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Chapter 22 

Specific and General Combining Ability 

By general combining ability we mean the average merit with respect to 
some trait or weighted combination of traits of an indefinitely large number 
of progeny of an individual or line when mated with a random sample from 
some specified population. The merit of the progeny is measured in some 
specified set of environmental circumstances. If maternal effects are present, 
we must specify that the tested individuals are males. If the tested individu
als are females, the merit of the progeny is a function of both general com
bining ability and maternal ability. 

General combining ability has no meaning unless its value is considered in 
relationship to at least one other individual or line and unless the tester 
population and the environment are specified. For example, suppose two 
dairy bulls used concurrently in an artificial breeding ring each have 500 
tested daughters, and that it can be assumed that the cows to which the two 
bulls were mated were a random sample of cows from herds using artificial 
breeding. Suppose that the mean of the butterfat records of the daughters 
of the first sire is 410 pounds and of the second sire is 400 pounds. Five hun
dred tested daughters are sufficient to reduce the sampling variance of the 
progeny mean to a negligible amount. Consequently the general combining 
ability of the first sire is 410 - 400 = 10 pounds better than that of the sec
ond in this particular population and in this set of environmental circum
stances. The general combining abilities of the two sires might differ by more 
or by less than 10 pounds if they were used in some other region where both 
the genotypes of the cows to which they were mated as well as the environ
ment could be quite different from those of the test. 

SPECIFIC COMBINING ABILITY 

We shall define specific combining ability as the deviation of the average 
of an indefinitely large number of progeny of two individuals or lines from 
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the values which would be expected on the basis of the known general com
bining abilities of these two lines or individuals and the maternal ability 
of the female parent. As Lush (1948) has pointed out, apparent specific 
effects, or what animal breeders usually call nicking, also can be a conse
quence of Mendelian sampling, of inaccurate estimates of the additive genetic 
values of the two parents, and of environments affecting the progeny which 
are different from the average environments in which the general combining 
abilities and the maternal abilities were estimated. 

Genetically, specific combining ability is a consequence of intra-allelic gene 
interaction (dominance) and inter-allelic gene interaction ( epistasis). We shall 
assume in this paper that we can estimate only the joint effect of dominance 
and epistasis. As an illustration of specific combining ability let us suppose 
that we know that the general combining ability with respect to weight in 
swine line A is + 10 pounds at 154 days, and that the general combining 
ability plus maternal ability of line Bis +5 pounds at 154 days. Then if an 
indefinitely large number of progeny of the cross A X B has a mean of + 7 
pounds, the specific effect for this cross is 7 - 10 - 5 = - 8. 

SELECTION FOR GENERAL AND SPECIFIC 
COMBINING ABILITY 

Under some circumstances selection would be largely for general com
bining ability, and in other circumstances for a combination of general and 
specific combining ability. For example, those selecting sires for use in a 
large artificial breeding ring are interested primarily in obtaining sires with 
the highest general combining ability with respect to the population of cows 
and environments in which the bulls are to be used. On the other hand, those 
wishing to employ crosses among inbred lines for commercial use select for a 
combination of general, maternal, and specific effects. 

Now let us consider some of the problems involved in selecting for general 
and specific combining ability. There are reasonably good solutions to some 
of these problems, but almost none for others. Some of the questions which 
are involved are: 

1. Given a particular set of records how can one best estimate the general 
combining abilities of individuals, families, or lines, and how can one best 
estimate the value of the progeny of a specific cross between families or in
bred lines? 

2. What proportion of the breeder's resources should be put into a testing 
program? For example, if he is dealing with inbred lines, what proportion of 
his resources should be employed in the making of lines and what proportion 
in testing them for general and specific combining ability? 

3. Having decided on the size of the testing program, what kind of tests 
should be made? For example, should lines be tested in topcrosses or in line 
crosses or in some combination of these two procedures? Also what use should 
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be made of a sequential type of testing in which some lines are discarded on 
the basis of a very preliminary and inaccurate test? 

4. What relative emphasis in selection should be placed on general as 
compared to specific combining ability? 

5. How much inbreeding should be done in the making of lines? How fast 
should the lines be made? 

Obviously a complete discussion of all these problems and their possible 
solutions in the time at our disposal is impossible. Consequently we shall 
discuss primarily the problem of estimating general combining abilities of 
lines and individuals and of estimating the values of specific crosses among 
lines, given a particular set of records. In addition, since estimates of the 
variances play an important role in these selection methods, we shall discuss 
briefly the problem of estimating variance components from the results of 
line-cross tests. 

So far as estimation of general combining abilities of individuals is con
cerned, the methods to be presented here are essentially those of the selection 
index. It will be shown that no assumption of normality of distributions is 
required; that joint estimates of general combining abilities and certain 
parameters such as the population means, the yearly effect, the age and in
breeding effect, can be obtained; and that certain short-cut computational 
procedures are sometimes distinctly advantageous. An application of the 
principles of the selection index to estimation of general combining abilities 
of lines or families also will be presented. Finally it will be shown that appli
cation of the selection index need not be restricted as it has been to selection 
for additive effects, but can be applied equally well to joint selection for 
specific effects and general combining ability. The selection index approach 
to appraising crosses can, under some circumstances, be much more efficient 
than selection based on the mean of the progeny of a particular cross. 

ESTIMATION PROBLEMS IN SELECTION 

Before turning to selection for general and specific combining abilities let 
us consider the type of estimation problem which is involved and some gen
eral solutions to it. Later the manner in which the solutions can be applied 
to our present problem will be discussed. Our estimation problem can be 
stated in this way. We have a sample of N observations, Yi, y2, ... , YN, 
from which we wish to estimate 01, 02, ... , 0q. The y's are assumed to have 
a multivariate distribution (precisely what distribution need not be specified 
for the present) with means, b1X1; + b2X2i + ... + bpXp;, and variance-
covariance matrix, 

II <rvilli Ii· 
The b's are fixed parameters such as the population mean and the regres
sion of yon age of the dam, and xis an observable parameter, the first sub
script denoting with which b it is associated, the second subscript with 
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which sample observation. As an illustration, x1 might be associated with b1, 
the population mean. Then xli would have the value 1 in each observation; 
X2i might denote the inbreeding coefficient of the dam. 

Now comes the really crucial part of the model. The O's are regarded as 
having some multivariate distribution with means zero and variance-co
variance matrix, 

Also the O's and y's are regarded as having a joint distribution with covari
ances ue,y,, The way in which this problem differs from the ordinary estima
tion problem in statistics is that here we wish to estimate the values of indi
vidual O's which are regarded as a sample from some specified population. 

Selection for Additive Effects in the Normal Distribution 

What is the "best" way to estimate the O's? Suppose that they represent 
additive genetic values of individuals and that any linear function of the y's 
is normally distributed. Lush (1948) has shown that, subject to the normality 
assumptions, improvement in additive genetic merit of a population through 
selection by truncation of the estimates (indexes) of additive genetic values 
is maximized by choosing that index which has maximum correlation with 
additive genetic value. This principle has been used in the index method of 
selection by Fairfield Smith (1936), Hazel (1943), and others. These workers 
have shown that the index can be found in a straightforward manner pro
vided certain variances and covariances and all of the b's, the fixed elements 
of the model, are known. 

The values of Ke; which maximize refi where 0 = K01W1 + ... + K0NWN 

are the solution to the set of simultaneous equations (1). The w's are the 
y's corrected for the fixed elements of the model such as the population mean 
(not the sample mean). Thus w1 = y1 - b1x11 - ... -bpXpl• 

Selection when Form of Distribution is Unspecified 
and b's Are Unknown 

( 1) 

Maximization of re{i is a satisfactory solution to the problem of selection 
for additive genetic values under the normality assumption and the as
sumption of known b's. Is a comparable solution available when nothing is 
known of the distribution or of the b's? So far as I am aware there is not. 
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Consequently let us consider some other criterion of a "best" index. We shall 
use as our criterion of "best" that index from the class of linear functions of 
the sample which is unbiased ( coefficients of all b's = 0 in Ell) and for which 
E(ll- 8)2 is a minimum. E denotes expected value. Consequently E(ll - 8) 2 

denotes the average in repeated sampling of the squared deviations of the 
index of (J about the true value of 8. When the b's are unknown, the same 
criterion of best is applied to them, that is, minimum E(b - b )2 for unbiased 
estimates (Eb= b) which are linear functions of the sample. It turns out 
that minimization of E(ll - 8) 2 and maximization of roe lead to identical in
dexes. Hence the assumption of normality is not essential to construction 
of selection indexes as now used. 

It must be obvious that the selection index method just described is very 
laborious when a number of different (J need to be estimated, for the solution 
to a set of simultaneous equations is required for each 8. In practice this diffi
culty is avoided to a certain extent by choosing arbitrarily only a few sources 
of information to be employed in selection. This is not a wholly satisfactory 
solution, for in most cases if the number of different indexes is not to be en
tirely too large, information must be rejected which could add at least a 
little to the accuracy of the index. 

By means of a simple modification it becomes necessary to solve only one 
set of equations no matter how many (J are estimated from a particular set 
of data, and precisely the same index as in the conventional method is ob
tained. Using the same notation as before, the index for (J is now 

0 = CluOy, +c2u8y, + ... +c N(]'OyN' 

where the C's are the solution to a set of equations identical to set (1) except 
that the right members are w1, ••• , WN rather than u8y1 , ••• , u8uN· Con
sequently once the C's are computed, any number of O's can be estiimated 
simply by taking the appropriate linear function of the C's. 

More tedious computations result if the b's are not known. One solution 
is of the following general form. In order that each (J be unbiased it is neces
sary that the K's have these restrictions imposed: 

K1Xn + K2X12+- .. + KNx1N = 0 

K1X21 + K2X22 + ... + KNx1N = 0 
(2) 

Subject to these restrictions the values of the K's which minimize E(ll - 8)2 

can then be found. 
If we wish to obtain estimates of the b's which are unbiased and have 

minimum E(b - b)2, we impose the restrictions of equations (2) except that 
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the right member of the equation pertaining to the particular b to be esti
mated is 1 rather than 0. 

An easier solution to the problem of unknown b's often can be obtained 
by regarding the model as, 

y; = b1x 11 + b2X2; + 81 z1; + ... + 8q Zq; + e; , 

where the e; are independently distributed with mean zero and variance u;, 
and the z's are observable parameters. For example, 81 might represent the 
general combining ability of inbred line A, 82 the general combining ability 
of line B, and 83 a specific effect peculiar to the cross A X B. The observable 
parameters z would have the following values: z1 = 1 when line A is one 
of the parents, = 0 otherwise; Z2 = 1 when line Bis one of the parents, = 0 
otherwise; and z3 = 1 when y; is an observation on the cross A X B or 
B X A, = 0 otherwise. Now the joint estimates of b's and O's are the joint 
solution to the subsets of equations (3), (4), and (5). 

where 

C1u!l +c2uY1Y2 + ... +CNuY,YN=y1-l\X11 - . .. -bpxpl 

Clu +c2u + ... +cNu2 = YN - blxlN- ... - b X N Y1YN Y2YN YN P P 

2 

S 2 "'Xi; 
X1= ~-2' 

i uei 

(3) 

(4) 

(5) 

These equations can be solved by the following steps. First solve for the C's 
in equations (3). The results will be in terms of the sample observations and 

• the b's. Second, substitute values of these C's in equations (4) to obtain B's 
in terms of the sample and the b's. Third, substitute these values of the B's 
in equations (5) and solve for the b's. Fourth, substitute the computed values 
of the b's in (4) and solve for th(B's. 
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An alternative computational procedure which is less laborious when the O's 
are few in number, and in particular when the O's are uncorrelated, involves 
joint estimation of the b's and O's by solution of equations (5) to which are 
added equations (6). 

b1SX1 z1+- .. + bPSxP z1 + 01 (S zi+u11) + ... + 0q (S Zi zq+u 1q) = S ZiY 

( 6) 

b1Sx 1 Zq+• .. + bPSxp zq+ 01 (S z1 Zq+u1q) + ... + 0q (S z!+uqq) =S Zqy , 

where 

and 

etc. 

These equations are simply least squares equations (the O's are regarded 
as fixed rather than having a distribution) modified by adding uii to certain 
coefficients. 

SELECTION BY MAXIMUM LIKELIHOOD ESTIMATES 

Now let us assume that the O's have the multivariate normal distribution 
and that the errors are normally and independently distributed. What are 
the maximum likelihood estimates of the O's and b's? It just so happens that 
the estimates which are unbiased and which have minimum E(O - 0)2 and 
E(b - b)2 for the class of linear functions of the sample are also the maxi
mum likelihood estimates. Consequently the estimation procedure we have 
described can be seen to have the following desirable properties: unbiased
ness, maximum relative efficiency of all linear functions of the sample, maxi
mization of genetic progress through selection by truncation when the dis
tributions are normal, properties of maximum likelihood estimates when the 
distributions are normal, and equations of estimation which can be set up in 
a routine manner. 

Unknown Variances and Covariances 

An important problem in selection remains unsolved and perhaps there 
is no practical solution to it. What should be done if the variances and co
variances are unknown? If our sample is so large that estimates of the vari
ances and covariances can be obtained from it with negligible errors, we can 
use these estimates as the true values. Similarly we may be able to utilize 
estimates obtained in previous experiments. But if there are no data available 
other than a small sample, the only reasonable advice would seem to be to 
estimate the variances from the sample, perhaps modifying these estimates 



SPECIFIC AND GENERAL COMBINING ABILITY 359 

somewhat if they appear totally unreasonable. At any rate the estimation 
procedure serves to point out what additional information is needed if an 
intelligent job of selection is to be accomplished. 

SELECTION FOR ADDITIVE GENETIC VALUES IN INDIVIDUALS 

As our first application of the methods described above, consider the esti
mation of additive genetic values of individuals with respect to a single trait 
(the single trait might be net merit) from a set of records all made in the 
same herd or flock. It will be assumed for the present that the population 
mean is known and that records can be corrected satisfactorily for all non
random environmental factors. For example, the records might represent 
all of the 305 day, mature equivalent butterfat records made in a herd during 
the past ten years. It is desired on the basis of these records to decide which 
cows should be culled, which heifers should be selected for replacements, and 
which bull calves should be grown out for possible use as herd sires. 

In the usual approach to this selection problem by use of the selection 
index, one would decide what particular subset of the records would con
tribute most to the estimate of the value of each animal under consideration 
and would then construct separate indexes. The method to be presented here 
employs all available records in estimating the value of each animal. That is, 
no prior decision is made concerning which records to use to construct the 
index for each animal, but instead all available ones are used. 

The first step in the procedure is the computation of what Emik and Ter
rill (1949) have called a numerator relationship chart and Lush (1948) has 
called genie variances and covariances for all animals whose records are to be 
used in the index or whose breeding values are to be estimated. In terms of 
Wright's (1922) coefficients of relationship and inbreeding, the genie variance 
of the ith animal is 1 + Fi, where Fi is the inbreeding coefficient of the ith 
animal, and the genie covariance between the ith andjth animal is 

where Ri; is the coefficient of relationship between the two animals. The nu
merator relationship or genie covariance, which we shall denote by aii, is the 
numerator of the fraction representing relationship. That is 

a;; 
R;;= v(l+F;)(l+F;). 

The computation of l[a;;[I is a routine procedure if it is done systematically as 
described by Emik and Terrill and by Lush. 

Next we need an estimate of heritability of the trait, and if more than one 
record is available on a single animal, as would be true of butterfat produc
tion, an estimate of repeatability. Now let y1, y2, ... , YP be the mean of the 
n; records of each of p animals, these records having been corrected for 



360 C. R. HENDERSON 

non-random environment and expressed as deviations about the population 
mean. The next step is to solve the following set of equations for Ci, ... , Cp. 
In these equations h denotes heritability and r denotes repeatability. 

( 1 + ( n1 - 1 ) ') _ C1 F1h + n1 +C2a12h +. • • +cpalph = Y1 

( 1+rn2 -l)r) _ 
C1a12h+C2 F2h + nz + ... +Cpa2ph = y2 

(7) 

If all available records are to be used in the estimation procedure just de
scribed, the number of equations to be solved for the C's is large. It might ap
pear, in fact, that the number is too great for the method to have any value. 
However, the equations are ideally suited to an iterative solution. The reason 
for this is that the diagonal elements of the left members of the equations are 
very large compared to the off-diagonal elements thereby making the itera
tive solution a particularly rapid one. On the basis of our experience with a 
few herds a solution to sufficient accuracy can be obtained in three or four 
rounds of iteration. 

Once the C's have been computed the estimate of gi, additive genetic value 
of the ith animal, is 

g; = h (C1ali +C2a2; + ... +Cpap;). 

If the ith animal had one or more records included in the computation of 
the C's the estimate can be computed more easily, for 

• _ 1 + ( n; - 1) r - n; h 
g; = y; -C; ---------. 

n; 

The estimate of the real producing ability of a tested animal is even more 
simple to express. The estimated real producing ability is 

Y-. -C· (1 - r) 
' ' . n; 

It should be pointed out that this estimate differs from the one presented by 
Lush (1945) since his method does not utilize records on relatives. 

Valuable characteristics of the method just described, in addition to its 
ease of computation and its use of all available information, is that the inclu
sion of the records of the contemporaries of the ancestors of the animals being 
appraised automatically eliminates the troublesome problem of what effect 
selection has had on the phenotypic and genetic variances of the selected 
group of ancestors. Also changes in additive genetic variances and covari-
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ances effected by inbreeding are automatically taken into account. If selec
tion is intense, the sample mean may considerably overestimate the popula
tion mean appropriate for subtraction from the records. The safest procedure 
is to regard µ as unknown and to estimate it by the procedure described 
earlier (equations 3, 4, 5). It is also of interest to note that joint estimation by 
this method of such factors as environmental trends and age effects automati
cally eliminates biases in the estimates resulting from use of selected data. 

SELECTION FOR GENERAL COMBINING ABILITY 
IN TOPCROSS TESTS 

When it comes to estimation of the general combining abilities of inbred 
lines or of the values of specific crosses, apparently no application has been 
made of the selection index method. This failure may have been due to diffi
culty in obtaining the estimates of the needed variances and covariances, 
failure to see that the method was applicable, or the opinion that since inbred 
lines can be carefully tested more efficient but complex methods of appraisal 
are not worth the extra computational labor. We propose to show here how 
the methods can be applied to such selection problems, to indicate some situ
ations in which it may result in considerably more efficiency in selection than 
the use of the straight means of the lines or crosses as the criteria of selection, 
and to present some approximate solutions which are relatively easy to 
compute. 

Let us consider first one of the most simple tests of lines, the topcross test. 
In this test a random sample of individuals from each of several lines is mated 
to a tester population, and measurements are taken on the resulting progeny. 
If only one trait is considered important, the lines are usually rated according 
to the means of their topcross progeny. This method of ranking is as good as 
any, provided.either that the same number of progeny is obtained for each 
line or that the sampling errors of the line means are negligible. Seldom, at 
least in large animal tests, would either of these conditions hold. Accidents 
usually preclude attainment of equal numbers, and sampling errors are usual
ly large. If sequential testing is done, numbers would always be unequal. By 
sequential testing we mean here that lines are given a preliminary test, and a 
certain fraction of those performing worst are discarded. Then the remaining 
lines, accompanied perhaps by some new lines, are given another test, and so 
on through any number of cycles desired. The lines surviving several such 
tests would obviously have larger numbers of progeny than the new lines, and 
it would be a very inefficient procedure to disregard the results of prior tests 
on the older lines when choosing between them and the newer, less well
tested lines. 

The way in which the lines should be ranked on the basis of all information 
is analogous to choosing between individuals with different numbers of rec
ords. In the latter case both repeatability of single records and the number of 
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records need to be considered; in the former case the genetic differences 
among lines, the environmental variance, and the number of progeny. Also in 
both cases consideration of the genetic covariances between individuals or 
between lines increases the accuracy of the ranking. 

Assuming that the population mean is known and that it and non-random 
environmental factors have been subtracted from the means of the progeny 
of the various lines, the estimate of g;, the general combining ability of the 
ith line, is 

where y1, ... , YP are the corrected means for the p tested lines and the C's 
are the solution to a set of equations with 

II (T 1/illj II 

as coefficients in the left members and corrected y1, ••• , YP as the right mem
bers. Computation of u1i,o; and uu,o; requires good estimates of 

II (Tu;u)I 

and of u;. Assuming that the corrected mean of a particular topcross is 
y; = g; + e;, and that the errors are independent with common variance u; 
we have the following variances and covariances 

u~ = u2 + u2/n. 
Yi Qi e i 

<T- = (12 
YiOi Qi 

(T- - = (T 
lli11j OiUj 

(where i ~ j) (T- = u (i ~ }0

) 

YiUj UiUj 

Frequently good estimates ofµ and non-random environmental factors are 
not available and consequently must be estimated from the topcross data. 
For example, it is very likely that the environment is not the same from test 
to test and must be taken into account if the data from several tests are to be 
combined into a "best" index. In such cases the method of equations (5) and 
(6) can be employed to distinct advantage unless 

[[ <T u;uj [[-l 

is too difficult to compute. To illustrate this method as applied to topcross 
data we shall assume that Yih the record of the jth progeny of the ith line, 
can be represented by 

Yii = b1xw + b2X2;; + g; + e,;. 

b1 and b2 are examples of fixed parameters, g; is the general combining ability 
of the ith line, and e;1 is a random error. Assuming that the g; are distributed 
with means zero and known variance-covariance matrix, 

II (T QjUj II ' 
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and that the e;i are independently distributed with means zero and common 
variance u;, the estimates of the b's and g's which are "best" by the criterion 
used in this paper are the solution to the following equations: 

(8) 

Dots in the subscripts denote summation over that subscript, and uii denotes 
an element of 

II (1 UiUj 11-l . 

The above procedure for appraising lines on the basis of topcrosses assumes 
either that the lines are homozygous or that only one progeny is obtained 
from each randomly chosen male. If these assumptions are not correct, the 
procedure is modified to· take into account intra-line variances and covari
ances and the number of progeny per male. 

What are the consequences of appraising lines on the basis of the arithmet
ic average of their respective progeny as compared to the more efficient 
method just described? First, the errors are larger than necessary. Second, 
selection of some small fraction of tested lines will tend to include a dispropor
tionately large number of the less well-tested lines. The more efficient meth
od discounts the higher averages in accordance with the number of tested 
progeny and the relative magnitudes of u: and u;. 

What if the number of lines tested is large and certain lines are related? 
This means that a large matrix, 

II (1 OiUj II ' 

has to be inverted and then a large set of simultaneous equations solved. 
What approximations might be employed in the interest of reducing compu
tations? For one thing, we might ignore the covariances between the g's, 
thereby reducing the inverse matrix to 1/ u:i in the diagonal elements and 0 
in the off-diagonal elements. Also if we knowµ and non-random environmen-
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tal factors well enough, further simplification is possible. Let w, be the cor
rected mean of the progeny of ith line. Then 

n. cr2 
... i Oi 

g. = 2 + 2 w.' • n.cr er • 
i Ui e 

This result is a straightforward application of the principles of the selection 
index. 

It must be quite apparent that efficient appraisals of the general combin
ing abilities of lines depend on knowledge of the variances and covariances of 
general combining abilities and of the variance of error. It hardly seems like
ly that estimates of the line variances and covariances can be obtained with 
accuracy comparable to estimates of additive genetic variances and covari
ances with respect to individuals. The latter estimates are based on studies of 
heritability and on the known facts of the hereditary mechanism. In the case 
of inbred lines, however, the sample of different lines tested is usually so 
small as to make the estimates of er! less reliable than we should like. A way 
around this difficulty in the case of traits for which heritability is well known 
is to compute the expected variances and covariances based on knowledge of 
er! in the original population from which the lines were formed, the inbreeding 
of the different lines, and the relationships between pairs of lines. It seems 
likely that such estimates would be more reliable when the number of lines 
is small than would estimates arising from the actual line tests. We cannot 
be any more precise regarding this point until methods are developed for 
placing confidence limits on estimates of variances and covariances arising 
from non-orthogonal data. 

SELECTION FOR GENERAL COMBINING ABILITY, MATERNAL ABILITY, 
AND SPECIFIC ABILITY IN LINE CROSS TESTS 

If we wish to estimate the general combining ability of lines relative to the 
population from which the lines themselves can reasonably be regarded as a 
random sample, line crosses give, for fixed size of testing facilities, more accu
rate estimates than do topcrosses. The reason for this is that we obtain from 
each cross estimates of the general combining abilities of two or more lines. 
Also, line crosses enable one to estimate differences in maternal abilities un
confounded with differences in general combining abilities and to appraise the 
values of specific crosses. In those species for which hand mating is the cus
tomary procedure, little more labor is required for line cross than for topcross 
tests. The estimation of line and line cross characteristics from line cross data 
is no different in principle from what we have already described with respect 
to estimation of additive genetic values of individuals or general combining 
abilities of lines. As before, we wish to obtain unbiased and most efficient esti
mates of certain genetic values. For the sake of simplicity of presentation we 
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shall confine ourselves to discussion of the analysis of single crosses. Applica
tion of these principles to multiple cross data involves no new principles. 

Let us consider first what type of model might be reasonable for a single 
cross. It is not too difficult to suppose that the value of a particular observa
tion on a single cross is the sum of the general combining ability of the male 
line, the general combining ability of the female line, a maternal effect coming 
from the line used as the female, a specific effect due to dominance and 
epistasis and peculiar to the particular cross, non-random environmental ef
fects, and a multitude of random errors such as Mendelian sampling and the 
environment peculiar to the particular progeny on whom the record is taken. 
More complicated models could of course be proposed, but the one which we 
have just described would seem to account for the major sources of variation 
among crosses. Furthermore it is amenable to mathematical treatment. Put
ting the above description in a mathematical model we have 

Yiik = b1X1;fk + b2X2ifk + g; + g; + m; + s;; + e;;k, 

where Yiik is the observation on the kth progeny of a cross between the ith 
line used as a male parent and the jth line as a female parent, the b's and x's 
are related to the mean and other non-random environmental factors as de
scribed in the model for the topcross test, g;(g;) is the general combining abili
ty of the ith(jth) line, mi is an effect in addition to the additive genetic value 
which is common to all progeny of thejth line used as a female parent, s;i is 
an effect over and above the additive genetic and maternal effects and which 
is common to all progeny of the cross of the ith line by the jth line or of the 
jth line by the ith line, and e;;k is a random error associated with the particu
lar observation. 

In this model the g; are regarded as having some multivariate distribution 
with means zero and variance-covariance matrix, 

Them;, s;;, and e;i are all regarded as independently distributed with means 
zero and variances u;., u;, and u;, respectively. It is of course conceivable that 
the variances of the mi ands;; and the covariances between them vary with 
the inbreeding and relationships of the lines. Also g; and m; may be correlat
ed. In the absence of any real knowledge concerning such covariances we 
shall ignore them for our present purposes. If, however, something is known 
about these covariances, the estimation procedure can be modified to take 
them into account. The procedure should also be modified if the lines are not 
homozygous and each parent has more than one progeny. 

A single cross test can supply answers to the following questions with re
spect to the lines tested: 

1. What are the best estimates of the relative values of the tested lines 
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when used as the male parent in topcrosses on the population from which 
the lines are regarded as a sample? 

2. What are the best estimates of the relative values of the tested lines as 
female parents in crosses with males from the above population? 

3. What are the best estimates of the relative values of specific single 
crosses among the tested lines? 

Suppose that n;; progeny of the cross ith line of male by jth line of female 
are tested (n;; can be zero for some crosses). Now the easiest way to estimate 
the value of the ith line as a male parent is simply to compute the mean of 
all progeny of the line when used as the male parent. This simple procedure, 
however, fails to take into account the distribution among lines of the mates 
of males of the ith line, the covariances among the general combining abili
ties of lines, the consequences of specific effects, the size of the error variance, 
and the number of progeny tested. Furthermore, since the ith line is used also 
as the female parent in certain crosses, something can be gained by employ
ing the measurements on these progeny. Estimation by the general procedure 
we have described takes into account all of these factors. Similarly the easiest 
way to estimate the maternal ability of the jth line is to compute the mean 
of all progeny out of females of the jth line, but the most efficient procedure 
takes into account the same factors as are needed in efficient estimation of 
general combining ability. Finally the easy way to appraise the value of a 
particular cross is merely to find the mean of all progeny of the specific cross 
(if that cross has been tested). This latter estimate is subject to large sam
pling error since it would seldom be feasible to test many individuals of the 
numerous possible crosses among even a few lines. The error of estimation can 
be materially reduced by utilizing the fact that the true merit of a cross is a 
function of the general combining abilities of two lines, the maternal ability 
of the female line, and the specific effect peculiar to that cross and to its re
ciprocal. The method to be described places the proper emphasis on estimates 
of general and maternal abilities and on the progeny averages of the specific 
cross and its reciprocal. The procedure also enables estimates to be made of 
the value of a specific cross even though that particular cross has not been 
tested. 

The major step in these efficient estimation procedures is the setting up 
and solving of a set of simultaneous equations in the b's, O's, m's, and s's. 
These equations are as follows: 

and similarly for the b2 equation. 



SPECIFIC AND GENERAL COMBINING ABILITY 367 

=Yi..+ Y.1. 
and similarly for the other gi equations. 

b1X1.1. + b2X2.1. + gin.i+ L ginii + mi (n.i + u!I u:n) + L S1inii = Y. J. 

,_1 i-1 

and similarly for the other mi equations. 

bi (x112. + X121.) + b2 (X212. + X221.) + (gi + g2) (ni2 + n21) + min21 

+ m2ni2 + si2 (ni2 + n2i + u!/ u!) = Y12. + Y21. 

and similarly for the other s;1 equations. 
These equations are not particularly difficult to solve, for each Sii can be 

expressed as a function of Yii., Yii., bi, b2, 01, Oi, and m+ Utilizing this relation
ship the equations can be reduced to a set involving none of the §ii• Also an 
iterative solution is usually easy because of the relatively large diagonal co
efficients. Once the estimates of g1, mi, and s;i are obtained it is a simple mat
ter to evaluate the lines and crosses. The estimate of the value of a line as the 
male parent in topcrosses is 0;, and the estimate of its average value as the 
female parent is 01 +mi.The value of a single cross is estimated simply as 
gi + gi + m; + ,Sii• It is appropriate to add the estimates in this manner be
cause they have the desirable property of invariance. 

If solution of the large set of simultaneous equations required for most ef
ficient appraisal of lines is considered too burdensome, certain approximate 
solutions can be employed. An approximation suggested by the common 
practice in construction of selection indexes is the choosing of certain infor
mation most pertinent to the particular line or cross to be appraised. For ex
ample, the estimate of g; might be based entirely on Yi .. and Y.i., each cor
rected for the b's as best can be done with the information available regarding 
their values. As a further simplification it might be assumed that the g1 are 
uncorrelated and have common variance u~. Similarly m1 might be estimated 
entirely from Yi .. and Y.i .. These approximate solutions are 

where the C's are the solution to 

Clu~i .. +c2uYi .. Y.i. = Y; .. - bl xii .. - b2x2i .. 

C O" +c o- 2 = y . - b X . - b X . 
1 Yi .. Y.i. 2 Y,i. .1. 1 1. i. 2 2. i. 
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The variances and covariances needed in this approximate solution can be 
computed easily from u!, u;,., u;, and u;. Approximate values of s;i can then 
be obtained by substituting the approximate b1, b2, 0;, and mi in equations (9). 

ESTIMATION OF VARIANCES OF GENERAL, MATERNAL, 

AND SPECIFIC EFFECTS 

As mentioned earlier, one might take as the additive genetic variance and 
covariance among the lines the theoretical values based on relationships 
among the lines, degree of inbreeding among the lines, and the genetic vari
ance in the original population from which the lines came. It is necessary even 
then to estimate u;., u;, and u;. It is well known that methods for estimating 
variance components are in a much less advanced stage than estimation of 
individual fixed effects. It is seldom possible to obtain maximum likelihood 
estimates. Consequently many different methods might be used, and the 
relative efficiencies of alternative procedures are not known. 

We shall consider as desirable criteria of estimation procedures for vari
ance components ease of computation and unbiasedness. If the single cross 
experiment is a balanced one, that is if there are the same number of observa
tions on each of the possible crosses, it is not difficult to work out the least 
squares sums of squares for various tests of hypotheses, regarding the line 
and cross line characteristics as fixed. Then assuming that there are no co
variances between the various effects and interactions, one can obtain the ex
pectations of the least squares sum of squares under the assumption that the 
effects and interactions have a distribution (Henderson, 1948). In case the 
experiment is not a balanced one, it is still possible to obtain least squares 
tests of hypotheses and to find expectations of the resulting sums of squares· 
This, however, is ordinarily an extremely laborious procedure (Henderson, 
1950). 

A much easier procedure is available. It probably gives estimates with 
larger sampling variance, although that is not really known, and gives almost 
exactly the same results in the balanced experiments as does the least squares 
procedure. This involves computing various sums of squares ignoring all cri
teria of classification except one, taking expectations of these various sums of 
squares, and solving the resulting set of simultaneous equations. The latter 
procedure will now be illustrated for single cross data in which we wish to 
obtain estimates of the variances pertaining to general combining ability, 
maternal ability, specific effects, and error. It will be assumed that the only 
fixed element in the model isµ. Now let us compute certain sums of squares 
and their expectations. These are set out below. 
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"'n2. 
2 4 1,] 

Sires: E (~:ii_·)= n .. (µ 2 + u;) + ~ _!_n-;-(u; + u;,, + u;) + su;, 

wheres denotes number of different line,< used as the male line. 

"'n2. 
2 4 i] 

Dams: E (L L_i._) = n .. (µ2 + u2 + u2) + L _'_ __ (u2 + u2) + du 2 , 
i n. j g m i n. j g 3 e 

where dis the number of different lines used as the female line. 

C E( "' (Yu.+Yii.) 2
) ( 2+2 2+ 2) rosses: ~ -------- - = n.. µ u u 

i<i n;i+ nii u • 

where c denotes the number of different crosses (regarding reciprocals as one 
cross) 

2 

Correction Factor: E (:·.-.) = n .. µ 2 + L (ni. + n.i) 2 u;/ n .. 
i 

"'22/ "' )22 2 + ~n.ium n .. + ~ (n;j+nii u,/n .. +u, 
i i<i 

The above sums of squares and expectations are quite easy to compute and 
once this is done all one needs to do is to subtract the correction factor and 
its expectation from the other sums of squares and expectations and solve the 
resulting set of four equations for u!, u;., u;, and u~. 

FURTHER RESEARCH NEEDED 

If maximum progress through selection for general and specific combining 
ability is to be attained, much additional research is needed. From a statisti
cal standpoint we need to know if an index based on minimization of E(O- 0) 2 

comes close to maximizing progress through selection by truncation when the 
distributions are not the multivariate normal. If such an index does not do 
so, we need to know what practicable index or indexes will. Further, if 
nothing is known of the variances and covariances needed in construction of 
indexes or if there are available only estimates with large sampling errors, we 
need to know if the index based on the assumption that the estimate is the 
true value is best from the standpoint of maximizing genetic progress. Final
ly, much more work is needed on the problem of estimating variance and co
variance components and placing confidence limits on such estimates. 
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Although there is a considerable body of literature on heritability esti
mates, we need more accurate estimates of the heritabilities of most traits of 
economic importance. Also almost nothing is now known about genetic cor
relations between traits, about genetic-environmental interactions, and 
about the magnitude of genetic differences among herds. Estimates of these 
genetic parameters are essential to intelligent selection for additive genetic 
values. In the case of inbred lines, little is known concerning the variances 
of general and specific combining abilities. The work of Sprague and Tatum 
(1942) with corn and Henderson (1949) with swine illustrates the types of 
estimates which are badly needed in selecting for general and specific combin
ing abilities from the results of line cross tests. 

Finally, well designed experiments are needed to test how closely predic
tions made from indexes or other selection procedures check with actual re
sults. 




