458
fortuitous, 322
interaction between, 229–30, 234
of intermediate productivity, 294
less favorable, role of, 323–24
pseudo and multiple, 254
relic, 322
Allelic genes, 236, 240
Allelism, multiple, 500
Aluminum in hybrids, 106
American Corn Belt dents, heterosis of, 138–46
Anaphase, 75
Anaphase I of cell illustrated, 67
Anaphase I dyads, 73
Anaphase II, 76, 77, 79
Anaphase II of cell illustrated, 67
Anaphase II monads, 73
Angiosperm endosperm, 83
Angiosperm ovule, 83
Angiosperms
female gametophyte in, 83
fertilization, 83
mature ovules, 83
secondary fertilization, 84
seed, 82–85
seed coat, 83
seed development, 81
Animal inbreeding, 5–7
Anthocyanin, 237–38
Antibiotic substances, 117
Antigenic characters, 239, 240
Antigenic complexes, 253
Antigenic relationships, 244
Antigenic specificity, alteration of, 278–80
Antigenic variants induced by radiation, 279
Antigens, 240, 242, 268
in cattle, 252–54
of pneumococci, 254
Artificial hybrid, 424
Artificial selection, 219–20
Asexual reproduction, 47
Autogenic growth inhibitors, 117
Autonomous apomicts, 89
Autonomous organelles of the yeast cell, 261–62
Auxins, 112
Auxotrophic mutants
biochemical studies, 275–78
Edwards technique of growing, 279
frequencies in S. typhimurium, 271
kinds in S. typhimurium, 272
methods of inducing, 269
from radiated lines, 269–70
of S. typhimurium, 281
Auxotrophic organisms, 269
Auxotrophs
determination of particular nutrient required, 270
utilization of sulphur compounds, 276
Average dominance, estimate of, 497–99
Average dominance of genes, estimation of, 494–516
Average hybrid, 291
Backcrosses, 423
Backcrossing, 231, 379, 421
in maize, 235
Bacterial genetics, 267
Bacterial mutation, 267
Balanced defective, 324
Balanced euheterosis, 221–22
Balanced lethal genes
in Capsella grandiflora, 46
in Oenotheras, 46
Balanced polymorphism, 221
Barren stalks, 16
Biochemical basis for sulfonamide-requiring character, 207–10
Biochemical defects as gene markers, 256
Biochemical deficiencies, 257
Biochemical genetics, 256
Biochemical models of heterosis in Neurospora, 199–217
Biochemical reactions essential to growth in Neurospora, 208–9
Biochemical studies of auxotrophic mutants, 275–78
Biotypes, 20, 24
variation in, 26
Bottleneck genes, 325, 327, 424, 428
Bottleneck locus, 325
Bottlenecks
environmental components of, 329
genetic-environmental, 325
physiological, 325, 326
"Breaking of the types," 15
Breeding, practical necessities, 140
Breeding plans
reciprocal selection between two crosses, 457
selection in crossbred to homozygous tester, 457
Breeding plot efficiency, 146
Breeding procedures, improvement limits, 416
Breeding records
of human beings, 2
of primitive deities, 2
Breeding stations in Mexico, 426
Breeding systems, 414
Budding, 262–64
Carboxylase, 110
Catalase activity, 108
Cattle cells, 252
Causative genes
action of, 255
direct effect of, 239
Cell membrane and cell wall, 262
Cellular antigens in humans, 240–43
Cellular characters within a species, 251–55
Centrochromatin, 262
Centromere region, 72, 74
Centrosome, 261
Character complexes, importance in maize breeding, 131
extrapolated correlates, 131
Chemical analyses of genetic variations in flower color, 237
Chemistry of A and B substances, 241
Chiasmata formation among three chromosomes, 69
Chlorophenoxyacetic acid, 117
ortho, para, and meta forms, 117
Chlorophyll production in maize, 228–29
Choline, 214
Choosing testers, 449
Chromatin bridge, 78
Chromogenes and plasmagenes in heterosis, 224–35
Chromomere pattern, 68
Chromonomata, 74
Chromosomal and cytoplasmic basis for hybrid vigor, 479–81
Chromosomal deletions, 226
Chromosomal effects, variance analysis of, 483
Chromosomal fibers, 72, 74
formation, 75
Chromosomal inheritance, 258–59
Chromosomal rearrangements, 227
Chromosome doubling, 390–92
Chromosome knob number, 419
Chromosome knobs
distribution in Northern Flints, Southern Dents, and Corn Belt inbreds, 130
significance, 185–86
Chromosome length, effect on hybrid vigor, 484
Chromosome maps of Saccharomyces, 258
Chromosome mechanisms, 153
Chromosome movement, 74
Chromosome 10, 67, 69
abnormal, 68, 72
kinds, 66
Chromosomes
block transfer, 187
breakage, 74
of maize and teosinte, 183
and nuclear membrane, 262
Co-carboxylase, 110
Colchicine, 397
Combining ability, 62, 141, 148, 330–51, 386, 399, 408, 409, 431, 485
general, 328, 364
general and specific, 352–70, 485–90
and morphology, correlation of, 143–45
and morphology, experimental results, 143–45
specific, 352–53
testing for, 444
tests for, 449
Commercial corn growing areas in Mexico, 426
Commercial corn hybrids, 232
Commercial corn production, 373
Commercial hybrids, 291
origin of, 401
Complementary genes, 48
Compound genes and genes with multiple
effects, 227–29
Conidia, formation, 201
Conidiophore, 201
Constant parent regression, 287
Controlled cross-pollination in breeding
corn, 16
Controlled parentage, 16
Controlled self-pollination, 16
Convergent improvement, 328
Corn (See also Maize)
grown in prehistoric times, 418
improvement through breeding, 425–48
inbred lines, 280
seling and crossing results, 36
Corn Belt dents
association of characters in
inbreds, 131
open-pollinated varieties, 131
derived from hybridization between
Southern Dents and Northern Flints,
132
origin of, 124–48
historical and archaeological evidence,
148
taxonomically important differences, 132
width of cross, 132–37
Corn Belt inbreds, 147
characteristics, 130
distribution of chromosome knobs, 130
Corn Belt maize
archaeological record, 127
Caribbean influence, 127
cytology, 128–29
description, 125
historical record, 127
origin, 127
 Genetic evidence, 129–32
 and genetic significance, 124–48
 understanding variability in, 148
 variation, 146
Corn belt of Mexico, 436
Corn breeding
history, 400–406
 pure line method, 28
 steps, 470
Corn breeding methods
ear-to-row, 400
 mass selection, 400
 selection within and among inbred lines,
 401–2
 varietal hybridization, 400
Corn evolution in Mexico, 419
Corn hybrids, commercial, 232
Corn improvement program of Mexico, 425
Corn production, pure line method, 44
Corn races in Mexico, 427
Corn and swine inbreeding
degree of heterozygosity, 338
effectiveness of continued phenotypic se-
lection, 338
Corn, white dent, 21
Cousin crosses, 31
Cozymase, 110
Cross-fertilization, 15, 16, 17, 45
in alfalfa, 81
in maize, 49
Cross-fertilization versus self-fertilization,
20
Cross performance, 347
improvement, 351
initial, 343, 351
limits, 351
Cross-pollinated and self-pollinated plants,
comparison of methods, 55
Cross-pollination, 15
Crossbred performance, 402
Crossbreeding, 171–73
 early ideas on, 1–13
 effect on seed collapse in Medicago sativa,
 85–89
 effects on growth, 81
 and inbreeding effects, 331–32, 350
 livestock, 372
 in seed development, 81–97
 USDA experiments, 375
 University of Minnesota experiments,
 371–76
Crossbreeding, rotational
advocation, 375
farm applications, 377
and heterosis, 371–77
inbred lines, 376–77
 for swine, 375
 versus inbreeding, 7
Crossbreeding swine, 371–76
University of Minnesota experimental
results, 373–74
Crossing, 12, 139, 382
 advantageous effects, 23
Crossing inbred lines of tomatoes, 307–10
Crossing over, 68, 222
 in maize × teosinte, 187
Cysteine requirers, 276
Cytoplasm, 261
and genes, interaction, 232–33, 479
Cytoplasmic inheritance, 266
Dauermodifikation, 260–61
Decarboxylating enzyme systems of the
respiratory mechanism, 110
Dehydrogenase enzymes, 110
Deleterious dominant, 323
Deleterious recessives, 220, 323
Depletion mutation, 261
Detasseling, 15
Deterioration, 16
De Vries' mutation theory, 20
Diakinesis, 69
 in heterozygous plants, 68
Dianthus hybrid, 9
Dicentric chromatid, 77, 78
Differentiation, 260
Diploid behavior at meiosis, 500
Diploid heterozygote, 202
Diploids, 389
Direct tetrad analysis, 258–259
Disjoining monads, types, 76
Dispersed heterosis, 127
Divergent alleles, 173, 458
 cumulative action of, 282
 interaction between, 234
Divergent spindles, 74
Domestic fowl hybrids, 245–246
Dominance, 11, 100, 101, 167, 284, 332, 338, 350, 353
 to account for heterosis, 350
 analysis of, 495
 complete, 288, 416, 497
 degree of, 336, 494
 as explanation of hybrid vigor, 65
 of growth factors, 60
 and heterosis, 307, 494–496
 incomplete, 416
 by interference, 458
 in maize × teosinte, 188–192
 and overdominance, 282–283
 partial, 65, 497
 phenotypic and genic, 318
 and scales of measurement, 306, 313
 in self-pollinated plants, 106
 of tomato hybrids, 60
 by interference, 458
 in maize × teosinte, 188–192
 and overdominance, 282–283
 partial, 65, 497
 phenotypic and genic, 318
 and scales of measurement, 306, 313
 in self-pollinated plants, 106
 of tomato hybrids, 60
Dominance of genes, estimation of, 494–496
Dominance and heterosis as expression of the same physiological genetic phenomena, 307, 309
Dominance hypothesis, 230, 284
 objections to, 285
Dominance of linked genes hypothesis, 282
Dominant alleles, 101
Dominant, deleterious, 323
Dominant favorable genes, 451
Dominant gene effects, 165
Dominant genes, 225–226
Dominant and recessive lethals, 160
Dominant unfavorable genes, 226–227
“Double-cross,” 40, 42, 43, 166–168
Double cross hybrids, 433, 444
Double cross yields versus single cross yields, 58
Double fertilization, 9
 and embryo development, 87
 and endosperm development, 87
 and growth in the integuments, 87
Drosophila melanogaster
 hybrid vigor in, 474–475
 egg production, 474, 476
 egg production curve, 476
 lifetime daily egg production of different races, 477
 races, variation in egg production and duration of life, 476
Drought resistance, in maize × teosinte, 196–197
Dwarf races, growth rates, 121
Dwarfs, 62
Dyads, 75
Early testing, 402–411
 limitations, 406–411
 as a measure of combining ability, 410
Early testing and recurrent selection, 400–417
 results, 403–406
 as a tool in a breeding program, 406
Ear-row planting, 22
Ear-row selection, 456
Edwards technique of growing auxotrophic mutants, 279
Effective factor, 298
Egg production, 478
 distribution of variance, 486
 range, 485
Eight-way combinations, 44
Elementary strains, 24
Elite germ plasm hypothesis, 138–139
Embryo development, 104
Embryo growth, lag phase, 82
Embryo and seed development, 103–105
Embryo size as related to seed size and heterosis, 103–104
Embryos
 artificial methods of cultivating, 95
 of barley, 97
 development in inbred and hybrid corn, 104
 early growth in relation to endosperm size, 91
 frequency of formation, 95–96
 growing small excised, 96
 growth rates, 87
 vigor, 94
Endogamy, 5
Endosperm, 81
 genetic characteristics of triploid condition of the nuclei, 84
 growth rates, 87
 heterozygosis, 84
 hybrid vigor, 85
INDEX 541

Flint-Dent ancestry in corn breeding, significance, 146–48
Flour corns, 420
Fodder, maize × teosinte, 187–88
Forssman antigen, 250
“Four-way” crosses, 40, 42, 43
Frequency distribution of two types of samplings, 404
Fruit, weight of and its component characters, 306–7
Fungi growth, 115
Galtonian regression, 23
Gamete selection, 60, 61, 382–86, 399
method, 387
sources of synthetic varieties, 378
single or more complex crosses, 378
inbred lines, 378
for specific combining ability, 378–88
Gamete selection program, feasibility of, 388
Gene action, 326
and overdominance, 294–96
types of, 225
Gene combinations, 420–23
Gene-controlled characteristics
chlorophyll deficiencies, 102
flowering pattern, 102
leaf form and pigmentation, 102
stalk abnormalities, 102
time of flowering, 102
Gene division, 259
Gene dosage, 237
Gene effects, 154
in a series of reactions, 237–39
specificity of, 236–55
Gene frequency, 341
equilibrium, 336
Gene interaction, 245, 330
in heterosis, 320–29
Gene pairs differentiating parents, 310–14
Gene recombination and heterosis, 298–319
Gene specificity, 237, 325
Genes, 265
accumulation of favorable dominant effects and general physiological interaction, 235
affected by environment, 62
complementary, 48
compound and with multiple effects, 227–29
controlling growth, 230–32
and cytoplasm, interaction, 232–33, 480
direct effects, 239–40
without dominance, 227
dominant and recessive, 225–26
equilibrium frequencies, 446–67
estimation of dominance, 494–516

nature, 9
nutritive functions, 97
Environment-genotype interaction in heterosis, 488–91, 493
Environmental variances, 169
Enzyme system, 103
Enzymes, 112, 115, 256
alpha methyl glucosidase, 257
galactase, 257
maltase, 257
melibiase, 257
sucrase, 257
Epistasis, 330, 331, 334, 335, 402, 458, 465, 486, 500, 501, 502
biases resulting from, 515
in corn yields, 286
graphic transformation removal, 465
Epistatic effects, 168
Equilibrium factor, 103
Equilibrium frequencies, 346
of genes, 446–67
Equilibrium gene frequency with overdominance, 463–64
Essential metabolite, 115, 116, 117
relation to growth, 115–17
Euchlaena (See Teosinte)
Euheterosis, 218–23, 296
balanced, 221–22
mutational, 218–20
Evening primroses, 20
Evolution (See also Introggression)
of maize, 176
Evolution of corn in Mexico, 425
factors involved, 419
Excised tomato roots, 116
heterotic vigor in, 122
Exogamy, 4
Experimental designs, 494–96
Experimental procedures used at North Carolina Experiment Station, 494–96
analysis of data, 496–97
experimental designs, 494–96
Extrachromosomal inheritance, 260–61, 264–66
Extrapolated correlates, method of, 130, 148
Female gametophyte, 90
Fertilization
in the angiosperms, 83
in the gymnosperms, 83
First generation hybrids, 165–66, 174
First generation intervarietal hybrids, 172
First generation selfed lines, 448
Flagellar antigens, 268
Flint corn, 24
Genes—Continued
interallelic interactions, 319
manifold effects of, 340–41
pairing of, 371
in the synthesis of arginine, 239
transferred to a native population, 421
General combining ability, 352, 487–91
definition, 454
recurrent selection for, 470
General and specific combining ability, 352–70, 487
General and specific combinability, relative importance of, 451, 487
Genetic correlations, negative, between components of total performance, 337–38
Genetic implications of mutations in *S. typhimurium*, 267–81
Genetic intermediates, 332, 334
optimum, 331
Genetic interpretation of regressions, 462–65
Genetic interpretations of components of variance between progenies, 503–9
Genetic mechanisms and heterosis, 100–103
Genetic nature of components of progeny variance, 498
Genetic and phenotypic covariances and correlations, 515
Genetic structure of natural populations, 152
Genetic variability, 331
in economic characters of swine, summary, 350
Genetic variation in economic traits, nature of, 330–41
Genetical combination, 31
Genetics and cytology of *Saccharomyces*, 256–66
Genic inheritance, 266
Genome components, effect on hybrid vigor, 482
Genome contributions to hybrid vigor, 484–88
Genotype-to-background relationship, 104
Genotypes, 219, 336, 344, 425
Genotypes of inbred races for viable, lethal, and recessive visible alleles, 481
Germ plasm, inbreeding effect on, 454
Glutamic dehydrogenase, 110
Golden Queen Dent, 131
Gourdseed Dents, explanation of name, 129
Governing genes, 428
Graphic transformations to remove epistasis, 465
Growth affected by deficiencies for essential metabolites, 116
Growth curves of heterocaryons, 211
Growth of heterotic hybrid, determination, 123
Growth-limitation, 114
Growth in plants abnormal, 118
modifying amount and nature, 117
Growth rates of dwarf races, 121
Growth rates of hybrids, 105
Growth requirements for hybrids, 121
Growth responses with thiamin, pyridoxine, and niacin, 109
Guatemalan flints, 127
Gymnosperms
female gametophyte in, 83
fertilization in, 83
mature ovules of, 83
seed in, 82–85
seed coat in, 83
seed development in, 81
Gymnosperm ovule, 83
Haploid, 389
Haploid organism, 199, 389
Haploid sporophytes, 389
Hemizygote, 226
Heritabilities, 350
Habitability, 161, 174, 460
estimates of, 335–37, 352–70
for individual components, 335
for total performance, 335
Heritability and gain, 170–71
Heritability of specific combinability, 451
Heritable variance, 168
Heterocaryon formation, 200
Heterocaryons
characteristics of, 199–202
controlled production, 200
growth curves of, 211, 216
heterosis in, 202
model, 210–12
between sulfonamide-requiring mutant and its double mutants, 212
vigor in, 120–23
Heterocaryons of *Neurospora*, 110, 199–217
Heterocaryosis in *Neurospora*, 120
Heterocaryotic suppression of sulfonamide-requiring character, 203–7
Heterocaryotic vigor, 202
Heterochromatic knobs, 136
Heterochromatin, 80
Heteromorphic chromosomes, 79
Heterosis, 14–48, 282, 425, 454
of American Corn Belt dents, 138–46
amount, 31
applicability, 217
under asexual propagation, 320
biochemical models in Neurospora, 199–217
breeding for in cross-pollinated plants, 55, 400–417
breeding methods, 52–61, 400–417
breeding for in self-pollinated plants, 55
breeding for in vegetatively propagated plants, 56
and chromosomes, 492
in component traits, 303, 492
and cytoplasm, 492
development of concept, 49–65
dispersed, 127
and dominance, 224–35, 307, 494–516
and Drosophila, 111, 475
and early growth, 105
environment-genotype interaction in, 488–91
evaluation of, 329
example of utilization, 66
experiments with, 154–57
as explained genetically, 173
expression of, 224–25
first use of term, 50
gene interaction in, 320–29
genetic basis, 100, 101
and genetic mechanisms, 100–103
in heterocaryons, 202
due to heterozygosity at one locus, 203–15
heterozygosity concept, 101
importance of internal factors, 123
inbreeding effects as related to defective genes, 481
and interracial and intra specific hybridization, 198
and later growth, 106
and linkage, 224–35, 285
in maize, 1, 53
in maize variety hybrids, 182
in maize × teosinte, 183–84
measures of, 479–81
Mexican corns, 418–50
in native open-pollinated varieties, 419–25
natural mechanisms for maintaining advantages of, 46–47
nature and origin, 218–23
in a new population, 418–49
as observed in pre-Mendelian research, 1–14
physiological basis of, 111–13
physiological mechanism of, 112
plasmagens and chromogenes in, 224–35
in polygenic characters, 159
in population genetics, 149–60
potential, 140
potential maximum, 340
practical use of, 44
as related to embryo and seed size, 103–4
as related to heterozygosity, 103
resulting from degenerative changes, 102
reversed or negative, 225
and rotational crossbreeding, 371–77
scientific basis of, 1–2
in self-pollinated plants, 52
single locus, 102
stimulus of heterozygosis, 49
in sugar cane, 322
in tomato root cultures, 109
as tool of the animal breeder, 151
usage, 98
use of in
farm crops, 51
horticultural crops, 51
silkworms, 51
livestock, 51
vegetatively propagated plants, 51
utilization, 50–51, 55, 56
Heterosis concept, 16, 17, 18
beginnings of, 14–48
defined, 48
in work with hybrid corn, 14
Heterosis development
as affected by nutritional factors, 111
as affected by water absorption factors, 111
Heterosis and dominance, as expression of same physiological genetic phenomena, 307, 309
Heterosis and gene recombination, 298–319
Heterosis, maximum, 326–37
with the dominance hypothesis, 287–91
methods of selection for, 350–51
Heterosis and morphology, 141–46
Heterosis in Neurospora, biochemical models of, 203
Heterosis principle, 20
Heterosis reserves, 140–41
Heterosis, single gene, 155
Heterosis tests, inbred lines, 330–51
Heterosis theories
 genetic explanation, 62
interallelic action, 62
Heterotic locus, 328
Heterotic hybrid, determination of growth, 123
Heterotic hybrids, 119
Heterotic hybrids and inbreds, structural differences, 112
Heterotic tomato hybrid, 123
Heterotic vigor in excised tomato roots, 122
Heterozygosis, 49, 152, 454
stimulus of, 224, 229, 282
Heterozygosity, 100, 102, 332, 373
degree of, 350
enforced in maize, 180–81, 193–96
range in degree of, 342
related to heterosis, 103
single locus, 199
INDEX

Heterozygosity and inbreeding depression, linearity of, 459–60
Heterozygote
basis for superiority of, 158–60
physiological superiority of, 158
selective advantage of, 467
Heterozygote advantage, 347, 349, 350
for single loci and chromosome segments, 340–41
Heterozygote, diploid, 202
Heterozygous combinations, adaptive significance, 173
Heterozygous condition, effects in, 187–91
Heterozygous inversions, 154
Heterozygous loci, 341
Heterozygous populations, variance, 297
Hexaploid, 389
Histidine, 278
Histidine synthesis relation to adenine, 278
Homocysteine, 215
Homozygosis, 49, 151
Homozygosity, 290, 403
Homozygotes, recurrent selection among, 470
Homozygous abnormal 10 plants, 73
Homozygous condition, effects in, 191–97
Homozygous diploid dent, 398
Homozygous diploid lines, 399
Homozygous diploids, 390
Homozygous gene arrangements, 153
Homozygous lines, 448
Homozygous mutant, 157
Homozygous normal allele, 157
Homozygous tester versus reciprocal selection, 342–47
Homozygous tester lines, 347
Human endogamy, 2–4
Athenians, 3–4
Greeks, 3
Hebrews, 2–3
Nordics, 4
Human inbreeding, 2–5
Hybrid advantage, 105
potential, 339
Hybrid, average, 291
Hybrid, commercial, 291
Hybrid combinations, selection, 27
Hybrid corn, 15, 16, 118
and Darwin’s influence on W. J. Beal, 10
development of embryos, 104
double hybrid, 373
early explanations, 451–53
single cross, 373
vegetative habits of, 30
“Hybrid-corn makers,” 15
Hybrid embryos, 96
Hybrid growth, 114
Hybrid and inbred corn grains, growth-promoting activities of extracts from, 109
Hybrid nutritional requirements, 114–23
Hybrid plants, analyses of starch content of leaves and stems, 108
Hybrid, reconstructing, 449
Hybrid results, 433
Hybrid substance, 243–51
fractions of, 247
in species hybrids, 243–51
tests for, 247
tests for similarities and differences, 248
in advanced generations, 180–83
in artificial plant hybrids, 49
as associated with high embryo weight, 104
cause of, 13
chromosomal and cytoplasmic basis for, 479–81
from crossing inbred lines of maize, 50
definition, 474
discovery by Mendel, 7
in Drosophila, 474–93
effect of chromosome length, 484
effect of genome components, 482
egg yields, 483
in the endosperm, 85
as evolutionary accident, 173
explained by dominance or partial dominance, 65
explanation of, 478–79
factors effecting, 475
in field corn, 51
first described, 7
genome contributions to, 484–88
hypotheses to account for, 282, 481, 492
in maize, 142
necessary preliminary to, 4
in production of geniuses, 4
in plants, 2, 7–8
as result of allelic interaction, 103
summary of early knowledge, 13
in sweet corn, 51
in Zea mays, 10
Hybrid vigor development, relation of phosphorus and nitrogen nutrition 106
Hybrid weakness, 225
Hybridity
mechanisms which promote, 152–54, 476
optimum, 152
Hybridization, 423–25
ancient, 185
natural, maize × teosinte, 183–84
present-day, 183–85
of Southern Dents and Northern Flints, 132–33
Hybridization in evolution of maize, 175–98
 discussion, 197–98
 summary, 198
Hybridization and inbreeding, effects of, 294
Hybridization in maize, 9
Hybridization tests on corn, 429–47
Hybridized seed corn, 42
Hybridizing maize and teosinte, effects of, 186–87
Hybrids, 424
 adaptability of, 99–100
 barley, 301
 differences in water requirements, 106
 first generation, 165–66, 174
 first generation intervarietal, 172
 growth rates, 105
 growth requirements, 121
 intervarietal, 161
 physiology of gene action, 98–113
 pre-Mendelian, 11
 presence of iron and aluminum, 106
 response to soil conditions, 106
Hybrids and inbreds
 correlation between, 294
 gene determination of variation, 292–94
Hybrids, second-cycle, 453–54
Hybrids and synthetics developed from Celaya lines, 442
Hypoxanthine, 109, 119
Inbred corn, development of embryos, 104
Inbred and hybrid corn grains, growth-promoting activities of extracts from, 109
“Inbred Index,” 142
Inbred lines, 386, 401, 403
 of corn, 230
 formation of, 427–31
 for heterosis tests, 330–51
 methods of improving, 57
 in reciprocal selection, 347
 recovering of, to retain advantage attributable to heterosis, 310–18
 of tomatoes, crossing of, 307–10
 undesirable characters, 57
Inbred parents, partial regression of yield on yield of, 460–62
Inbred races, genotypes for viable, lethal, and recessive visible alleles, 481
Inbred selection, 140, 163, 170
Inbreds
 crossed, 34
 residual heterozygosity in, 31
 selfed, 34
Inbreds and heterotic hybrids, structural differences between, 112
Inbreds and hybrids
 correlation between, 294
 gene determination of variation, 292–94
Inbreeding, 161, 414
 dangers of, 18
 degree of, 23
 deterioration incident to, 44
 different generations of, 63
 early ideas on, 1–13
 effect on growth, 81
 effect on seed collapse in Medicago sativa, 85–89
 to improve cattle breeds, 6
 injurious effects of, 17
 reciprocal recurrent selection with, 457
 results of, 5
 with corn and swine, 338–40
 in seed development, 81–97
 too-close, 2
Inbreeding, animal, 5–7
Inbreeding versus crossbreeding, 7
Inbreeding and crossbreeding effects, 81–97, 331–32, 350
Inbreeding and crossbreeding maize, 12
Inbreeding decline, 332, 341, 350
Inbreeding depression, 297, 349
 effect, 86
 and heterozygosity, linearity of, 459–60
Inbreeding effect
 on germ plasm, 454
 on heterosis as related to defective genes, 481
Inbreeding experiments of swine, results, 331–32
Inbreeding, human, 2–5
Inbreeding and hybridization, effects, 294
Induction of polygenic mutations, 160
Inheritance of quantitative characters, 327
Insect galls, 118
Interaction between alleles, 229–30
Interaction of genes, 245
 and cytoplasm, 232–33
Interallelic association, 330
Interallelic gene interaction, 63, 319, 353
Interallelic and intraallelic interactions and pleiotropy, 317–19
Intercrossing, 420
Intergroup selection, 151
Interracial hybridization in maize, 176–83
Interspecific hybridization of maize and teosinte, 183–97
Interspecific hybrids, 95
Intervarietal hybridization, selection, and inbreeding, 172
Intervarietal hybrids, 161
 potency in, 166
Intraallelic association, 330
Intraallelic gene interaction, 353
Intraallelic and interallelic interactions and pleiotropy, 317–19
Intra-breed linecrosses, comparison with representative purebreds, 333
Introgression, 419, 421 of genes, 422 teosinte X maize, 185
Inversion, 77, 222
Iron in hybrids, 106
Irregular Mendelian segregation, 259
Iterative crosses, 40, 42
“Junk” inbred, importance of, 139
Kalanchoe plants, 117
Kinetic theory of position effect, 78
Knob number, 129
Knobbed chromosomes, 75
Knobless chromosome 9, 70
Kynurenine, 238
Lancaster Surecrop, 140
Leaming Dent, 17
Leaves and stems of hybrid plants, analyses of starch content, 108
Lethal genes, 229, 476
Lethals, incompletely recessive, 289
Linear heterogeneity, 265
Linearity of inbreeding depression and heterozygosity, 459–60
Line cross tests, selection for general combining ability, maternal ability, and specific ability, 364–68
Lines selfed once versus lines selfed more than once in hybrid formation, 444–48
Linkage and marker genes in barley, 298–302
Linkage and pleiotropy, 317–18
Linkage relations, 314–17
Linkage systems, 139
Locus, heterotic, 328
Luxuriance, 22–23, 224, 291, 296
Main and component characters of tomatoes, 305–10
INDEX

Mendel's second law, deviations from, 70
Meristematic growth, 102, 108
Metabolic activity in enzyme systems, 110
Metabolic reactions, 214
Metabolites, essential, 115, 116, 117
Metaphase I, 78
Metaphase I with eleven dyads, 67
Metaphase II, 74, 75, 76, 78, 79
Metaphase II dyads, 73
Metaxenia, 10
Methionine requirers, 276
Mexican commercial corn growing areas, 426
Mexican breeding stations, 426
Mexican corns, 175–98, 418–50
Bolita, 427, 443, 449
Cacahuacintle, 420, 423
Celaya, 427, 436, 437, 438, 440, 441, 442, 443, 444, 446
crosses between Cónico Norteño and Tabloncillo, 438
hybrids and synthetics developed from, 442
origin of, 436
Celita, 444
Chalco, 433, 434
Chalqueño, 418, 423, 424, 427, 431, 433, 434, 446, 449
Cónico, 420, 423, 424, 427, 435
Cónico Norteño, 427, 435, 436, 438, 439, 443, 444
probable origin of, 421
Leon Criollo, 429
Olotillo, 420, 423
Palomero Toluqueño, 420, 423
Tabloncillo, 427, 438, 443
Tepecintle, 420, 423, 432
Tuxpeño, 420, 423, 424, 427, 442, 444
Urquiza, 429, 430, 433, 434
Vandefio, 427, 444, 449
probable origin of, 422
Mexican corn belt, 436
Mexican corn, evolution of, 419, 424, 425
Mexican corn improvement program, 425
Mexican corn program, 428, 448
Mexican corn races, 427
Mexican open-pollinated varieties, 419
Mexican races of maize, origin of, 176–80
Mitochondria, 261
Model heterocaryons, 210–12
Modifying genes in maize × teosinte, 191–92
Monoploid sporophyte, 389, 398, 399
Monoploids
distribution, 396
fertility, 393, 398
frequency of occurrence, 394–95
in maize, 389–99
method of isolating, 392
origin, 389
reproduction, 390
study of
in the agronomic field, 390
in the cytological field, 390
in the genetic field, 390
Morphological characters as related to heterosis, 141–46
Morphology of inbreds, technique of studying, 141
Mosaic dominance, 295
Multiform genus, 321
Multiple alleles, 102, 228, 254
Multiple allelism, 500
Mutant genes, survival and growth, 235
Mutant strains, 214
Mutant, superior, 323
Mutants, 218
in S. typhimurium, 281
Mutation, 103
Mutation frequency and X-ray dosage, 271–74
Mutation, random, 323
Mutation theory, De Vries, 20
Mutational euheterosis, 218–20
Mutations
deleterious character of, 219
genetic implications in S. typhimurium, 267–81
Mutations isolated and X-ray dosage, relation between, 273
Native open-pollinated varieties, utilization of, 426–27
Natural populations, genetic structure of, 152
Natural selection, 15, 151, 157, 219–20
Negative heterosis, 225
Neo-centric activity, 75, 77
Neo-centric fibers, 75
Neo-centric regions, 72, 74
formation of, 77
Neo-centromeres, arising from chromosome ends, 80
Neomorphs, 295
Neurospora
biochemical models of heterosis, 199–217
biochemical reactions essential to growth, 120, 208–9
cells of, 199–201
and higher organisms, differences between, 201–2
Nicking, 353, 451
Nicotiana hybrids, 14
Nicotiana rustica
- experimental results, 162–71
- experiments with, 161–62
- fixing transgressive vigor in, 161–74
- plants of, 163

Nitrogen metabolism
- of corn and tomato, 107
- of the plant, 110

Nitrogen nutrition
- relation of hybrid vigor development, 106
- use by hybrids and inbreds, 106

Non-allelic interactions, 164, 174

Non-heritable variability, 162

Non-random segregation at megasporogenesis, 70

Normal segregation, 70

Northeastern Flint corn of Guatemalan origin, 129

Northern Flints, 127, 129, 131
- characteristics of, 136
- distribution of chromosome knobs, 130
- historical record, 128
- kernel of, 135
- pairing of rows, 133
- seeds of, 134
- shanks of, 134
- and Southern Dents, crosses between, 137
- and Southern Dents, differences between, 136
- typical ears of, 134
- typical plants, tassels, and staminate spikelets of, 135

Nuclear membrane and chromosomes, 262

Nucleotide cozymase, 110

Oenothera, 20

One gene heterosis, 203–15, 217

One gene–one enzyme hypothesis, 268, 276

Open-pollinated varieties, continuing importance in inbreeding program, 140

Outcrossing, 406

Overdominance, 221, 229, 282, 323, 330, 338, 416, 451–73, 492, 497
- in cattle, 467
- equilibrium gene frequency with, 463–64
- physiological nature of, 457
- in tomato hybrids, 319
- in yield of corn, 469

Overdominance and dominance, 282–97

Overdominance and gene action, 294–96

Overdominance and recurrent selection, 451–73

Overdominant loci, 291

Overepistasis, 458

Para-aminobenzoic acid, 111, 207, 210, 214

Parthenogenesis, 47, 389, 394–99
- artificial induction, 396
- effect of male parent, 394

Effect of seed parent, 395
- in monoploid derivatives, 397

Partial dominance as explanation of hybrid vigor, 65

Partitioning phenotypic variance, 161

Partitioning phenotypic variance, heritability, and number of effective factors, 168–70

Paternal monoploids, 393

Penicillin, 269

Penicillin screening, 272–74

Performance index, 382, 386

Performance indices, 284–85

Permanently viable pure lines, 16

Phenotype, 336, 344, 463

Phenotype-genotype relations, 162–65

Phenotypic and genetic covariances and correlations, 515

Phenotypic and genic dominance, 318

Phenotypic variance, partitioning, 161

Phosphorus-absorbing capacity in corn, 107

Phosphorus nutrition
- relation of hybrid vigor development, 106
- use by hybrids and inbreds, 106

Photosynthesis, 327

Physical vigor, 34

"Physiological key" substances, 112

Physiological mechanism of heterosis, 112

Physiological mosaic dominance, 295

Physiological nature of overdominance, 457

Physiological superiority of heterozygote, 158

Physiology of gene action in hybrids, 98–113

Pigeon-dove hybrids, 243–45

Plant breeding, selection, 15

Plant hybridization, 9
- first record of, 9

Plant hybrids, 7–13

Plasmagens and chromogenes, 233–34
- in heterosis, 224–35

Pleiotropy and interallelic and intraallelic interactions, 317–19

Pleiotropy and linkage, 317–18

Pneumococcal types, specificities of, 254

Pneumococci, antigens of, 254

Pod corn, 418

Podophyllin, 397

Pollen abortion, 74

Polycross trials, 56

Polycrosses, forage yields compared to top crosses of the same clones, 57

Polygenes, 173
INDEX 549

Polygenic characters
- heterosis in, 159
- selective advantage of, 158
Polygenic inheritance, 153
Polygenic mutations, induction of, 160
Polymorphism, 154
Polyplaid series, 257
Polyploids, 321, 389
Pop corn, 418
Population
- adaptation to environment, 151
- definition, 149
- evolutionary factors responsible, 150–52
- genetic structure, 150
- as natural unit, 150
Population genetics of heterosis, 149–60
Population variance, 292–94
Populations, natural, genetic structure, 152
Position effect, kinetic theory of, 78
Postgermination growth in plants, 105
Potassium availability, studies on tomato inbreds and hybrids, 107–8
Potency in intervarietal hybrids, 166
Potency in maize × teosinte, 188–91
Potential heterosis, 140
Prolificacy, 335
Predicting combining ability, 59
Preferential segregation
- factors responsible, 68
- and neo-centric activity, 78
Preferential segregation in maize, 66–81
Pre-Mendelian hybrids, 11
Prepotency, 451
Post-Mendelian investigations, 2
Proembryo, 87
Progeny variance, genetic nature of components, 498
Progressive evolution, 265
Propagation, vegetative, 12, 13
Prophase II, early, 74
Prophase II, late, 74
Prototrophic organisms, 269
Pseudo-alleles, 254, 295
Pseudoheterosis, 223
Pseudo-overdominance effect, 325, 458, 501
Pure lines and their hybrids, relationship between, 28
Pure line method in corn breeding, 28
Pure line method of corn production, 44
Pure strains, 24
Pyridoxal phosphate, 110
Pyrimidineless mutant plus suppressor allows growth, 217
Pyruvate carboxylase, 110
Quadruple crosses, 44
Quantitative inheritance, role of limiting factors, 324–27
Random mating, 432
Recessive characters, deleterious, 100, 323
Recessive and dominant lethals, 160, 480
Recessive genes, 225–26
Recessiveness and deleterious effect, correlation between, 284
Recessives, 11
Reciprocal cross, 28
Reciprocal effects, 487
Reciprocal recurrent selection, 415–17
- with inbreeding, 457
Reciprocal selection, 351
Reciprocal testing, method of, 443
Recombination, 267
Recombination tests in Salmonella, 274–75
Reconstructing a hybrid, 449
Recurrent selection, 351, 411–12, 451–73
- effectiveness of, 467–70
- for general combinability, 470
- among homozygotes, 470
- meaning, 452
- as a method for modifying chemical composition, 411
- as a method for modifying combining ability, 411
- in modifying combining ability, 415
- for specific combinability, 454–57, 470–73
Recurrent series, 412
Recurrent selection and early testing, 400–417
Recurrent selection and inbreeding in modifying oil percentage in corn, 411–12
Recurrent selection and overdominance, 451–73
Red blood cells, 239
Regression, partial, offspring on parents, 463
Regression trends, 461
Regressions, genetic interpretation, 462–65
Relic genes, 424
Reproduction, asexual, 47
Repulsion linkages, 502
Reversed heterosis, 225
Residual heterozygosity in inbreds, 31
Rh substance, 242
Root cultures, 109–10
Root growth pattern, relation to heterosis, 106
Rotational crossbreeding, 374–77
- and heterosis, 371–77
Rust, 424
Saccharomyces
- chromosome maps of, 258
- genetics and cytology of, 256–66

Salmonella
- advantages for genetic studies, 268
- recombination tests, 274–75

S. typhimurium, genetic implications of mutations in, 267–81

Scales of measurement as related to dominance, 313

Scaling tests, 162, 164, 174

Second-cycle hybrids, 453–54

Secondary fertilization, 82, 90, 93
 - in angiosperms, 84
 - in flowering plants, 95

Seed development, 104
 - in angiosperms and gymnosperms, 81
 - early stages of, 96
 - without fertilization, 89–93
 - grade and embryo growth potentialities, 93–97
 - inbreeding and crossbreeding in, 81–97

Seed in gymnosperms and angiosperms, 82–85

Seed and embryo development, 103–5

Seed size as related to embryo size and heterosis, 103–4

Seedling growth, 105
 - and heterosis, 105

Seeds, number in maize X teosinte, 196

Segregating factors, number of, 174

Segregation, 24

Segregation for yield factors, 382

Segregations, irregular, 258

Selecting for maximum heterosis, effectiveness of methods, 339–51

Selection, 14, 161, 341, 406, 414
 - for additive effects in normal distribution, 355
 - for additive genetic values in individuals, 359–61
 - for cross performance, 349
 - against a dominant deleterious mutant, 220
 - effectiveness of, 333, 335
 - effectiveness of within inbred lines, 332–34
 - as an estimation problem, 354–58
 - when form of distribution is unspecified, 355–58
 - for general and specific combining ability, 353–54
 - for general combining ability, maternal ability, and specific ability in line crosses, 364–68
 - for general combining ability in topcross tests, 361–64
 - homozygous tester versus reciprocal, 343–47

index method, 355, 356
 - on individual performance, 349
 - ineffectiveness of, 335, 350
 - by maximum likelihood estimates, 358–59
 - natural and artificial, 219–20
 - natural, for heterozygosity, 180–81
 - performance levels attainable by, 341
 - reciprocal or homozygous tester method, 349
 - results of, 170
 - for specific combinatorial, 454
 - on test-cross, 349
 - with unknown variances and covariances, 358–59
 - use of all records in, 359

Selection experiments, 156
 - controlled, 334–35
 - with swine, 350

Selection for general and specific combining ability, need for additional research, 369–70

Selection within and among inbred progenies, 401–2

Selection of inbreds on performance, 140

Selection index, 354
 - modified, 356

Selection for maximum heterosis, methods of, 350–51

Selection, reciprocal, 351

Selection, recurrent, 351
 - and early testing, 400–417
 - for maximum heterosis, 341–42
 - and overdominance, 451–73

Selective advantage of a heterozygote, 467

Selective advantage of polygenic characters, 158

Self-fertilization, 16, 17, 45, 48, 139
 - in alfalfa, 81
 - versus cross-fertilization, 20
 - in maize, 49

Self-fertilized populations, 322

Self-pollinated plants, 161

Self-pollinated and cross-pollinated plants, comparison of methods, 55

Selfed lines, first generation, 448

Selfing, 12, 16, 23, 173–74, 379, 382, 390, 402, 406, 409

Selfing and crossing corn, results, 36

Selfing and loss of vigor, 13

Selfing series, 412–15

Selfing and sibcrossing, comparison between, 41

Semi-inbred lines in synthetics and hybrids, utilization of, 431

Senility, 14

Sequential testing, 361

Shank, importance in modern corn breeding, 146–47
Sib crosses, advantage over self-fertilization, 29
Sicklemia, 295
Single cross
distribution, 145
estimation of the value of, 367
Single cross yields versus double cross, 58
Single gene heterosis, 155, 282
Single locus heterosis, 102
Somatic antigens, 268
Southern Dents, 127, 129, 131
characteristics of, 136
distribution of chromosome knobs, 130
ear of, 133
historical record, 128
kernel of, 133
and Northern Flints, crosses between, 137
and Northern Flints, differences between, 136
seeds of, 134
shanks of, 134
typical ears of, 134
typical plants, tassels, and staminate
spikelets of, 135
Species specific, 254
Specific combinability, 452
heritability of, 451
recurrent selection for, 454–57, 470–73
working definition, 454
Specific combining ability, 352–53, 487–91
game selection for, 378–88
Specific and general combinability, relative
importance, 451
Specific and general combining ability, 352–70
Specificity of gene effects, 236–55
Spindle, 74
Spores, mating types, 257
Sporophyte, 389
Standard inbreds, 233
conversion, 233
Statistics, role in genetical research, 494
Sugar cane
cross-fertilization in, 320
male sterility in, 320
propagated asexually, 320
reaction toward inbreeding and outcrossing, 320
self-pollination in, 320
Sulfonamide-requiring character
biochemical basis for, 207–10
heterocaryotic suppression of, 203–7
Sulfonamide-requiring strain, 212, 215
Sulfonamides, 111
Sulfur compounds, utilization by various
auxotrophs, 276
Sulfur containing compounds, reactions, 277
Super-dominance, 282
Superior mutant, 323
Supernumerary chromosomal fibers, 72
unorthodox formation, 72
Suppressor heterocaryosis, 212–15
Suppressor genes and sulfonamide utilization, 213
Suppressor mutant strains, growth curves, 214
Suppressor mutants, 203
Swine and corn inbreeding
degree of heterozygosity, 338
effectiveness of continued phenotypic
selection, 338
Swine, heterozygote advantage for single
loci and chromosome segments, 340–41
Swine inbreeding experiments, results, 331–32
Synapsis, 69, 115
Synthetic varieties, 432
formation, 433
Synthetics, 448
estimating number of lines to use, 432
propagated through open-pollination, 426
Teosinte (See also Maize)
ecology, 183
variation, 184–85
Teosinte germplasm, 419
Terminal chiasmata, 68
Test crosses, 408
Tester lines, partially inbred, use of, 347–48
Tetrad analysis, 258
Thiamin pyrophosphate, 110
Thiamine, 118
“Three-way” crosses, 40, 42
Tobacco, crosses between varieties and
species, 49
Tomato hybrids
number of fruit that ripens, 309
weight per fruit, 309
yield of ripe fruit, 309
Tomatoes, main and component characters, 305–10
Tomato roots, 116
Topcross combining ability, 406
Transgressive characteristics, 172
Transgressive inbred, 161
Translocation point, 68
Triphosphopyridine nucleotide, 110
Triploids, 389
Tripsacum, 419
Tripsacum hypothesis, 138
Trivalent associations, 69
Univalents, 69
INDEX

Ustilago maydis, 24

Variability, 49
Variance components, estimating, 368
Variance components, genetic interpretations, 503
Variances of general, maternal, and specific effects, estimation of, 368–69
Variety crossing, 16
Variety testing, 426
Vascular organization, 108
Vegetative propagation, 12, 13
Viability, 335
Vigor
hypotheses for difference in, 300–302
loss of and selfing, 13
reestablished by outcrossing, 7
Vigor in original plant as measure of number of favorable yield genes, 428
Vigorous hybrid and weak inbred, difference between, 327
Virulence, 279

Water requirements of hybrids, 106
Waxy gene, 239
Weak inbred and vigorous hybrid, difference between, 327

White dent corn, 32
frequency curve of grain rows, 21
White dent maize, 29
average grain-row numbers, 38
average values in the families of, 35
yields per acre, 38
Xenia, 8, 9
history of, 10
in maize, 10
X-ray dosage and mutation frequency, 271–74

Yeast genetics, 257
Yeast, advantages for biochemical genetics, 257
Yield loss from one generation to the next, 42
Yield of seed, prediction of, 302
Yielding ability, correlations indicative of, 54

Zea (See Maize)
Zea mays
double crosses, 378
gamete selection for specific combining ability, 378–88
single cross performance data, 378
test crosses, 379
Zygote, 371