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Designing and improving complex products and systems often leads to situations where there is
no known theory that can guide decisions. Engineers are then forced to experiment and collect
data to find out how a system works, usually under time and monetary constraints. Engineers
also collect data in order to menitor the quality of products and services. Statistical principals
and methods can be used to find effective and efficient ways to collect and analyze such data.

The physical world is filled with variability. It comes from differences in raw materials,
machinery, operators, environment, measuring devices, and other uncontrollable variables that
change over time. This produces variability in engineering data, at least some of which is
impossible to completely eliminate. Statistics must therefore address the reality of variability
in data.

Descriptive statistics provides a way of summarising patterns and major features of data.
Inferential statistics uses a probability model to describe the process from which the data were
obtained; data are then used to draw conclusions about the process by estimating parameters
in the model and making predictions based on the model.

Observational study—you might be interested in assessing the job satisfaction of a large
number of manufacturing workers; you could administer a survey to measure various
dimensions of job satisfaction. Experimental study—you might want to compare several
different job routing schemes to see which one achieves the greatest throughput in a job shop.

Qualitative data—rating the quality of batches of ice cream as either poor, fair, good, or
exceptional. Quantitative data—measuring the time (in hours) it takes for each of
1000 integrated circuit chips to fail in & high-stress environment.

Any relationships between the variables = and y can only be derived from a bivariate sample.

You might want to compare two laboratories in their ability to determine percent impurities in
rare metal specimens. Each specimen could be divided in two, with each half going to a
different lab. Since each specimen is being measured twice for percent impurity, the data
would be paired (according to specimen).

Full factorial data structure—tests are performed for all factor-level combinations:

Design Paper Loading Condition
delta  construction with clip

t-wing construction with clip

delta typing with clip

t-wing typing with clip

delta construction  without clip
t-wing construction without clip

delta typing without clip
t-wing typing without clip

Fractional factorial data structure—tests are performed for only some of the possible
factor-level combinations. One possibility is to choose the following “half fraction”:
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Design Paper Loading Condition
delta  construction without clip
t-wing construction with clip

delta  typing with clip

t-wing typing without clip

Variables can be manipulated in an experiment. If changes in the response coincide with
changes in factor levels, it is usually safe to infer that the changes in the factor caused the
changes in the response (as long as other factors have been controlled and there is no source of
bias). There is no control or manipulation in an observational study. Changes in the response
may coincide with changes in another variable, but there is always the possibility that a third
variable is causing the correlation. It is therefore risky to infer a cause-and-effect relationship
between any variable and the response in an observational study.

Even if 2 measurement system is accurate and precise, if it is not truly measuring the desired
dimension or characteristic, then the measurements are useless. If a measurement system is
valid and accurate, but imprecise, it may be useless because it produces too much variability
(and this cannot be corrected by calibration). If a measurement system is valid and precise,
but inaccurate, it might be easy to make it accurate (and thus useful) by calibrating it to a
standard.

If the measurement system is not valid, then taking an average will still produce a
measurement that is invalid. If the individual measurements are inaccurate, then the average
will be inaccurate. Averaging many measurements only improves precision. Suppose that the
long-run average yield of the process is stable over time. Imagine making 5 yield
measurements every hour, for 24 hours. This produces 120 individual measurements, and

24 averages. Since the averages are “pulled” to the center, there will be less variability in the
24 averages than in the 120 individual measurements, so averaging improves precision.

Unstable measurement systems (e.g., instrument drift, multiple inconsistent devices) can lead
to differences or changes in validity, precision, and accuracy. In a statistical engineering study,
it is important to obtain valid, precise, and accurate measurements throughout the study.
Changes or differences may create excessive variability, making it hard to draw conclusions.
Changes or differences can also bias results by causing patterns in data that might incorrectly
be attributed to factors in the experiment.

Mathematical models can help engineers describe (in a relatively simple and concise way) how
physical systems behave, or will behave. They are an integral part of designing and improving
products and processes.

. Calibration is most associated with accuracy. A measurement systern is accurate if it produces

the “true” value of the measured characteristic, on the average in the long run. Since
calibration centers a measurement system with respect to a known standard, it improves
accuracy.

. There are a total of 3x2x2 = 12 factor-level combinations:
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Level of A Levelof B Level of C

1 1 1
2 1 1
3 1 1
1 2 1
2 2 1
3 2 1
1 1 2
2 1 2
3 1 2
1 2 2
2 2 2
3 2 2

. If each alloy specimen is measured for hardness before and after heat treating, the data would
be paired (according to specimen).

. These are paired data, because two measurements of the same characteristic (outside
diameter) were made on each spanner bushing. The data are also quantitative.

. You could choose any number of levels for each factor. In measuring the yield of a chemical
process, 3 factors (with 2 levels each) might be Temperature (low vs. high), Catalyst (A vs,
B), and Pressure (low vs. high).

. Typical measurements with a ruler marked in millimeters are as follows:

Thickness
Trial Thickness (mm) # of Pages per Page (mm)
1 36.8 513 0717
2 26.9 372 0723
3 28.1 - 399 0704
4 29.3 421 0696
5 24.1 343 0703
6 27.0 386 0699
7 3.8 454 0700
8 22.1 310 L0713
9 29.4 412 0714
10 27.6 392 0704

. Assuming that for each spin, heads and tails are egually likely, it is not unusual to get results
quite different from 10 heads and 10 tails. Using the binomial probability distribution
(Chapter 5), the chance of getting < 7 or > 13 heads in 20 spins is about 1 in 4. (Note: For
most coins, heads and tails are not equally likely when the coin is spun! The distribution of
mass on the coin usually favors heads or tails slightly.)

. (a) Rockwell hardness: multivariate (bivariate), repeated measures (paired), quantitative
data. Flatness: univariate, qualitative data.

(b) There are many possibilities. Possible factors are Vendor, Material, Heating Time,
Heating Temperature, Cooling Method, and Furnace Atmosphere Condition. You could
choose any number of levels for each factor. If you choose Vendor (1 vs. 2), Heating Time
(short vs. long), and Cooling Method (1 vs. 2), the factor-level combinations are given
below.
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Vendor Heating Time Cooling Method

1 short
short
long
long
short
short
long
long

B = D = B = b
B B BT B e e i

9. ltis a good idea to test several such dowels (and average the observed
strength) in order to arrive at a value for this "physical constant" because
dowels of a given type will not be identical.

10. Let the factor with 3 levels correspond to the "day" a dowel was produced
(day1, day2 or day3). Let the factor with 2 levels correspond to the person
(person1, person2) that conducts the test. The 6 treatment combinations are:

11.

12.

13.

day1, person1
day2, person1
day3, person1
day1, person2
day2, person2
day3, person2

Obtain a large sample of hydrostatic transmissions and record on each
transmission the y = lifetime, x1 = piston hardness, x2 = piston diameter,
x3 = piston roughness, x4 = bore hardness, x5 = bore inside diameter and
x6 = bore surface roughness. Explore any trends amongst these variables
and now the observed trends relate to y = lifetime.

In an experimental study, consider 2 levels of piston diameter, 2 levels of
piston surface roughness, 2 levels of bore surface roughness, 2 levels of
bore hardness and 2 levels of bore diamter (greater than piston diameter).
Thus, we have a 2° different possible setups, i.e., 6 factors each at 2
levels. Record lifetimes at each of these 64 combinations and explore
possible factor effects on lifetime.

The average dowel strength would be more precise because an average
(n > 1) is less variable than a single observation.

(a) Let factor A be the length of the arm (6 in., 12 in.), factor B be the
place of rubber chord attachment (position 1, position 2) and factor C be
the angle the arm makes when ithits the stop (angle1, angle2). Thus 8
different launch setups with two launches per setup.
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Set-up combination

6 in., position1, angle1
6 in., position2, angle1
6 in., position1, angle2
6 in., position2, angle 2
12 in., position1, angle1
12 in. position2, angle1
12 in. position1, angle2
12 in. position2, angle2

O~NO AWM =

Hold the pull-back angle fixed and the ball weight fixed for each of the 8
setup combinations.

(b) 2° = 32 is the minimum number of setups for 5 factors each at 2 levels.

A fractional factorial, 2° ' = 16 setups, would need to be designed if
one launch per set-up occurred. If 2 launches per set-up are desired,
then a fractional factorial with 2°2 = 8 setups would need to be
designed.
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Flight distance might be defined as the horizontal distance that a plane travels after being
launched from a mechanical slingshot. Specifically, the horizontal distance might be measured
from the point on the floor directly below the slingshot to the point on the floor where any
part of the plane first touches.

If all operators are trained to use measuring equipment in the same consistent way, this will
result in better repeatability and reproducibility of measurements. The measurements will be
more repeatable because individual operators will use the same technique from measurement
to measurement, resulting in small variability among measurements of the same item by the
same operator. The measurements will be more reproducible because all operators will be
trained to use the same technique, resulting in small variability among measurements made by
different operators.

This scheme will tend to “over-sample” larger lots and “under-sample” smaller lots, since the
amount of information obtained about a large population from a particular sample size does
not depend on the size of the population. To obtain the same amount of information from
each lot, you should use an absolute (fixed) sample size instead of & relative one.

If the response variable is poorly defined, the data collected may not properly describe the
characteristic of interest. Even if it does, operators may not be consistent in the way that they
measure the response, resulting in more variation.

Label the 38 runout values consecutively, 1, ..., 38, in the order given in Table 1-1 (smallest
to largest). Move through the table 2 digits at a time, ignoring numbers between 39 and 00
and numbers that have already been picked.

Sample Labels Runout Values Sample Mean
1 12, 15, 5; 9, 11 11, 11, 9, 10, 11 10.4
2 34, 31, 36, 2, 14 17, 15, 18, 8, 11 13.8
3 10, 35, 12, 27, 30 10, 17, 11, 14, 15 13.4
4 15, 5, 19, 11, 8 11, 9, 12, 11, 10 10.6

The table below shows how the labels were chosen:

The samples are not identical. The population mean (the average of all 38 runout values)

is 12.63. You can see that samples 1 and 4 do not include any of the higher runout values and
samples 2 and 3 do not include many low runout values, so none of the samples are very
representative of the population. However, the average of the 4 sample means is 12.05, which
is closer to 12.63. Simple random samples are representative “on the average”, but any
particular simple random sample may not be representative of the population.

A simple random sample is not guaranteed to be representative of the population from which
it is drawn. It gives every set of n items an equal chance of being selected, so there is always a
chance that the n items chosen will be “extreme” members of the population.
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Possible controlled variables: operator, launch angle, launch force, paper clip size, paper
manufacturer, plane constructor, distance measurer, and wind. The response is Flight
Distance and the experimental variables are Design, Paper Type, and Loading Condition.
Concomitant variables might be wind speed and direction (if these cannot be controlled),
ambient temperature, humidity, and atmospheric pressure.

Advantage: may reduce baseline variation (background noise) in the response, making it easier
to see the effects of factors. Disadvantage: the variable may fluctuate in the real world, so
controlling it makes the experiment more artificial—it will be harder to generalize conclusions
from the experiment to the real world.

Treat “distance measurer” as an experimental (blocking) variable with 2 levels. For each level
(team member), perform a full factorial experiment using the 3 primary factors. If there is a
difference in the way each team member measures distance, then it will still be possible to
unambiguously assess the effects of the primary factors within each “sub-experiment” (block).

List the tests for Juanita in the same order given for Exercise 1-8. Then list the tests for Tom
after Juanita, again in the same order. Label the tests consecutively 1, ..., 16, in the order
listed. Use the following coding for the test labels:

Table

Number Test Label
01-05 1
06-10 2
11-15 3
16-20 4
21-25 h
26—-30 ]
31-356 T
36-40 B
41-45 9
46-50 10
51-55 11
56-60 12
61-65 13
66-70 14
71-78 - 15
76-80 16

Move through Table D-1 choosing two digits at a time. Ignore previously chosen test labels or
numbers between 81 and 00. Order the tests in the same order that their corresponding
two-digit numbers are chosen from the table. Using this method (and starting from the
upper-left of the table), the test labeled 3 (Juanita, delta, typing, with clip) would be first,
followed by the tests labeled 13, 9, 1, 2, 7, 10, 8, 14, 11, 6, 15, 4, 16, 12, and 5. The use of the
table is illustrated below.

(ea>—e63a) QD050 45653168 EPm—o1aw0 EIa81—1292
30186—00H10 PETRS—47544 mas-ﬂ'é}#-z 11088 67310 19720 08378

For the delta/construction/with elip condition (for example), flying the same plane twice
would provide information about flight-to-flight variability for that particular plane. This
would be useful if you are only interested in making conclusions about that particular plane. If
you are interested in generalizing your conclusions to all delta design planes made with
construction paper and loaded with a paper clip, then reflying the same airplane does not
provide much more information. But making and flying two planes for this condition would
give you some idea of variability among different planes of this type, and would therefore
validate any general conclusions made from the study. This argument would be true for all

8 conditions, and would also apply to comparisons made among the 8 conditions.
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Section 1.

Random sampling is used in enumerative studies. Its purpose is to choose a representative
sample from some population of items. Randomization is used in analytical/experimental
studies. Its purpose is to assign units to experimental conditions in an unbiased way, and to
order procedures to prevent bias from unsupervised variables that may change over time.

Blocking is a way of superyising an extraneous variable. Within each block, there may be less
baseline variation (background noise) in the response than there would be if the extraneous
variable were not supervised. This makes it easier to see the effects of the factors of interest
within each block. Any effects of the extraneous variable can be isolated and distinguished
from the effects of the factors of interest. Compared to holding the variable constant
throughout the experiment, blocking also results in a more realistic experiment.

Replication is used to estimate the magnitude of baseline variation (background noise,
experimental error) in the response, and thus helps sharpen and validate conclusions drawn
from data.

It is not necessary to know exactly how the entire budget will be spent. Experimentation in
engineering is usually sequential, and this requires some decisions to be made in the middle of
the study. Although some may think that this is “improper” from a scientific/statistical point
of view, it is only practical to base the design of later stages on the results of earlier stages.

If you regard student as a blocking variable, then this would be a randomized complete block
experiment. Otherwise, it would just be a completely randomized experiment (with a full
factorial structure).

(a) Label the 24 runs as follows: Use the following coding for the test labels:
Table Test
Labels Level of A Level of B Level of C Mamber ' Label
1,23 1 k . 01-04 1
4,5, 6 2 ; : 05-08 2
7,8,9 1 2 : 09-12 3
10, 11, 12 2 2 1 13-16 4
13, 14, 15 1 1 2 17-20 5
16, 17, 18 2 1 2 piagc ) 4
19, 20, 21 1 2 2 9528 7
22, 23, 24 2 2 2 299-35 8
33-36 9
37-40 10
41-44 11
45-48 12
49-52 13
53-56 14
57-60 15
61-64 16
65-68 17
69-72 18
T3-76 19
77-80 20
81-84 21
85-88 22
89-92 23
93-96 24
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- (b)

(€)

Move through Table D-1 choosing two digits at a time, ignoring numbers between 97

and 00 and those corresponding to test labels that have already been picked. Order the
tests in the same order that their corresponding 2 digit numbers are picked from the table.
Using this method, and starting from the upper-left corner of the table, the order would
be 3, 4, 24, 16, 11, 2, 9, 12, 17, 8, 21, 1, 13, 7, 18, 5, 20, 14, 19, 15, 22, 23, 6, 10. The use
of the table is shown below.

QBT RND (oGO 4k J3e6) s6(H_Jse 5135, 0WD
3015690819 X736 w4 He7as—ETp4 108E  OpSLe 1972068374

np@@fssaaa 41942 65118 71236 01932 70343 25812 62275

Treat day as a blocking variable, and run each of the 8 factor-level combinations once on
each day. Blocking allows comparisons among the factor-level combinations to be made
within each day. If blocking were not used, differences among days might cause variation
in the response which would cloud comparisons among the factor-level combinations.

List the 8 factor-level combinations separately for each day. For each day, label the runs
as follows:

Label Level of A Levelof B Level of C

1 1 1 1
2 2 1 1
3 1 2 1
4 2 2 1
5 1 1 2
i 2 1 2
T 1 2 2
8 2 2 2

For each day, move through Table D-1 one digit at a time ignoring the digits 9 and 0 and
any that have already been picked. Order the 8 runs in the same order that the numbers
were picked from the table. Starting from where I left off in part (a), the order for day 1
is 5, 3, 8,4, 1, 2, 6 (which implies that run 7 goes last). For day 2, the order is 5, 1, 8, 7,
2, 3, 6 (which implies that run 4 goes last). For day 3, the order is 1, 3, 2, 7, 4, 5, 8,
(which implies that run 6 goes last). The use of the table is shown below.

59069 01724 @348 ae %@ @t@] D O @dxz 62275
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The plan is summarized below.

Day Levelof A Levelof B Level of C

1

B OB B B B B B Ll B B B BB B BO| e e e e e e

B B3 = B = B = e B BD e B s BD b | i B B e DD DD e

B = B B e B = B = B = BD BD e = BD e = e BB B

B OB B = B b e e B3 = B B2 e BRI B B e = = B e B

Part (a) randomized all 24 runs together; here, each block of 8 runs is randomized
separately.

3.

Block  Design  Paper

Tom
Tom
Juanita
Juanita

delta
t-wing
delta
t-wing

10

construction
typing
typing
construction

Chapter 2



g 4. Focusing on Design, you would want each person to test 2 delta-wing planes and 2 t-wing

g planes; this would allow you to clearly compare the two designs. You could separately compare
& the designs “within™ each person. If possible, you would want a plan such that this is true for
& all 3 primary factors, simultaneously. This is possible by using the same design that is used in
t& the second part of Example 2-14:
-
;:
ﬁ
5

Person  Design Paper Loading Condition
Juanita delta construction with clip
Tom t-wing construction with clip
Tom delta typing with clip
Juanita t-wing typing with clip
- Tom delta construction  without clip
e Juanita t-wing construction without clip
: Juanita delta typing without clip
Tom t-wing typing without clip

This design also allows each person to test each Design/Paper combination once, each
Design/Loading combination once, and each Paper/Loading combination once.

5. 'This is an incomplete block experiment.

' :Semwn 1. A cause-and-effect diagram may be useful for representing a complex system in a relatively
9 simple and visual way. It enables people to see how the compenents of the system interact,
and may help identify areas which need the most attention/improvement.

- End 1. Label the widgets 1, 2, ..., 491. Chcose the widgets labeled 121, 405, 91, 134, 464, 313,
. Chapter 248, 141.
£ :

2ips—epadd Q309D (1336 3pe o4 08422 AW 51351 22772

(a) Possible responses: volume of popped corn, number of unpopped kernels, and taste of
popped corn.

(a) Label the gears 1, 2, ..., 20. Use the following coding for the gears:

: Table
) Number Gear Label
e 01-05 1
3 06-10 2
11-15 3
b 16-20 4
A 21-25 5
26-30 6
31-35 7
¢ 36-40 8
' 41-45 9
46-50 10
2 51-55 11
= 56-60 12
61-65 13
66-70 14
T1-75 15
76-80 16
81-85 17
, 86-90 18
91-85 19
96-00 20
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(b)

Move through Table B-1 choosing two digits at a time, until 10 different gears are chosen.
These gears will be laid; the remaining 10 gears will be hung. Using this method, the
gears to be laid are the ones labeled 3, 20, 13, 9, 1, 2, 7, 10, 8, and 17.

6)64) QEp9+—3348 m—‘ﬁ@’ 66024 91410 51351 22772

This will guard against bias. A naive or convenient method of assignment may surely
assign most of the “good” gears to one group and most of the “bad” gears to the other.
There is only a small chance that this type of assignment will result from randomization

(but it is possible).

Water sample has been treated as a blocking variable, with 8 levels. Comparison of the two

methods can be made within each sample (block). In addition, by using samples that are quite

different, the two methods can be compared under a variety of conditions that might be
encountered in practice. Therefore, conclusions made about the two methods based on these

data are more generally applicable. The datagrepaired because the same type of measurement
is being made twice on each of the 8 samples.

(a) To best compare all three treatments, it would make sense to assign each treatment to

2 widgets in each group. To balance out differences in surface texture within each group,
it would make sense to do this assignment randomly. This amounts to randomly dividing
units in each group of 6 into 3 subgroups of 2. Then assign method A to the 1st subgroup,
method B to the 2nd subgroup, and method C to the 3rd subgroup. Do this for each group
of widgets. Start at the upper left of Table D-1 and with widget 1 (from the lst group).
Move one digit at a time, putting widgets into subgroups; each digit corresponds to a
subgroup number (skip digits that are not 1, 2, or 3). When a subgroup has been filled,
ignore that subgroup's digit. When all subgroups of a group have been filled, go on to the

next group. Using this method, the following assignments would be made:

Widget Treatment

et gl el e el B RS Y T O U
ol _Rol--B--F - Hol S Hol- N ReNe RN B2

Note that you do not need to use the table for the last widget in each group. The use of
the table is shown below.

GEN Mok N G G| BB IOK YBKG VGG B

@ﬁi&se 90518 95785 47544 66735 35754 11088 67310 19720 08379

12 Chapter 2



(b) Use the following coding for the widgetas:

Table
Number Widget
01-05 1
06-10 2
11-16 3
16-20 4
21-25 5
26-30 6
31-35 T
36-40 8
41-45 9
46-50 10
51-55 11
56-80 12
G61-65 13
66-T0 14
T1-75 15
T6-80 16
81-85 17
86-90 18

Move through Table B-1 choosing two digits at a time, ignoring numbers between 91
and 00 and those corresponding to widgets that have already been picked. Order the
widgets in the same order that their corresponding 2 digit numbers are picked from the
table. Using this method, and starting from where [ left off in (a), the order would

be 12, 18, 11, 17,10, 14, 7, 15,9, 2, 1, 4, 8, 5, 6, 3, 13, 16. The use of the table is shown

below.

304@ GIEas1GD @ 066D 34TH_YiBe 673400 oeT)e~
9058 04747 BBS36 41940 BRAE F1I8691037 F0343—T5ADY @#:ns

{¢) You could run each method-group combination once on each day. This allows treatments
to be compared within days, and also within groups. Since there are 2 widgets for each
method-group combination, you need to randomly assign one of these widgets to day 1,
and one to day 2 (for each method-group combination). Then, for each day, randomize the
order in which the 9 runs are made using the same method as in (b). The following pairs
of widgets need to be divided between the two days: (1, 3), (2, 6), (4, 5), (7, 10), (9, 12),
(8, 11), (13, 17), (14, 15), (18, 18). This can be accomplished by moving through
Table D-1 one digit at a time. For each pair, if the digit is odd, the first in the pair goes on
Day 1; if the digit is even, the second in the pair goes on Day 1. Using this method, and
starting where I left off in part (b), the assignments would be as follows. Day 1: 3, 2, 4, 7,
12, 8, 17, 14, 16. Day 2: 1, 6, 5, 10, 9, 11, 13, 15, 18. The use of the table is shown below:

59069 01722 53338 41942 65118 71236 01932 70343 25812 a:@

G @osi 82470 59407 13475 95872 16268 78436 39251 64247
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To randomize the order, temporarily relabel the Day 1 widgets 1-9 in the order listed
above. Do the same with the Day 2 widgets. For each day, move through the table one
digit at a time, ignoring the 0 digit and digits corresponding to widgets that have already
been picked. Order the widgets in the same order that their corresponding 1 digit
numbers are picked from the table. Using this method, and starting from where 1 left off
above, the orders (and entire plan) would be:

Original
Widget

Day Number Treatment
1 14
3
2
T
17
12
16
4
8
10
13
9
18
15

QOGO EPEOOOD>PmTE o

B OB B B B B B B B e e e et et et e

The use of the table for randomizing the order within each day is shown below.

54107 @@ oA BB ,@ 9"5)@) @aa 78436 39251 64247

(d) Part (b) has a full 3x3 factorial structure with 2 observations per condition. Part (c) has
a full 3x3 x 2 factorial structure with no replication.

There are 2x2 = 4 factor-level combinations. Treat batch as a blocking variable, and run each
of the 4 combinations 3 times for each batch. Randomize the order of the 24 tests by labeling
them as follows:

Ignition
Wall Point
Labels Batch Thickness Placement
1,23 1 & 1
4,56 1 3 1
7,8,9 1 i 2
10, 11, 12 1 1 2
13, 14, 15 2 & 1
16,17,18 2 i 1
19,20,21 2 T2 2
22, 23, 24 2 3 2
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Use the following coding for the test labels:

Table . Test
Number Label
01-04 1
05-08 2
09-12 ]
13-16 4
17-20 ]
21-24 6
25-28 T
29-32 8
33-36 9
37-40 10
41-44 11
45-48 12
49-52 13
53-56 14
57-60 15
61-64 16
G5-68 17
69-72 18
73-786 19
T7-80 20
B]1-B4 21
85-88 22
89-92 23
93-96 24

Move through Table B-1 choosing two digits at a time, ignoring numbers between 97 and 00
and those comresponding to test labels that have already been picked. Order the tests in the
same order that their corresponding 2 digit numbers are picked from the table. Using this
method, and starting from the upper-left corner of the table, the order would be 3, 4, 24, 16,

11,2, 9, 12, 17, 8, 21, 1, 13, 7, 18, 5, 20, 14, 19, 15, 22, 23, 6, 10. The use of the table is shown
below.

@86 963D (Bos1—+G¥8 4566 aBd 5603 dualo 51351 -25%72)
30186—80519 SATYE  M(B44 66235—HE754 IMORE  B¥RI6  1872D-8BEFE

m@v@’, 53338 41942 65118 71236 01932 70343 26812 62276

(You could have also randomized each block of 12 separately.) The resulting data will have a
full 2x2x 2 factorial structure with 3 observations per condition.

(a) Label the widgets 1, 2, ..., 354. Select the widgets labeled 121, 91, 134, 313, and 249.
The use of the table is shown below.

((3%e—abeed  1359¢ 410 51361 22772
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(b) Label the 12 experimental runs as follows:

Labels Level of A Level of B

1,2 1 1
3,4 2

5,6 1 2
7,8 2 2
9, 10 1 3
11, 12 2 3

Use the following coding for the test labels:

Table Test
Number Label
01-05 1
06-10 2
11-15 3
16-20 4
21-25 5
26-30 i
31-35 T
36-40 8
41-45 ]
46-50 10
51-55 11
56-60 12

Move through Table B-1 choosing two digits at a time, ignoring numbers between 61

and 00, and those corresponding to runs that have already been picked. Order runs in the
same order that their corresponding 2 digit numbers are picked from the table. Using this
method, and starting from where 1 left off in part (), the order would be 3, 2, 11, 7, 6, 1,
4,9, 12, 5, 8, 10. The use of the table is shown below.

12169 66144 05091 13446 45653 13684 66024 m G851 a2
30158019 DEMS—ED PEIGEAEWA LDER—EPO  LIPI<TBENS
58063—<112) §338n<t1942 Hqu»@/ 01932 70343 25812 62275

See Ex. 8, Ch.1  for the factors and levels. Two possible responses would be flatness
and concentricity. Replication dictates that ai least one of the 8 factor-level combinations
given inex 8 ch 1 be run at least twice. One possibility is to run each factor-level
combination twice, for a total of 16 runs.
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Test Test Heating Cooling
Label Order Vendor Time Method Flatness Concentricity

1 1 short 1
2 1 short 1
3 2 short 1
4 2 short 1
5 1 long 1
6 1 long 1
it ¢ 2 long 1
8 2 long 1
9 1 short 2
10 1 short 2
11 2 short 2
12 2 short 2
13 1 long 2
14 1 long 2
15 2 long 2
16 2 long 2

(b) For the scepario in (a), you should use 16 slips of paper. Each slip corresponds to a run.
Order the runs in the same order as their corresponding slips are picked from the hat.
Avoid placing the slips into the hat in any special order, and mix the slips well before
picking them. All slips should be physically identical so that the selection order is
completely random.

9. (a) Using the method in Ex 7.Ch 2,select the widgets labeled 121, 596, 614, 405, 91, 134, and
464. The use of the table is shown below.

(b) The use of the table is shown above. Select the widgets labeled 565, 313, 249, 141, 51, 351,
and 227. This sample is completely different; there is no overlap.

11. (a) Control the extraneous variable heat by using only one bar for the entire study. This will
eliminate any heat-to-heat variability.

(b) Advantage: may reduce baseline variation (background noise) in the response, making it
easier to see any difference between the 2 brands. Disadvantage: One heat may not be
representative of all such material that the drills would be used on. Controlling it makes
the experiment more artificial—it will be harder to generalize conclusions from this heat
to others.

(c) Treat heat as a blocking variable. For each of the 3 bars, test 5 drills of each brand. The
brands can then be compared within each block (bar).
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Chapter 3: Computationally Simple Descriptive

Statistics
Section 1.
1 : N D R S o ; :
e e o ———— o mmmmmme Fommm e = Yield (%)
65.6 67.2 €8.8 70.4 T2.0 72.8

Decimal point is

at the colon;

hundredths’ place

has been truncated Cumulative

Relative Relative

65 : 66 Yield (%) Tally Frequency Frequency Frequency
66 : 28 65.5-66.4 M 3 .075 075
67 : 2588 66.5-67.4 Il 2 .05 .125
68 : 0023349 67.5-68.4 1|l 9 .225 .35
69 : 012355589 68.5-69.4 | 5 125 475
70 : 02466788 69.5-70.4 Ll 8 2 675
T1 : 3r 70.5-71.4 W] 6 A5 .825
72 : 0678 71.5-72.4 Il 2 .05 875
73 : B 72.5-73.4 Il 3 .075 .95
T4 : 2 73.5-T44 - || 2 .05 1.00

Frequency

Yield (%)

Other choices for the intervals are possible. The plots reveal a fairly symmetric, bell-shaped
distribution.

18
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Decimal point is 1 place to the right of the colon
Data are rounded teo the nearest integer; units are mm

82

 fhi-

- B

b

Ve
988 : 3 :
1110 : 4 :
33 : 4 ;
44 : 4

230 grain oG 200 grain

88 : 4 :
10 : 6 :

- iy -

HIE - T

- R T

: 5 : 89D

+ 6 ¢ 0011

28 = 22333

6 : 44455

il

g B

ey A T o

iy - |

The plot shows that the depths for the 200 grain bullets are larger and have less variability
than those for the 230 grain bullets.

(a)
'3_ -

3“ -
£ & .
g v . ]
5 o
e - | ' :
E - - -
(=8
e &

105 110 115 120 125

Bottom Bolt Torgue (N Ibs)

There are no obvious pattcrm@

(b) The differences are —15, 0,20/,0. -5, 0, -5, 0, —5, 20, —25, -5, —10, —20, and 0.

" .
w -
t] "
.

R e e e e e e e e e e e e TGN, = Bot o
=30 =20 -10 0 10 20 (ft 1bs)
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Section

1.

Lengthwise Quantiles (ft lbs)

0.85

(2)

1.05 115

0.95

The dot diagram shows that most of the differences are zero or negative and “truncated”
at zero. The exception is the 10th piece of equipment, with a difference of 20. This point
does not fit in with the shape of the rest of the differences, so it is an outlier. Since most
of the differences are zero or negative, the bottom bolt generally required more torque to

loosen than the top bolt.

i 5 alR) Qs
1 .05 B4 .46
2 15 .B6 .67
3 25 BT .69
4 .35 .88 .73
] A5 .88 oY &
6 b5 91 .78
T 65 92 .T9
8 T5 .93 B0
g .B5 .85 .85
10 .95 1.15 .89
: 3
B
=z @
I_E o
T~
g u -
a
L 8 8
- = u o L]
02 0.4 06 08 0.2

For the lengthwise sample:

Median = Q(.5) = 28431 = 895
1st Quartile = @, = Q(.25) = .870
3rd Quartile = Q3 = Q(.75) = .930
Q(.37) = .880

For the crosswise sample:

Median = E.‘!“ﬂ =.T75

Q= .690

Q3 = .800

Q(.37) = (.8)(.73) + (.2)(.77) = .738

20

04

06

08
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-3

(b)

(c)

Impact Strength (it Ibs)

06

1.0

08

Lengthwise

Crosswise

On the whole, the impact strengths are larger and more consistent for lengthwise cuts.

Each method produced an unusual impact strength value (outlier).

Crosswise Quantiles (1t Ibs)

05 06 07 08 08

085 080 085

Length

100 105 1.10
wise Quantles
(it los)

1.15

The non-linearity of the Q-Q plot indicates that the overall shapes of these two data sets
are not the same. The lengthwise cuts had an unusually large data point (“long right
tail”), whereas the crosswise cuts had an unusually small data point (“long left tail”).
Without these two outliers, the data sets would have similar shapes, since the rest of the

Q-Q plot is fairly linear.

Use the (i — .5)/n quantiles for the smaller data set.

=2 Qu(E) Qu(E

.08
.25
42
.58
.78
.92

o ek W B = =

37
52
.65
92
2.89
3.62

41
1.22
1.47
1.70
2.45
5.89

The above quantiles for the Supplier 2 data were obtained by interpolation from the following
table.

21
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-

i 2 gutyt
1 .08 .39
2 .19 .99
3 31 1.45
4 44 1.47
5 .56 1.58
6 .69 2.27
T 81 2.63
8 .94 6.54
g -
E i
§ .
Q
(2]
g ™
L '
3 5. 1.0 15 20 2.5 3.0 3.5

Supplier 1 Quantiles (%)

3. Some of the plot coordinates are given in the table below.

i 22 Qi) Qsn(iE0)
T 01 656 2.33
2 .04 656 -1.75
3 .08 662 ~1.55
4 .09 66.8 -1.34
5 .11  67.2 -1.23
36 .89 726 1.23
3T 91 727 1.34
38 .94 728 1.55
33 .98 73.5 1.76
40 .99 742 2.33
22
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Section

Section
4

3 =
5 .' ‘..'
'
s y » o+
b 1 -.l'
Pol
866 68 70 72 74

Yield Quantiles (%)

The normal plot is quite linear, indicating that the data are very bell-shaped.

4, Theoretical Q-Q plotting allows you to roughly check to see if a data set has a shape which is

1.

similar to some theoretical distribution. This can be useful in identifying a theoretical
(probability) model to represent how the process is generating data. Such a model can then be
used to make inferences (conclusions) about the process.

| 2 Median R IQR s
Lengthwise | .919 885 410 .060 088
Crosswise .743 75 430 110 120

The sample means and medians show that the center of the distribution for lengthwise cuts is
higher than the center for crosswise cuts. The sample ranges, interquartile ranges, and sample
standard deviations show that there is less spread in the lengthwise data than in the crosswise
data,

These values are statistics. They are summarizations of two samples of data, and do not
"represent exact summarizations of larger populations or theoretical (long-run) distributions.

In the first case, the sample mean and median increase by 1.3, but none of the measures of
spread change; in the second case, all of the measures double.

§ = the proportion of part orders that are delivered on time to the factory floor. 4 = number
of defects per shift produced on an assembly line. A measured value of 65% yield for a run of a
chemical process is of neither form.

Praid = ;—’ = .188. Prung = 3¢ = -615. Most engineering situations call for minimizing
variation. The p values do not give any indication of how much spread there is in each set of
data, and would not be helpful in comparing the two methods with respect to variation.

Neither type. These rates represent continuous measurements on each specimen; there is no
*counting” involved.

23 Chapter 3



End 1.
Chapter
Excercises

(a) Decimal point is at the colon; units are dB

DO M 0 ~

10

11

: 8888895399
: 0000011111222233333344444

: EESEG56666677T7 778888899998
: 00000011111222223334444
: BBE556666T7TTTE88899
: 001112234

10 :
i |
= BT

BE6TTY

1

Gain (dB)
10

The shape is right-skewed. It seems to be truncated on the left. It appears that the
manufacturer inspected most (if not all) of the amplifiers, and removed those with gains
less than 7.8 dB.

(b) Some of the plot coordinates are given in the table below.

i 52 Qg Qswiss)
1 004 7.8 -2.64
2 01 7.8 -2.33
3 02 7.8 -2.05
4 .03 7.8 -1.88
5 04 7.8 -1.75
116 .96 10.7 1.75
117 97 10.9 1.88
118 .08 11.1 2.06
119 .89 11.5 2.33
120 .996 11.7 2.64
24
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()

(2)

Standard Normal Quaniiles
. B 0
-

Gain Quantiles (dB)

The plot tails off strongly at the end; the smallest data points would need to be pushed to
the left (made smaller) in order for this data set to have a bell-shaped distribution. This
agrees with part (a).

Before inspection, the distribution of gains would not be truncated. It seems like it would
be symmetric, centered at about 8.5 dB. 7.75 is .75 dB below B.5. Looking at the right
(untruncated) side of the distribution, 9.25 is .75 dB above 8.5. So it may be reasonable to
assume that the fraction of amplifiers with gains below 7.75 is about the same as the
fraction with gaina above 9.25. The fraction of the data above 9.25 is 42/120 = .35. Since
none of the gains were close to 12.2, the fraction of gains within specifications is about

1 —.35 = .65. (Of course, p = 1 for post-inspected amplifiers.)

Al Amounts (ppm)
100 200 300 400 500

0 5 10 15 20 25
Sample Number

There seems to be a slight downward trend over time, with the exception of the 20th
observation, which is unusually high. If there is a trend, this might give an engineer a clue
about what is affecting the process. The period in which the trend was observed ma
coincide with some known change associated with the process, This n\igh‘} enable “The

engineer to reduce hdure im;wr'd\l levels.
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(b) Decimal point is 2 places to the right of the colon
Units are ppm

: 30,30

: 60,63,70,79,87,90

¢ 01,02,15,18,19,19,20,25,40,45
: 72,82,83,91

: 22,44

: 91

e W NN == OO

T |

(c) Even if you ignore the outlier, the distribution is right-skewed. It is not bell-shaped.

(d) i 50 QU58) Qsw(sE

1 .02 30 -2.05
2 .06 30 -1.55
3 .10 60 -1.28
4 .13 63 -1.13
57 70 -.95
6 .21 79 -.81
T .25 BT -.67
8 .29 a0 -.55
9 .33 101 -.44
10 .37 102 -.33
11 .40 1156 -.25
12 .44 118 -.16
13 .48 119 -.05
14 .52 118 .05
15 .56 120 .15
16 .60 125 .25
17 .63 140 .33
18 .87 145 44
19 .1 172 55
20 .75 182 .67
21 .79 183 .81
22 .83 191 .95
23 .87 222 1.13
24 .90 244 1.28
25 .94 291 1.55
26 .98 511 2.05

Median = 119

Qy =87

QJa = 182

Q(.58) = 1254120 — 1995
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(¢)

Al Amount (ppm)
100 200 300 400 500
——

The median is closer to @, than @3, and the upper whisker is longer than the lower
whisker. Both of these features indicate that the distribution is right-skewed.

(f) The plotting points are given in part (d).

-1

Standard Normal Quantiles
0
-.h-‘

100 200 300 400 500
Al Amount Quantles fﬂlﬂ

The plot is quite non-linear, indicating that the data distribution is not bell-shaped. The
data are more bunched up at low values and more spread out for high values than they
would be if they were bell-shaped. This again shows that the distribution is right-skewed,

(g) The first 3 coordinates of the plot are: (3.40, —2.05), (3.40, —1.55), (4.09, —1.28).

2

Standard Normal Quantiles
o
.-.-l

35 40 45 50 55 60
I (A Amount) Quaniites. (gn {nm‘b

" The plot is more linear, indicating that the transformed data are more bell-shaped than
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(k)

(a)

the raw data sel.

] R 5
Original data 142.65 481  98.20
Transformed data | 4.779 2.835 .631

No. Since the transformed data are more symmetric, their mean is not “pulled up” as
much as the mean of the original data.

i 5 () Qa(iR)  @s(EE
1 .05 Td B2 T8
2 .15 77 B2 79
3 .25 78 82 79
4 .35 78 B4 81
5 45 78 B4 82
6 .55 80 85 82
T .65 g1 85 82
B gir 0.3 84 85 &3
9 .85 85 B6 84
10 95 87 87 85

] Q; Median Qa
Method 1 | 78 T8t80 79 84

Method 2 | 82 934485 — 3845 85
Method 3 | 78 82 83

Manganesa Conlant (.019%)

74 76 78 80 82 84 85

Method 1 Method 2 Method 3

(b) Method 2 is the most precise, since it produces the least amount of spread. Method 3 is

(¢)

more precise than Method 1. Method 3 is the most accurate, since it comes closest to 80
on the average. Method 1 is more accurate than Method 2.

These would be paired data. 10 specimens, 20 measurements would provide a better
comparison. To compare averages under this plan, you would take differences for each of
the specimens and look at the average of the 10 differences. Under the other plan, you
would average measurements for 10 specimens for each method, and look at the difference
between the averages. There will be less variability in the average of the differences than
in the difference between the averages, because of the pairing. Less variability results ina
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sharper comparison of the difference.

4. (a) Units are Ohms

Decimal point is 1 place te the

1/4 Watt

20 Ohm Nominal

o :

00 :
0000 :
0000 :
00 :

a :
0

180 :
191 :
182 :
193 :
194 :
196 :
196 :
187
198 :
189 :
200 :
201
202 :
203 :
204 :
206 :
208 :
207
208 :

High:

Resistors

24.4

76 Ohm Nominal Resistors

Decimal point is at the colon

1/4 Watt

01334

: 68

: 69

g
8 :
ol o Tk
E56799 :
24 :

70 =
T1

- He

Tk-:
5 T
- . EO

29

18
289
0268

257

left of the colon

1/2 Watt

1/2 Watt
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100 Ohm Nominal Resistors

Decimal point is at the colon

1/4 Watt

16889
148
oo :
347 :
35 :

94 :
95 :
96 :

97

68

: 229
98 :
: ‘9§ 3
: 100
1 401
: 102
: 103 :

57 1/2 Watt

: 00

: 000

150 Ohm Nominal Resistors

Decimal point is at the colon

1/4 Watt

Qoo :
00000000000
e

¢ 145
;146
147 :
148 :
149
: 160 3
R -
: 152 :
: 163 :
v 164 :
: 166 :

30

1/2 Watt

00000000000
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200 Dhm Nominal Resistors

Decimal point is at the colon

1 182 0
0 : 193 :
0 : 184 :

000 : 186 : O
000000 : 196 : O

: 187 : 00
0 : 188 :
000 : 189 : 0O
: 200 :
1/4 Watt : 201 : 0 1/2 Watt
;202 .:0
208 ¢
: 204 ¢
: 2068 : 0
: 208
L : 207 : 00
a . 208 :
' v 209
Ty 21000
Sl b S+
: 212 :
» 2138
: 21% ::0
High: 257

The } watt resistances are generally larger (and closer to nominal on average) and mor

E ;
5 spread out than the % watt resistances.
=

: (b) i ‘_ﬁ‘i‘ @1 20 Q},‘rs Q{.mo Q{.isn Qa}.:au
| 1 .03 190 709 941 147 193
G0 2 a0 191 718 946 147 194
P 3 A7 191 720 943 147 195
1 4 23 192 721 9438 148 195
g 5 30 192 723 949 148 195
= 6 .37 192 723  95.1 148 196
. 7 43 192 724 954 148 196
¥ 8 50 193 725  95.8 148 196
'{ 9 57 193 725  06.0 148 196
10 .63 193 726 960 148 196
: 11 .70 193 727 973 148 196
oy 12 .17 194 729 974 148 198
A 13 83 194 729 9.7 148 199
o 14 80 195 732 983 148 199
o 15 .97 196 734 985 149 199
b
Eg
i
"..Pf .
A

31 Chapter 3




Resistance (Ohms)

22 23 24

19 20 21

i=.5

v @ia0 Qigs Rii00 @iiso Qize0 Qsw
1 .03 19.7 686 955 145 192 -1.88
2 .10 19.7 71T 96.6 146 195 -1.28
3 .7 199 721  96.8 147 196  -.95
4 23 200 728 972 148 197 -.74
5 .30 201 732 972 149 197  -.52
6 .37 201 73.8 979 149 199  -.33
T .43 202 739 985 149 201 -.18
8§ .50 202 740 987 149 202 .00
9 57 203 742  99.2 150 205 18
10 .63 204 746 100.0 150 207 .33
11 .70 204 748 1000 151 207 .52
12 .77 205 750 102.0 152 210 .74
13 .83 206 762 1020 153 211 .95
14 .90 208 765 102.0 154 214  1.28
15 .97 244 767 103.0 155 267  1.88
Sample (a1} Median Q3
1,20 19.2 193 (2)(19.4) + (2)(19.3) = 19.37
3,75 | (3)72.1) + (2)(72.3)=72.16 725 72.84
3, 100 94.83 95.8 97.37
3, 150 148 148 148
3+ 200 195 196 197.43
3,20 20.03 20.2 20.47
3,75 72.91 74 74.94
3, 100 97.2 98.7 101.43
3, 150 148,29 149 151.71
1, 200 197 202 209.14
20 Ohm Nominal Resistors 75 Ohm Nominal Resistors
i ©
£
o ~
8
g
= i e
1/4 Walt 1/2 Watl 144 Watt 1/2 Watt

32
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94 06 98 100 102

100 Ohm Nominal Resistors

Resistance (Ohms)

146 148 150 152 154

1/4 Wall

230 250

Resistance (Ohms)
210

190

172 Waltl

150 Ohm Nominal Resistors

1/4 Watt

200 Ohm Nominal Resistors

=

20 21

2

23

=
1/4 Wan 1/2 Walt
- % o -

é - ".
E o
3
' 5 *
il

24

172 Watt, Nominal 20 Ohm Quantiles (Ohes,)

12 Wall

190 200 210 220

230 240 250

172 Walt, Nominal 200 Ohm Quantiles {Chms)

Both of these plots are relatively linear, except for one large outlier. One would tend to

account for.

33

_overestimate the fraction of resistances near the nominal value, since there will
occasionally be an exceptionally large value which a bell-shaped distribution does not
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(d)

()

Sample z )
1,20 | 1927 .16
$,75 | 7243 .61
1,100 | 96.05 1.44
1,150 | 147.87 .52
1,200 | 196.20 1.82
1,20 | 2049 113
5,75 | 73.87 2.08
1,100 | 99.11 233
3,150 | 149.80 2.83
1,200 | 206.00 15.53

Yes. For each nominal resistance, the sample mean for the —:; watt resistors is larger than
the sample mean for the } resistors, and the sample standard deviation for the 1 resistors

4

are larger than the sample standard deviation for the } resistors.

x=1/2watt, «=1/4 watt

g

Sample Mean Resistance (ohms)
100 150
\“

150 200
Nominal Resistance (ohms)

It shows that the % watt resistors have generally higher resistance than the % watt
resistors, but the difference is not consistent across nominal resistances. Specifically, it
seerns like the difference is greater for larger nominal resistances than it is for smaller

nominal resistances.
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Sample Mean Weight (g)

5.02 5.06

4.98

0.02 0.04

0.0

5 Gram Weighings 20 Gram Weighings
i
2) a 2
2\ / % " \ 1
2 s i
e et ] g 2
bal_——
3 3 3 e 13 3
1.0 1.5 2.0 25 30 1.0 15 20 25 30
Student Student
100 Gram Weighings
% : ;\
= 2
o  ——
:g *
2
5 3 3 a
%
1.0 15 20 25 30
Student
5 Gram Weighings 20 Gram Weighings
1 I - 2
; 9
2 % o
g é 3
2 1 2l &

3 3 t% 2 2 3 '
10 1.5 20 25 3.0 1.0 1.5 2.0 25 3.0
Sludenl Student
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100 Gram Weighings

Sample Slandard Dev. (g)
0.0 005 010 0.15 020

2
2
1%
3 3 3
1.0 15 20 25 ao

Student

Overall, it seems that Scale 3 is more precise than the other 2 scales. Comparison of student
precision is less clear-cut. Scale 3 is less accurate than the other 2 scales; it reads lower than
the other 2 scales, and this is true for all 3 students. Scale 1 may be a little more accurate
than Scale 2. There is some indication that Students 1 and 2 read higher than Student 3, but
this seems to apply only to scales 1 and 2, and is only true for the 100g weight. Variation in
repeated measurements of the same weight on the same scale by the same student
(repeatability) seems to be slightly less than variation due to different students
(reproducibility), but both sources of variation are on the same order of magnitude.

i 5 QU5 Qsv(H)
1 .04 47 -1.75
2 A2 48 =1.17
3 .21 52 -.81
4 .29 86 =55
5 .38 110 -.31
6 .46 116 =10
T .54 122 .10
B .62 145 31
9 = | 149 1
10 .79 172 .81
11 .B8 172 1.17
12 .96 194 1.75

— 52486 _
=542 =69
Median = 1184122 — 19

— 1494172 _

Qs = 18T = 160.5
IQR=915

&= 117.75

s = 51.08

R=147
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Box plot:

T
S l
i8
£s
g -
g 1
Normal plot:
=§ -
T - i
§ ) -
g o ‘ '
3 .
] 5 3
4 71,
5
m -
50 100 150
Lifetime Quantiles (# holes)

The normal plot is roughly linear, indicating that the data are roughly bell-shaped. The
average lifetime of the drills tested was about 118 holes, but the lifetimes ranged from 47 to
194 holes. There were no outliers.

(2) i 5t gizd)  Quy(ixpt)

1 .06 -.0005 -1.56
2 .19 -.0005 -.88
3 .31 -.0005 -.50
@ 44 0 -.15
5 .1 0 15
6 .69 0 .50
T .81 0 B8
8 .94 0005 1.556

Q, = —.0005

Median =0

Qs=0

(b) 2= 000125
s = 000354
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(c) On the average, Student B’s measurements were larger than Student A’s.

(d) (—.0005, —1.55)

B ) i 5 lE) QR Qs
1 .05 3.03 3.19 -1.64
2 .15 5.53 4.26 -1.04
3 25 5.60 4.47 -.67
4 .35 9.30 4.53 -.39
5 .45 5.92 4.67 =13
6 .55 12.51 4.69 13
7 .65 12.95 5.78 .39
8 .75 15.21 6.79 67
g .85 16.04 9.37 1.04
10 .95 16.84 12.75 1.64

Q(.84) = (.9)(16.04) + (.1)(15.21) = 15.957.
(b) (3.03,-1.64), (5.53,—1.04).

(¢) Decimal point is at the colon
Units are millions of cycles

0: 3:2
4 : 36577
Eg.: H 1+ 8
6 : 8
T 3
: 8 :
Compound 1 3 : 9 : 4 Compound 2
10 :
R I
B9 12 : 7
13 :
214 :
2 116 3
og : 18 :

(d) Median, = 2821251 _ 11215 Median, = $673489 — 4 68,

@ .8y

5 wr

= S sl

g s

= + .75

c o

a2l .25

g e s

O o

5 .19

E o LAT] 1 o8

= ¥

= .63 P ik
Cornpound 1 Compound 2
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9.

=
=

- o

' Purity (.01% above 99.00%)

it o o e A

(¢)
()

(a)

(b)

(e)

S0 60 70 80

& = 10.693, s; = 4.818, 33 = 6.05, 55 = 2.915.

The lifetimes of bearings made with Compound 1 are generally longer than those made
with Compound 2, but there is more variability in the lifetimes of bearings made with
Compound 1 than in the lifetimes of those made with Compound 2.

& = 500.24, s = 2.60, Median = 501, IQR = 3.0, R = 27.0. The following histogram is
easily constructed using the data as given.

480 485 490 485 500 505 510
Purneh Height (001 In}

The histogram shows that the distribution is truncated on the right. [t appears that the
supplier has inspected the punches and removed almost all which had punch heights
greater than .505 inches or less than .495 inches. It seems that the supplier’s equipment is
not capable of meeting the specifications, because there would be a fair number of punches
outside of specifications if no inspection were done.

If a cut piece of material has hole diameters with a large amount of variability, it may be
difficult to further process the piece. The punched holes may be filled with another part
that can be made to have a uniform diameter. It may be easy to change the mean
diameter of the filling part to accommodate the mean punch height, but if there is too
much variability in punch heights, it will be impossible to make the filling part so that it
fits consistently.

There do not seem to be any obvious time trends. Early detection of a trend could allow
the manufacturer to search for any problems with the process before it starts producing
unacceptable product. An observed trend may be linked to some known change associated
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with the process, allowing engineers to better control the process.

(b) Decimal point is 1 place to the right of the colon

Units are .01} above 99.00%

O~ =3 3N

: 89999

: 0000122333444
: 5555656666667 777888888999
: 00000000000112222233444444

: B

: BLEGEGETTTTEERR999
: 022333
: B9
: 001
sl
=
o
=

Frequency

0 2 4 6 8

~§ﬁ§ﬁﬁﬁuiﬁ #

50 60
Purity {.01% above 89.00%)

The distribution is right-skewed,

(c) Decimal point is 1 place to the left of the colon
Units are log(.01% above 99.30%)

28
29

31
32

34
35

37

: 9
1 4444
30 :

0000499

: 444888

: 222222666666
33
: 00000000000337TTTT
: '003333336688888

36 :

0000333333777

111144446669

: 44666
38 :
ag
40

179
113
1
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The distribution of the transformed data is much more bell-shaped.

Freguency

0 2 4 6 &8 10 12

LsL

3.0 a2

34 3.6

as

thurﬂy (log(.01% above 89.30%))

(d) Some of the plot coordinates are given in Lhe table below.

Standard Normal Quantiles

i S Qfm)  Qsw(m

1 .005 2.890372 -2.58

2 02 2.944439 -2.05

3 02 2.944439 -2.05

4 04 2944439 -1.75

5 .04  2.944439 -1.75
96 .96 3.891820 1.75
a7 .96 3.912023 1.75
98 98 3.912023 2.08
99 .98 3.931826 2.05
100 .995 4.007333 2.58

. '= -
:"'
.l'.’
.
!
1 ] '
" 1 L]
3.0 3.2 34 36 38 4.0
log{Purity) Quantiles

The plot is quite linear, indicating that the distribution of transformed values is

bell-shaped.
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11.

Time until Failure

Time until Failure
00 02 04 06 08

20

10

':65 Q.s‘r(i;—ﬁs) Q.gsl:!faé} Ql.w(iﬁE‘J Q].la(%

t

1 .05 1.67
2 15 2.20
3 25 2.51
4 .35 3.00
5 .45 3.e0
6 .55 4.70
T .65 7.53
8 .75 14.70
9 -85 27.80
10 .95 37.40

.80
1.00
1.37
2.25
2.95
3.70
6.07
6.65
7.05
7.37

012
.180
.200
.240
.260
.320
320
.420
440
880

073
.098
117
135
175
262
.270
.350
.386
456

If the box plots are drawn on the same scale, the shapes are hard to see.

87

1.09

Time until Fallure

Time until Faifure

03 04

0.2

01

1.18

Based on the locations of the medians relative to the quartiles, all 4 distributions seem to
be right-skewed, and so are roughly similar in shape. It is difficult to clearly see the shape

of any distribution based on only 10 data points.
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— 0

F L A AY TR

1.18 Data Quantiles

.99 Data Quanlites

1.18 Dala Quantiles

-
o
L

&

04

0.3

02

0.1

04

0.3

0.2

0.1

10 20 30
87 Data Quantiles

10 20 30
B7 Data Quaniiles

2 4 &
B8 Data Quanliles

1.08 Data Quanliles 1.09 Data Quantiles

1.18 Data Quantiles

o8

04 08

02

0.0

06 08

02 04

0.0

0.4

o2 03

01

10

20 30
87 Data Quanliles

2 4 6
99 Data Quantiles
L}
02 0.4 0.6 0.8

1.09 Data Quantiles

Relative to the .99 distribution, the .87 distribution has a longer right tail. If it were not
for the outlier from the 1.09 distribution, its shape would be similar to the 1.18 and .99
distributions. The shape of the 1.18 distribution is similar to the shapes of the .87 and .99
distributions.
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12.

13.

Sarnple Mean (10*-3 In » nom)

4 2 0 2 4 6 8

(b)

x = 14 Gauge, » = 16 Gauge x = 14 Gauge, =16 Gauge
] B3

,EZ X

E' ©

(=]

é o
X w0 x
. 1 g . L
10 1.2 14 16 18 20 1.0 1.2 14 186 18 20

Machine Setling (in) Machine Setting (in)

The 14 gauge, 2 inch nominal strips are the farthest from nominal (and are above
nominal), although the machine seems to consistently cut 16 gauge strips to widths below
nominal for both settings. The 1 inch 14 gauge strips are close to nominal on the average,
but these have more variability than the other types of strips. Overall, the 14 gauge strips
seem to have more variability than the 16 gauge strips, and this is more pronounced for
the 1 inch than the 2 inch setting. According to the sample means, the machine should be
set at about 1.0022 inches for 1 inch nominal/16 gauge strips, 1.0011 inches for 1 inch
nominal/14 gauge strips, 2.0033 inches for 2 inch nominal/16 gauge strips, and

1.9914 inches for 2 inch nominal/14 gauge strips.

—#m—— - o St b + - Resistivity
5.20 5.30 5.40 5.50 .60 5.70

QM) Qsn(Hd)

i

1 .04 5.22 -1.75
2 12 5.37 -1.17
3 21 5.45 -.81

4 .29 5.51 -.55
5 .38 5.52 -.31

6 .46 5.53 -.10
T .64 5.53 10

8 .62 5.55 31

9 .71 5.58 .55

10 .79 5.60 B1

11 .88 5.62 117
12 .96 5.69 1.76

Median = 5.53
Qi = 5.45:]:25.51 — 5. 48

QS = 5.58*25.513 = 5.59

44 Chapter 3



£.6

54

flesistivi ‘h{

5.1

£ = 5.514, s = .123. Both plots reveal an outlier.

(b) The plotting positions are given in part (a).

3
B~ .
= -
o P
£ o ;
z
E -
5
= =
g
m -
5.3 54 55 56 57

Resistivity Quantiles

The plot is roughly linear, but it would be more linear if the lower-left point were pushed
to the right. This means that lower tail of the distribution is longer than it would be for
bell-shaped data.

14. (a) i = gi(izd) Qi) Qan(id
1 .05 14 27 -1.64
2 .15 16 28 -1.04
3 .25 17 29 -.67
4 3h 18 29 -.39
) 45 20 29 -13
6 55 22 30 13
T .85 23 31 .39
8 a5 25 31 67
9 .85 27 33 1.04
10 .95 28 34 1.64

 Median = 22§32 = 21, Q, = 17, Q3 = 25, Q(.64) = (.9)(23) + (.1)(22) = 22.9.
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(b) The plotting positions are given in part (a).

!

]

-4

Standard Normal Cuantiles

-

14 18 18 20 22 24 26 28
Lab 1 Quantiles (weeks)

The plot is fairly linear, but there is some indication that the data distribution has shorter
tails than a bell-shaped distribution (the smallest and largest points would need to be
“moved out” to make a perfectly straight line).

(c) 2=21, E=14, s = 4.78.

(d) Decimal point is 1 place to the right of the colon

4 21
678 : 1 :
Lab 1 0231 2 ¢ Lab 2
578 : 2 : 78599
; & 1001134

(¢) For the Lab 2 data: Median = 22432 — 295 Q, = 29, Q3 = 31.

-

Resistivity
20 25 30

15

Lab 1 Lab 2

f) Both plots show that there is less spread in the Lab 2 data, so it produced the more
P P
precise results,

(g) No. You would need to know the “true” long-run average lifetime of these types of
specimens in order to determine which lab is more accurate.
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15. (a)

(b)

16. (a)

(b)

0.500 0.510

0.490

After-Drying Thicknass (in)

-

0.490 0,495 0.500 0.505
Batore-Orying Thickness (in)

0.510

There is a strong positive correlation between before-drying thickness and after-drying
thickness. This relationship may be important in predicting the after-drying thickness
from the before-drying thickness. It would help the manufacturer produce dried boards

closer to .500 in. thick.

The differences are .004, .003, .007, .004, .006, .006, .008, .003, .012, .025, .014, .003.

T4 = .0079, sq = .0064. The ideal before-drying thickness would be about .500 + .0079 =
1 .6079 in., since the boards shrink by about .0079 in. Variability in after-drying thickness

would be reduced, since it is correlated with before-drying thickness. Some would remain

though, since there is variability in the differences (as measured by s4).

Qf5E) Qsn(E

z = 5.381, s = 2.462.
1 0.02
2 0,08
3 -0.12
4 0.18
5 0.22
6 0.28
7 032
8 0.38
9 0.42
10 0.48
11 0.52
12 0.57
13 0.62
14 0.68
15 0.72
18 0.78
17 0.82
18 0.88
19 0.82
20 0.98

| Qq = 2204357 _ 3385, Median = 5.03, Qs = £5947:23 — 6,865,

47

1.73
247
2.83
3.20
3.20
3.57
3.93
4.30
4.67
5.03
5.03
5.40
5.77
6.13
6.50
7.23
7.60
8.33
9.43
11.27

-2.05
-1.41
-1.17
-0.92
-0.77
-0.58
-0.47
-0.31
-0.20
-0.05
0.05
0.18
0.31
0.47
0.58
0.77
0.92
117
1.41
2.05
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t S
2.0 4.0 6.0 8.0 10.0 12.0
— i
(¢) The distribution is slightly right-skewed.
(d) The plotting positions are given in part (b).
g o
. i -
6 S
g o : "
& :
z . -
§ -
=
L
4 6 8 10

Diamneter Quantiles (10°2 pm)

Diameter

(10°-2 pm)

To make this plot more linear, you would need to move the smallest data points to the
left, so the distribution has a shorter left tail than a bell-shaped distribution.

(e) The first 3 coordinates of the plot are (.548, —2.05), (.904, —1.41), (1.04, —1.17).

Standard Normal Quaniiles

05

10 1.5 2.0
log{Diameler Quantiles) {iog{‘soﬁzlp,m;lj

This plot is more linear than the one in (d), indicating that the transformed data are more

bell-shaped.
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17.

(2)

(b)

e
1 .04 79.97
2. na 5t Qal)
4 '27 50'02 1 .06 79.94
5 '35 80'02 2 .19 79.95
6 '42 30‘02 3 .31 79.97
7 '50 80-03 4 44 T79.97
8 .53 80-03 5 .58 79.97
9 .65 80‘03 6 .69 79.98
07w A
11, 81 80.04 ’ )
12 .88 80.04
13 .96 80.05
For Method A:
Median = 80.03
Q1 = (£)(80.02) + (2)(80.00) = 80.015
Qs = 80.04
For Method B:
Median = 79.97
Ql. = “.'9.9."}:]:a ?g.g? = 79.96
Qa — T9.98+480.02 __ 80.00
——'+__z = 80.00.
:
e g
% 8
fre
25
g g ;
z
53
f=]
L5 Methed A Method B

There does not seem to be any important difference in the precisions of the two methods,

but Method A generally produced larger values than Method B. Since there is some fixed

true, theoretical latent heat for the fusion of ice, at least one of the methods must be

somewhat inaccurate.

4 = B80.021, s, = .024, 35 = 79.979, sy = .031. The sample standard deviations are
similar, as reflected by the similar magnitudes of spread in the boxplots. 24 > &g, as
reflected by the location of the boxes on the boxplot.
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18(a) p = .25 implies i = (.25)(10) + .5 = 3" ranked value = 204 = 1% quartile
p =.5 implies i = (.5)(10) + .5 = 5.5 ranked value = 249.5 = median
p = .75 implies i = (.75)(10) + .5 = 8" ranked value = 315 = 3" quartile
p = .62 is .7 of the way from .55 to .65, thus Q(.55) + .7(Q(.65) - Q(.55)) =
294 1

(b)

(i-5)10 z
0.05 -1.64485
0.15 -1.03643
0.25 -0.67449
0.35 -0.38532
0.45 -0.12566
0.55 0.12566
0.65 0.38532
0.75 0.67449
0.85 1.03643
0.95 164485

Normal Probability Plot, Prob 18b

0 100 200 300 400 500 600
sortH1

It seems the distribution is approximately normal for Heat 1.

(c) ¥x=271.8 ands=163.2
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11

00
04,49,50
13,15

57

84

(d)

b= 0

(e) 0 11
H2 96,89,70,63 1 00 H1
67,16,06 2 04,35,49,50
59,50,49 3 13,15
4 57
5 84

H1 is more disperse.

() H1: Q1=204, Q2 =249.5 Q3 =315, IQR = 111
H2: Q1=189, Q2 =211, Q3 =349, IQR = 160
H3: Q1 =185, Q2 = 228, Q3 = 289, IQR = 104

Amongst all Heats, Heat 1 fatigue lives seem to be centered (approximate
average fatigue life) at the largest value and Heat 2 fatigue lives seem to be
the most disperse (most variable).

(19)(a) Notch minus Non-Notch outside diameter measurements can be
accurately evaluated with the current data.

(b) Notch-NonNotch data
-20
10
-40
150
40
-10
-20
0
-20
-20

51 Chapter 3



Dotplot far Natch-Nonnot

T T
. L1}
Hoich-Nennat

The notch measurements seem to be less than the non-notch measurements
when using a Dial Bore (see that most dots are negative).

Q1 for the notch minus non-notch data is -20. Q2 for the notch minus non-notch
data is -15 and Q3 for the non-notch data is 10. The IQR is 30. Thus, the box
plot shows the differences are mostly negatively with a few positive differences.
A non-zero mean for these data suggests there is an important difference in the
diameter measurements for notch vs non-notch sleeves using the Dial Bore. A
large variability of these differences suggests something else besides notch (or
non-notch) is affecting the measurements,

(c) Yes, the plot suggests there is a relationship.

Air Spindler vs Dial Bore for Notch Measurements

I | |
120 20 320
NDB

Large deviations above nominal for Dial Bore are associated with very small or
negative deviations from nominal for the Air Spindler measurments.
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(d) To determine which of the two gages is most precise, the same sleeve needs
to be measured at least twice by both gages for the same "type" of sleeve
(notch or non-notch). The range (R) for each gage on the same sleeve could
be calculated and compared. This could be repeated for several sleeves.

The average of all Rs for each gage could then be compared. The gage with
the largest average R would be the gage with less precision.

20 (a) The first quartile, Q1 = .75(41.1 - 40.3) + 40.3
The 2™ quartile, Q2 = sample median = 42.2
The third quartile, Q3 = .25(43.1-42.8) + 42.8 = 42.875
The 37" quantile is .3099(42.1 - 41.3) + 41.3 = 41.548

(b) No, the distribution does not appear to be normally distributed. One angle is
larger than it should be if the hole angles were all coming from the same
normal distribution.

Normal Probability Plot 20(b)

2 | T | ] T T T ] T

T I T
39 40 41 42 43 44 45 48 47 4B 49
sorted Laser A

(c) The sample average angle is 42.262, the sample range is 9 and the sample
standard deviation is 2.246.
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(d) Laser A EDM

(e) ForLaser A, Q1 =40.9, median =42.2, Q3 =42.875 and the IQR = 1.975
For EDM, Q1 = .75(44.2 - 44) + 44 = 4415 m = 44.6, Q3 = .25(45.3 -45.3) +
45.3=453 and IQR = 1.15.

(f) EDM produced the most consistent results and produced an average angle

closest to the nominal value of 45 degrees.

(g) The two sets of Laser measurements are paired data.
(h) For most pieces of material, the Laser B hole has a larger angle than that
corresponding to the Laser A hole.

Laser A Hole Angle vs Laser B Hole Angle

49 —

47

LaserA
BE28 6L 866
I
L ]

L ]

(i) d =-2.338, s4=2.705 where d = Hole A angle - Hole B angle. « estimates
the average angle difference (Laser A - Laser B) when both methods are
applied to the same piece of material. s4 estimates the standard deviation of
all angle differences (Laser A - Laser B) when both methods are applied to
the same piece of material.
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21 (a) median = .5(534 - 531.6) + 531.6 = 532.8, Q1 = 526.8 and Q3 = 536.6.
Since p = .27, the 27" quantile = .2(531.6 - 526.8) + 526.8 = 527.76.

(b)
Normal Probability Plot for Dial Data

sorted Dial

The Dial hardness data appears to have a normal distribution.

(c) ¥ =532.81, s =5.54 and R = 16.1

(d) Dial Digital
50 1,6
51 4,8,9
6,64 52 2,223
9,6,6,4,11 53 1
0 54

(e) Dial Hardness: Q1 = 526.8, median = 532.8, Q3 = 536.6 and IQR = 9.8
Digital Hardness: Q1 = 514.2, median = 520.7, Q3 =522 and IQR=7.8
Brinnell Hardness: Q1 = 516, median = 534, Q3 = 580.4 and IQR =64 4

(f) The Dial Rockwell was most precise because the range was the minimum
and the IQR was only slightly larger than the IQR for Digital.

(g) No, the true hardness of the sample material is not known, so accuracy
cannot be evaluated.
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22(a) Q1 =245 is the 3" ranked data value because (i - .5)/10 = .25
m = .5(2.67 - 2.48) + 2.48 = 2.575
Q3 =2.71 is the 8" ranked data value because (i - .5)/10 = .75
p = .62 implies the .62 quantile = .7(2.69 - 2.67) + 2.67 = 2.684

(b)

Normal Probability Plot for Design 1 Data

= I T T I | T T | T
240 245 250 255 260 265 270 275 280 285

sort D1

It is clear the data is not normally distributed, i.e., it is not bell-shaped. It
appears the data come from two different populations. The 5 largest data
values seem to come from a different population than the smallest 5 data
values.

(c) ¥=2602,s=.1662, R =2.84 - 2.43 = 41 for Design 1 data.

(d) D1 8,7,5,4,3 24 D2
25
9,726 7,9
127
4,4 28 7
29
30
31
32 9
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(e) Design 1: Q1 =245 m=2575 Q3 =271, IQR = .26,
Range = 2.84 - 2.43 = .41

Design 2: Q1 =2.87, m=3.41, Q3 = 3.5, IQR = .63,
Range = 3.53 - 2.67 = .86.

(f) Design 1 has the most consistent results (minimum range, minimum IQR,
minimum standard deviation). Design 2 has the longest flight times.

(g) If the object of the study was to identify a superior design, dropping 10

helicopters of each design once will identify a helicopter design that
produces superior helicopters.
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Chapter 4: Computationally Intensive Descriptive
Statistics

Section 1
1.  (a) The following table shows the necessary computations.
iozozl v v mw
1 1 1 8 64 8
2 2 4 8 64 16
3 3 9 6 36 18
4 4 16 & 36 24
5 5 25 4 16 20
15 55 32 216 86
=5 i 15)(32
potic — g6 — (15)(32)
!’I:E:r‘y‘ e = 121 =-1.0
pep-Ok - -
_ 32 15
b[} =§- b1=l: = ? — ('—l-ﬂ)? =94
So the least squares equation is
§=9.4-1.0z.
o
[
T ]
L]
=
1 2 3 4 5
X
=)D vs
(®) o 5 oy — 2
3 3
- BT (2 20
g6 . (15)(32)
= H = —.945

\/(55 - 0g2) (216 - 83F)

(c) The necessary calculations are given in the table below.
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3

i 2 oy ¥ ki=94-10z # vidh
1 1 8 64 8.4 70.56 67.2
2 2 B 64 7.4 54.76  59.2
3 3 6 36 6.4 40.96 38.4
4 4 6 36 5.4 29,16 324
5 5 4 16 4.4 19.36 17.6

32 216 32 214.8 214.8

914.8  (32)(33)
= 1as = = .945

J(zw - 822 (2148 - 22)

This is the negative of the r in part (b). Since the g's are on the least squares line, they
are perfectly negatively correlated with the z’s. So the correlation between the §’s and the
y’s is the same as the correlation between the z’s and the y’s, except for a difference in the
sign.

(d) The calculations are in the table below.

2

i w9 % (-9 W—7P e=(@m-%) (u-—5)
1 8 64 84 1.6 2.56 — 4 16
2 8 64 7.4 1.6 2.56 6 36
3 6 64 6.4 —.4 .16 -4 .16
4 6 64 54 —.4 .16 6 .36
5 4 64 44 2.4 5.76 = 16

11.2 1.2

po 2@ -Ylw—-%) _ 112-12
- Y% - 9)? 11.2

This is equal to the square of sample correlation in both (b) and (c).

= .893

(¢) The residuals e; are given in the table in (d). These are the vertical distances from each
data point to the least squares line.

The following printout was produced using Version 9.1 of Minitab.

MTB > info

Column Name Count
c1 y b
c2 X 5

MIB > print ci-c2

ROW ¥ x
i 8 1
2 8 2
3 6 3
4 6 L
] 4 5
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MTB > gstd
* NOTE + Standard Graphics are enabled.
Professional Graphics are disabled.

Use the GPRO command to emable Professional Graphics.

HIB > plot cl c2

F -—
- . *
T . E+
6.0+ * +
4. 5+
s o o ————— e ———— +
0.80 1.60 2.40 3.20 4.00

MTB > regress cl on 1 x variable c2;
SUBC> fits c3;
SUBC> residuals c4.

The regression aquat(iii/
y =9.40 - 1.00 x

Predictor Coef Stdev t-ratio P
Constant (9.4000 ko 0.8633 14.17  0.001
x £1.0000) b, 0.2000 -6.00  0.015
s = 0.6325 R-sq =\89.3% R-sq(adj) = 85.7%

1
Analysis of Variance t“ R
SOURCE DF S5 Ms F
Regression 1 10.000 10.000 25.00
Error 3 1.200 0.400
Total 4 11.200
MTB > name ¢3 ’fits’ c4 ’‘resids’
MTB > corr cl ¢2
Correlation of y and x =
NIB > corr ci <3
Correlation of y and fits =(0.945

60

Jeash spoares line

P
0.0156
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Residuals

MTB > print cil-c4

ROW

(a)
(b)

(c)

100

50

-50

-100

¥ x fits resids
1 8 1 8.4 -0.4
2 8 2 T.4 g.6
3 6 38 6.4 -0.4 (lﬁi&ua'ks
4 6 4 E.4 0.6
5 4 B 4.4 -0.4

R? = .994.

The least squares equation is
iy = —3174.6 + 23.5=.
Py represents the “true” average change in molecular weight that accompanies a 1°C

increase in pot temperature (assuming that a straight-line model is correct). b; = 23.5is a
data-based approximation of this value.

g

Avg. Molecular Weight
2000

1000

160 180 200 220 240 260
Pol Temperalure (dag G) ,

The residuals are: 105.36, —21.13, —60.11, —97.58, 16.95, 14.48, 42.00, and .02.

- § L]
. 3 -
. ™ % « *

g o
E L

- S“ L

- § -
180 200 220 240 260 1000 1500 2000 2500 3000
Pot Temperalure {deg C) , Fitled Values , ?
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Wy .
é —
E B
% g :
Z i
§° '
3
-100 -850 0 50 100
Residual Quanliles

It is difficult to evaluate the appropriateness of the fitted equation based on so little data.
. The plots of residuals versus z and residuals versus § do not contain any obvious patterns,

and thus provide no evidence that the equation is inappropriate. The normal plot of

residuals is fairly linear, providing no evidence that the residuals are not bell-shaped.

t'd) There is no replication (multiple experimental runs at a particular pot temperature).
Replication would validate any conclusions drawn from the experiment, and provide more
information to confirm the appropriateness of the fitted equation.

(e) For z = 188°C,
§ = —3174.6 + 23.5(188) = 1243.1.

For z = 200°C,
§ = —3174.6 + 23.5(200) = 1525.1.

It would not be wise to make a similar prediction at z = 70°C because there is no
evidence that the fitted relationship is correct for pot temperatures as low as = 70°C.
This would be an extrapolation. Some data should be obtained around z = 70°C before
making such a prediction.

(a)

W

10

Tool Life (min) , y

-] . v

400 500 600 700 800
Culting Speed (sipm) , x

The scatterplot is not linear, so the given straight-line relationship does not seem
appropriate. The least squares line is § = 44.075 — .059650z. The corresponding R? is .723.
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(b)

Tool Lite (log(min)) , Ji ( )

6.0 62 64 B6 6.8
Cutting Speed (log(sfpm) | [n (=)

This scatterplot is much more linear, and a straight- lme relationship seems appropriate for
the transformed variables. The least squares line is lny = 34.344 — 5.1857 Inz. The
corresponding R? is .965.
(¢) The least squares line is given in part (b). For z = 550,
Iny = 34.344 — 5.1857 In(550) = 1.6229 In(minutes),

so § = €"%??% = 5.07 minutes. The implied relationship between z and y is

= eﬁo+ﬂ| Inz

"2 e w

With slight rearrangement, this is the same as Taylor’s equation for tool life.

Section 1. The least squares equation is

2
j = —1315 + 5.59z + .042122°.

3000

Avg. Molecular Weight |
2000

1000

160 180 200 220 240 260
Pot Temperature (deg C) , %

RQ — .996, compared with RL = ,994. This is a very small improvement, at the cost of using

&
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a more complex equation.

8 . . 3 . -
g . S :
& 2 &
(=] g =
& &
- - ﬂ "
g 2
180 200 220 240 260 1000 1500 2000 2500 3000
Pot Temperature (deg C) | ¢ Filled Values , §

i .

0 ,

(=]

-0.5

Standard Normal Quantiles

15

-60 -40 -20 0 20 40 60
Residual Quantiles

The residuals here are smaller, as they will always be for a more complex model. There is no
nohcea.blc improvement in the residual plots, compared to those from the straight-line model.
In fu:t the residual plots for the quadratic model look more patterned. The scatterplot of y
versus z also indicates that the quadratic model would be “overfitting” the data. The simpler
ﬂrmghl-—lme relationship seems to be adequate.

For the quadratic model, at z = 200°C,
§ = —1315 + 5.58(200) + .04212(200)* = 1487.2,

which is relatively close to 1525.1 from Ch, 4, Sec. 1, Ex. 3.

2. (a) The least squares equation is
§ = 6.0483 + 141672, — .016944z,.

Assuming the fitted equation is appropriate, this means that as =, increases by 1%
(holding z; constant), y increases by roughly .14167 cm®/g. As 23 increases by 1 minute
(holding z; constant), y decreases by roughly .016944 cm®/g. The R? corresponding to
this equation is .807.
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Residuals

Residuals

(b) The residuals are —.015, .143, .492, —.595, —.457, —.188, .695, .143, —.218.

o2 0.6

-0.2

-0.6

0.2 08

-0.2

-0.6

(c)

0.6

0.2

Residuals

4 8 8 10 12
% NaOH , %,

70 80 20

Time (min} |, 2,

0.5

-0.5

Standard Normal Quantiles

-1.5

50 55 6.0 6.5 7.0

Fitted Values , §

Both the plots of residuals versus 2y and residuals versus i show a

75 06 -04 02

D2 04 06

Residual Quantiles

positive-negative-positive pattern of residuals, indicating that the relationship between 2y
and y is not completely accounted for by the current model. These plots suggest adding
an 23 term. The plot of residuals versus z; is patternless; »; seems to be well represented.
The normal plot of residuals is fairly linear, indicating that the residuals are bell-shaped.

For =3 = 30, the equation is

-

v

For ®; = 60, the equation is

]

For z; = 90, the equation is

g

6.0483 -+ .14167z, — .016944(30)
5.53998 -+ .14167z;.

6.0483 + 14167z, — .016944(60)
5.03166 + .14167z;.

= 6.0483 + .14167z, — .016944(90)

4.52334 + .14167z;.
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H‘.’ : %= 30 min. _bs'yn 3 - L0
b = 6O min,
4 =90 min.

Specific Surlace Area (cm*3/g) |
7

2 4 & 8 10 12 14 16
% NaOH , 3¢,

The fitted responses do not match up well, because the relationship between y and z,
(%NaOH) is not linear for any of the z; values (Time).

(d) At z; = 10% and z3 = 70 minutes,
7 = 6.0483 + .14167(10) — .016944(70) = 6.279 cm®/g.

It would not be wise to make a similar prediction at 2y = 10% and z; = 120 minutes
because there is no evidence that the fitted relationship is correct under these conditions.
P This would be extrapolating. Some data should be obtained around z; = 10% and

z3 = 120 minutes before making such a prediction.

(e) The least squares equation is
§ = 4.9833 + .2602; + .00081z5 — 001972z, 22,

and the corresponding R? is .876. The increase in R? from .807 to .876 is not very large;
using the more complicated equation may not be desirable (this is subjective). Residual
plots for this more complicated equation should also be examined before evaluating its
appropriateness.

fli

(f) For z; = 30, the equation is

§ = 4.9833 + .260z; + .00081(30) — .0019722,(30)
= 5.0076 4 .20084z;.

For z; = 60, the equation is

4.9833 + 260z, + .00081(60) — .00197234(60)
= 5.0319 + .14168z,.

I

Y

For z3 = 90, the eguation is

§ = 4.9833+ .260z, + .00081(90) — .001972z,(90)
5.0562 -+ 08252z,
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Section 1.

3

(g)

(h)

(a)

Specific Surface Area (cm"3/g) Y
7

2 4 6 8 10 12 14 16
% MNaOH | =,

The new model allows there to be a different slope for different values of 23, so these lines
fit the data better than the lines in part (c). But they still do not account for the
non-linearity between z; and y. An equation with an 2} term would fit much better.

There is no replication (multiple experimental runs at a particular NaOH-Time
combination). Replication would validate any conclusions drawn from the experiment, and
it would allow for better comparisons among the different possible fitted equations.

This data has a complete (full) factorial structure. The straight-line least squares equation
for =, is ’

i = 5.0317 + .14167=2;
with a corresponding R? of .594. The straight-line least squares equation for z; is J
1= 7.3233 — 01694z,

with a corresponding R? of .212. The slopes in these one-variable linear equations are the

same as the corresponding slopes in the two-variable equation from (a). The R? value in

(a) is the sum of the R? values from the two one-variable linear equations. ;
1
E
1
:

The averages needed are given in the table below.

TIME (Factor B)
30 60 90
f12 = 5.60
T2z = 5.85
faz = 7.30
f.2 = 6.250

1. = 5.863

3.0
9.0
15.0

11 = 5.95
721 = 6.22
31 = 8.36
E-l = 6843

fla = 5.44
fas = 5.61 =5.893
Gas = 6.43 | §a. = 7.363
7.2 = 5.827 | §. = 6.507

% NaOH
(Factor A)

$| SI ll:tl
|

The fitted main effects are

a; =i — 3. =—.643
ay = §a. — §.. = —.413
a3 = §a. — .. = 1.057
=y —§.=.537
by = §3 — .. = —.057
by = §.3 — §.. = —.480
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The fitted interactions are

abyy = g1 — (3. + a1+ b)) = —.250
abiz = 1z — (§. + a1 + b2) = —.007
abiz = 13 — (§.. + a1 + bs) = .257
aby; = §21 — (§. + a2+ b)) = -.210
abyz = §2; — (§.. + a2 + bg) = .013
abzz = §23 — (§.. + a2 + ba) = .197
absy = @31 — (§.. + aa+ by) = .460
absz = §az — (§.. + aa+ by) = —.007
abss = a3 — (9. + as + bs) = —.453.

=

g Key: 3 = 20 min. 3

E V50 o

g 9 = J0 min. &

g ; /9
r____________..-—--'a

%“ ;ﬂg/

& un

2 4 <] B8 10 12 14 16
% NaOH , Factor A

The fitted interactions abs; and abss are large (relative to the fitted main effects)
indicating that the effect on y of changing NaOH from 9% to 15% depends on the Time
(non-parallelism in the plot). The a's are somewhat larger than the b's, indicating that
Time has a slightly gmaller overall effect than %NaOH. Overall, increasing Time decreases
the specific surface area and increasing % NaOH increases the specific surface area.
However, in each case the size of the change depends on the level of the other factor. It
would not be wise to use the fitted main effects alone to summarize the data, since there
may be an importantly large interaction between the two factors.

(b) For the factor-level combination with Factor A at level i and Factor B at level 7, the
fitted/predicted response for a “main effects only” model is computed as

1=9. +a+b

The 9 fitted/predicted responses are given below.

1 =9.+a;+b =620
Y12 =§. +ay + by = 5.61
Y13 =F.+a; +by = 5.18
Y21 =§.+a2+b; =643
Y2z = §.. +ag + by = 5.84
Y2z = ..+ ag + by = 5.41
Ya1 = §. +az+ b = 7.90
fa=1.+aa+by =731
Ysa = §.. +az + by = 6.88
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Residuals

(<)

00 02 04

04

Specific Surface Area (cm*3/a)

Like the plot in Chapter 4, section 2, problem 2

8 10 12 14
% NaOH , Facter A

16

the fitted values for each level of B

(2z3) must be parallel; no interactions are allowed. However, unlike Ch. 4, sec. 2, prob. 2, the
current model allows these fitted values to be non-linear in z;. Factorial models are
generally more flexible than lines, curves, and surfaces.

The computations are given in the table below. (Note: § represents the average of all
observations. It is equal to fi. only because all the sample sizes are equal.)

2 _ 2w —9) — Tly —:)* _ 7.2972— 6285 _
R* = = 9)? = = 914.

i W ¥ B (-9) (M-9)° e=(w—&) (w-9)?
1 5.95 8.307 6.200 —.357 27 —.250 .063
2 5.60 6.307 5607 —.707 499 —.007 000
3 544 6.307 5183 —.867 751 257 066
4 622 6.307 6430  —.087 008 —.210 044 '.
5 585 6.307 5837 —.457 209 013 .000 :
6 5.61 6.307 5413 —.697 485 197 .039 1
7 836 6.307 7.900  2.053 4.218 460 212
8 7.30 6.307 7.307 993 987 ~.007 .000
9 6.43 6.307 6G.B83 123 015 —.453 208
7.2972 6285

hbndieda il Ll ot b Sl R B

The residuals e; = y; — #; are given in the table above.

7.2972

yo—.

|
|
|

Reasiduals
no 02 04

04

4 6 8

10

12

%NaOH , =%,

14

30 40

69

50 60 70 80 a0
Time (minules) y Xa
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Residuals

00 02 04

0.4

(2)

(b)

0.5

-0.5

Standard Normal Quanliles

-1.5

-

55 6.0 6.5 7.0 7.5

Fitled/Predicled Values , <)

8.0 -0.4 -0.2 0.0 02

Residual Quantiles

04

The plots of residuals versus Time and residuals versus §; both have patterns; these show
that the “main effects only” model is not accounting for the apparent interaction between
the two factors. Even though R? is higher than both of the models in 4-8, this model does
not seem to be adequate.

Using the Yates algorithm:
Combination ] Cyclel Cycle?2 Cycle 3 Cycled + 8
) 21.0100 42.8333  54.843  166.337 20.7921 = ..
a 21.8233 12.0100 111.493 903 1129 =a3
b 6.0067 95.5633 810 —110.457 —13.8071 = ba
ab 6.0033 15.9300 093 —.680 —.0863 = abys
c 47.7900 5133 -=30.823 56.650 7.0812 = ez
ac 47.7733 —.0033 -T79.633 =717 —.0896 = acaa
be 7.9100 -—.0167 —.B17 —48.810 —6.1012 = begz
abe 8.0200 .1100 127 .943 JA179 = abegz;

Other fitted effects can be obtained I;y appropriately changing the signs of the fitted

effects in the last column. Since b3, €3, and bcag are relatively large, the simplest possible
interpretation is that Diameter, Fluid, and their interaction are the only effects on Time.
Generally, the .314 diameter (B +) results in shorter times than the .188 diameter (B -),
and this is reflected by the negative sign of b;. Also, ethylene glycol (C +) results in
longer times than water (C —), and this is reflected by the positive sign of ;. The negative
sign of beyy indicates that the decrease in time due to changing the diameter from .188 to
.314 is smaller for water than it is for ethylene glycol. All of these observations are
consistent with simple graphical summaries of the sample means.

Combination § Cyclel OCycle2 Cycle3d Cycle3 =8

(1) 3.04497 6.12795 9.7130 21.5936 269920 = g..

a 3.08298 3.58506 11.8806 0507 00634 = aj

b 1.79282 T7.73100 0374 -6.1243 —. 76554 = bz

ab 1.79224  4.14960 .0133 —.0251 —.00314 = absy;
c 3.86554 03801 —2.5429 2.1676 27005 =3

ac 3.86547 -—.00058 —3.5814 —.0241 —.00301 = acyy
be 2.06811 —.00007 —.0386 —1.0385 —.12981 = beyz
abe 2.08149 .01338 0134 .0520 00650 = abeqaz

Yes, but the Diameter x Fluid interaction still seems to be important.
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Residuals

0.0

(c)

0.2

o1

0.1

Using the reverse Yates algorithm:

Fitted Effect Value Cyclel Cycle2 Cycle3 (3)

abeazz 0 0  .27095 2.20461 = g,
beaz 0 27095 1.93366 2.20461 = f,
aca; 0 -—.76554 .27085 3.73569 = fac
€2 27095 2.69920 1.93366 3.73569 = fic
absg 0 0 .27095 1.66271 = g,y
ba —.76654 27085  3.46474 1.66271 = i,
as 0 —.76554  .27095 3.19379 = §a
g... 2.69920 2.69920 3.46474 3.19379 = jy)

There will be a total of 24 residuals, one for each observation. To compute the residuals,
take each (transformed) observation and subtract the §j that corresponds to the factor-level
combination from which the observation came. For example, ﬁ“] = 3.19379 should be

subtracted from the natural logs of each of the 3 observations from combination (1), 21.12,
21.11, and 20.80, producing the 3 residuals —.143569, —.110963, and .138995.

i = the average of all 24 observations = 2.69920. (This is equal to ... in this case because
the data are balanced—all sample sizes are equal.) Use this and the 24 residuals e; to
compute &?:

R - Lm—9)?- E(m — &)
Slw—9)?
Ywm-9 -3¢
v —9)?
16.25126 — 424197
16.25126

A model with all factorial effects is a2 “saturated” model. The fitted/predicted values for
this model will exactly match the §'s for each factor-level combination. The residuals for
this model are just the differences between each observation and the sample mean from itl'"
combination. The resulting R? is .995.

=.974

. - g1
. 3 |
- - F‘ . H ll
. § & 18 !
e i
- |
g =
; s 1 3
d g : ! I
dl’
1 z 020 022 024 026 028 030
Technician , A Diameter (in.} : &
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0.0

-0.1

(d)

T o :
' : ! :
H (=1 H
8
2 o
g =
’ | = i '
g ! : ]
Vater Ethylene 1.5 20 25 a0 as 4.0
Fluid , C Ghyeel Fitted Values , §
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g o
-0.1 0o 01 02
Residual Quantiles

The plots of Residuals versus Technician, Diameter; and Fiuid all show that there is a gap
in the residuals; there are no residuals near zero. The plot of residuals versus § shows a
positive-negative-positive pattern. All of these plots show that the current model is
inadequate (even though its R? is high). It does not account for the apparent interaction
between Diameter and Fluid.

If you believe that there are no interactions, there is an approximate by — by = 1.532
In(sec) decrease in log drain time. The change in raw drain time is then a multiplicative
change. You would need to divide the .188 raw drain time by €532 to get the .314 raw
drain time. This suggests that (.188 drain time/.314 drain time) = €532 = 4.63; the
theory predicts this ratio to be

1
G _ 718,
(s
Interpolation, and possibly some cautisus extrapolation, is only possible using surface-fitting

methods. In many engineering situations, an “optimal™ setting of quantitative factors is

sought. This can be facilitated by interpolation (or extrapolation) using a surface-fitting
model.
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Section
4

Section

1.

1.

Transforming data can sometimes make relationships among variables simpler. Sometimes
non-linear relationships can be made linear, or factors and response can be transformed so
that there are no interactions among the factors. Transformations can also potentially make
the shape of a distribution simpler, allowing the use of statistical models that assume a
particular distributional shape (such as the bell-shaped normal distribution).

In terms of the raw response, there will be interactions, since zy and =3 are multiplied
together in the power law. The suggested plot of raw y versus 2, will have different slopes for
different values of z;. This means that the effect of changing zy depends on the setting of z3,
which is one way to define an interaction.

In terms of the log of y, there will not be interactions, since z; and z; appear additively in the
equation for Iny. Therefore, the suggested plot of Iny versus z; will have the same slope for
all values of z;. This means that the effect of changing =, does not depend on the setting of
z3 (there are no interactions).

A deterministic model is used to describe a situation where the outcome can be almost exactly
predicted if certain variables are known. A stochastic/probabilistic model is used in situations
where it is not possible to predict the exact outcomé. This may happen when important
variables are unknown, or when no known deterministic theory can describe the situation.

An example of a deterministic model is the classical Economic Order Quantity (EOQ) model
for inventory control. Given constant rate of demand R, order quantity X, ordering cost P,

and per unit holding cost C', the total cost per time period is

e (#) e
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End 1. (a) The following table shows the necessary computations.
Chapter

Exercises 2

o z; Yi v i
45 2025 2954  8T26116 1329.30
.45 .2025 2913 8485569 1310.85
.45 2025 20923 8543929 131535
.50 .2500 2743 7524049 1371.50
50 2500 2779 7722841 1389.50
.50 .2500 2739 7502121 1369.50
.55 .3025 2652 7033104 1458.60
.55 .3026 2607 6796449 1433.85
.66 .3025 2583 6671889 1420.65
4.5 2.265 24893 69006067 12399.1

WO 00~ WU R B | e

s — (2200 3¢ _ (4.5)(24893)
b = SO s 12399.1 20 sie0
Y2 - azd 2.265 — 5L

4.
bo=9—biZ= @% - (—:ium;uT5 = 4345.889

So the least squares equation is

§ = 4345.889 — 3160z.

2800

Strength (ps) , y

2700

044 046 048 050 052 054 056

Waler/Cement Ralio , x

(b) S m (3 =)(329)

Ty
S

\/(EE?— LE:—E) ('Ey? = E:—E)

_ (4.5)(24893)
E 12399.1 3 = Bk

\[(2.255 — (431%) (69006067 — (2453307

Since r is negative and close to —1, there is a strong negative linear relationship between
Water/Cement Ratio and 14-Day Compressive Strength.

(c) Since this is a straight-line model, R* = r* = .968.
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(d) The residuals are 30.11, —10.89, —.089, —22.89, 13.11, —26.89, 44.11, —.89, and —24.90.

(e)

(f)

Ih_ - -
§ -
=
=] ‘ *
= W0
P9 *
g -
5 8
-20 o 20 40
Residual Guantiles

The normal plot of residuals is fairly linear; this implies that the residuals are roughly
bell-shaped. There are no outliers.

For z = .48,

§ = 4345.889 — 3160(.48) = 2829.09 psi.

The following printout was produced using Version 9.1 of Minitab.

MTB > print cl c2

ROW Strength Ratio

1 2954 0.45
2 2913 0.45
a3 2923 0.45
4 2743 0.50
5 2779 0.50
6 2739  0.50
7 2652 0.55
8 2607 0.55
) 2583 0.55

MTB > regress ci on 1 x variable c2;
SUBC> fits c3;
SUBC> resids c4.

The regression equation is / |eas
Strength = 4346 - 3160 Ratio

Predictor Coef Stdev t-ratio p
Constant (3345.9) be 109.6 39.66  0.000

Ratio (-3160.0) b,  218.5 -14.47  0.000
s = 26.76 R-sq R-sq(adj) = 96.3}
T
R

Analysis of Variance

SOURCE DF S5 MS F P
Regression 1 149784 149784 209.24 0.000
Error T bO11 Ti6

Total g 184795
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MTB > mame c3

Correlation of Strength and Ratio

MTB > print cl-cd

ROW Strength

29564
2913
2923
2743
2779
2739
2652
2607
2583

00 ~dMmbh WK R

'fite?
MTBE > corr ci c2

Ratio

Lo =T = I = I = Q= = g = i =

.45
.45
.45
.50
.50
.50
.B5
.Bb
.Bb

c4 ‘resids’

fits

2923

2807
2607

76

.89
2923.
2923,
2765.
2765.
2765,
2607.
.B9
.89

89
89
89
89
89
B89

W=y
o

resids

30

-10.

-0

-22,

1111
8889
. 8889
8889
1111
. 8889
L1111
.8889
.8889

rssid“d"s
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2. (a)

There is no replication (multiple experimental runs at a particular jetting size).
Replication would validate any conclusions drawn from the experiment, and provide more
information to confirm the appropriateness of any particular fitted equation.

(b) The least squares line is

(<)
()

(b)

§1, = 13.731 + .01414z.

The least squares quadratic equation is

fig = 103.989 — 2.5343z + .017946z°.

Elapsed Time (sec), y
148 150

14.6

144

64 66 68 70 72 T4 T8 78
Jetting Size |, ¢

7 — . - -
R} = .066; R, = .969.

You want to minimize the least squares quadratic equation with respect to z. To do this,
take the derivative with respect to z, set it equal to zero, and solve for z:

dﬁQ
dz
—2.5343 + 2(.017946)z

]

So mopt = 70.61. Note that the data point corresponding to = = 70 has a smaller actual
time than the § corresponding to z,pnt. (This can be seen in the plot.) More data should
be obtained to validate the relationship.

This data has a complete (full) factorial data structure. There is no replication (multiple
experimental runs at a particular Temp-Time combination). Replication would validate
any conclusions drawn from the experiment, and provide more information to confirm the
appropriateness of any particular fitted equation.

For the first equation,
§ = —515.15 + .35667z; + .01069z,
with corresponding R? = .886 For the second equation,
§ = —528.46 + 35667z, + 3.711Inz;
with corresponding R? = .889. For the third equation,
§=—424+ .03112, — 93.72Inz; + .065262; In =3

with corresponding R? = .962. The 1st equation is the least complex, followed by the 2nd
and then the 3rd equation. The 3rd equation’s #? value is much larger than the first two;
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Residuals

Residuals

because of the large size of this increase, it seems that the 3rd equation would predict y
better even though it is more complex.

(c) The residuals are 1.17078, 1.36828, 3.20428, —1.15724, —4.80582, —5.70360 2.514T§

07997, and 4.20851

(d)

' &
:
&
1440 1460 1480 1500 1520 1540

Temperature 4 X,
@
=2
—
* &
3
Q
-4
E
- z ﬁ

10 20 30 40 50

Fitted Values ,

15

0.5

0.5

-1.5

Time 3 * z
4 2 o 2 4

Residual Quanliles

Both the plots of Residuals versus z; and Residuals versus § show a
positive-negative-positive pattern, indicating that the relationship between z; and y is not)
completely accounted for by the third equation. These plots suggest adding an z7 term.
The plot of Residuals versus In z; is patternless; z; seems to be well-represented. The
normal plot of residuals is fairly linear, indicating that the residuals are bell-shaped.

There are no outliers.

For =; = 1443, the equation is
For £; = 1493, the equation is
For z; = 1543, the equation is

= 2.4773 + .45018 In z;.

¥ = 4.0323 + 3.71318In z,.

= 5.5873 + 6.97618 In z5.
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(e) For z; = 1500 and z3 = 500,

(£)

Grain Size ( ,m‘)
40 B0

20

5
leg(Time)

6 7
'I‘Q"jil.

Key: | = 7993 K
2= 493 K
2, = |s43 K

The 3rd equation allows there to be a different slope for different values of z1; a similar

plot for the 2nd equation would have parallel lines because the 2nd equation does not

allow for different slopes.

§ = —42.4 + .0311(1500) — 93.72In(500) + .06526(1500)(In(500)) = 30.16 um.

60

40

Grain Size f'p.m'}

20

2 =492 K
2 =543 K

The non-parallelism in the plot indicates that there may be an interaction between

log(Time)

Temperature and Time. The effect on y of changing Temperature seems to depend on the
Time. It would not be wise to use the fitted main effects alone to summarize the data,
since there may be an importantly large interaction.

The averages needed are given in the table below.

TIME (Factor B)
20 120 1320

1443 | g =5 iz =86 Yia=9
TEMPERATURE o5 - e
1543 i3 = 29 faz = 38 fza = 60 42.33
2= 160 | 7.3 = 20.33 | 5.3 = 31.33 23.56

The fitted main effects are
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ay = {jy. — §. = —15.89
az = ffa. — §.. = —3.89
a3 =13 —§.=19.78
by =%1—%. = —6.58
ba=19.3—-1%.=-2.22

ba=gas—§. =8.78
The fitted interactions are

aby; = Yii — (ff +aj + ﬁl) = 4.89
aby; = Y1z — I:f,l" +aj b:] = 1.56
abyz = fijz — l:§ + a; + I[.'g) = —06.44
aby; 21 — I:'g' + a3z + b1] = 1.89
abyz = fizn — (fl' 4+ ay + bz) = ,b6

nni

abaa = ¥g3 — (0. +az+ b3) = —2.44
abay = §a; — (§.. + aa + by) = —6.78
absz = §az — (.- + a3 + by) = —2.11
abag = ij33 — (§.. + a3 + ba) = 8.89.

() There is no replication (multiple experimental runs at a particular factor-level
combination). Replication would validate any conclusions drawn from the experiment, and
provide more information to confirm the appropriateness of any particular model.

(b) Using the Yates algorithm:

Combination J Cycel Cycle2 Cycle3d Cycle3 + 8

(1) 6.7 18.6 43.6 88.1 11.0125 =g...

a 11.9 25.0 44.5 31.7 3.9625 =a,y

b 8.5 21.4 13.2 8.1 1.0125 =b,y

ab 16.5 23.1 18.5 3.7 4625 = aby

c 6.3 5.2 6.4 9 A128 =¢p

ac 15.1 8.0 1.7 5.3 6625 = acay
be 6.7 B.8 2.8 —4.7 —.5875 = bega
abe 16.4 9.7 9 -1.9 —.2375 = abeax

The fitted main effects for A and B are much larger than the rest. The positive signs of as
and by indicate that setting A and B at their (+) levels (1.2 and 40 mol % respectively)
results in the largest impact strength. This confirms the pattern in the raw data.

(¢) Using the reverse Yates algorithm:

Fitted Effect Value Cycle 1 Cycle2 Cycle 3 (§)

abc;:g 0 0 0 14.975 = f"a.hc
beay 0 0 14,975 7.050 = gy,
acyz 0 0 0 14.975 = gac
cz 0 14.975 7.050 7.050 = f¢
abzs 0 0 0 14.975 = ﬁab
ba 0 0 14.975 7.050 =gy,
az 3.9625 a 0 14.975 =1,
... 11.0125 7.050 7.050 7.050 = ﬁ(l)

Since the model only includes the main effect for A, only the level of A affects the fitted
values.

The following table shows the computations necessary to compute R?. (Note: § represeifh
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the average of all observations. It is equal to §... only because all the sample sizes are
equal.)

i 7 % (-9 (w—-9)° e=@m-%) (u-&)?
1 6.7 11.0125 T7.060 —4.3125 18.5977 —.35000 .12250
2 11.9 11.0125 14.975 B8T5 JT8TT —3.07500 D§.45564
3 85 11.0125 7.050 —2.5125  6.3127 1.45000  2.10250
4 165 11.0125 14.975  5.4875  30.1127 1.52500  2.32562
5 6.3 11.0125 7.050 —4.7125 22.2077 75000 56250
6 151 11.0125 14.975 4.0875 16.7077 12500 1562
7 67 11.0125 7.050 —4.3125 18.5977 —.35000 112250
8 16.4 11.0125 14.975 b.3875 29.0252 1.42500 2.03062

142.35 16.738

B = Yow — )7 - Xo(w — &)
Y (w -1
142.35 — 16.738
14235 iERE

(d) The least squares equation is
7 = 3.088 + 9.906z.

Since there are only 2 levels for A, the least squares line goes through the sample mean of
the observations at # = .4 and the sample mean of the observations at ¢ = 1.2. These
sample means are precisely the fitted values for the model in (c), so the curve fitting
model fits the same as the one in (c). (The fitted values and R? are the same as in (c).)

h,,ﬁl_gﬁtﬂ‘-ﬂ‘F

(a) Using the Yates algorithm, aatucel logs, not natueal log of fmmrl{ Mean

s

Combination E-:l; Cyclel Cycle2 Cycle3d Cycled =8

(1} 2.56495 6.882356 12.8817 26.4969 3.31211 =lny..
a 4.31740 5.99934 13.6152 6.5991 82488 = a;

b 2.24990 7.22331 3.2520 -—1.T144 -.21430 =b,

ab 3.74943 6.39190 3.3471 —.3912 —.04890 = aby;
c 2.74032 1.76245 —.8830 .7335 09169 = ¢

ac 4.48290 1.49863 —.8314 .0851 011889 = acys
be 2.393756 1.74267 —.2529 .0516 00645 = begg
abe 3.99816 1.60441 —.1383 1147 01433 = abeazs

The fitted main effect for A is much larger than the rest. Also, the fitted B main effect is
at least twice as large as the rest. ay is positive, which means that the .7 mm lead requires
more clips to break than the .5 mm lead (this is obvious from the raw data). On average,
it takes about 1.65 more log(clips) to break .7 mm lead than it does to break .5 mm lead.
In other words, the number of clips needed to break .7 mm lead is ¢'%% = 5.21 times the
number of clips needed to break .5 mm lead. Lead hardness (Factor C) does not seem to
play an important role in determining this kind of breaking strength.

A A
(b) Iny,p. = Iny... +a = 3.31211 4 .82488 = 4.13699 In(clips). Exponentiating,

i = e*135%9 = §2 6. This is a bit higher than the data for this factor-level combination,
because the main effect for B was not taken into account.

(c) For one thing, you would not want a model to predict a negative number of paper clips,
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(2)

(b)

(d)

(a)

(b)

()

and this would be prevented by analyzing the data on the log scale. There may also be a
power law that governs the breaking strength of this material, in which case taking logs
would eliminate interactions among the factors.

Using the Yates algorithm,

Combination y Cyclel Cycle2 Cycle3 Cycled 8

(1) 2,348  4.428 8.706  18.152 2.2690 =7..

a 2.080 4.278 9.446 ~.656 —.0820 = ay

b 2.208 4,668 —.586 —.040 =.0050 =b;

ab 1.980 4.778 —.070 —.040 —.0050 = abay

c 2.354 —.268 —.150 740 0025 =3

ac 2.314 -.318 110 516 0645 = acys
be 2404 —.040 -.050 260 0325 = beaz
abe 2374 —.030 .010 .060 0075 = abesaa

On average, 6 mesh particles result in greater densities, since a3 is negative. Also, on
average, vibrated cylinders result in greater densities, since ¢; is positive. However, since
there is an interaction, the size of the change in density when going from unvibrated to
vibrated cylinders is not the same for 6 mesh particles as it is for 60 mesh particles.
Specifically, since acy; is positive, the increase in going from unvibrated to vibrated
cylinders is larger for 60 mesh particles than it is for 6 mesh particles. A careful look at
the sample means confirms this.

fiabe = V- + Gz + €2 + acaz = 2.2690 — .0820 + .0925 + .0645 = 2.344 g/cc.

Since there seems to be an interaction between A and C, the answer to this question really
depends on whether 6 or 60 mesh particles are used. If you believe that the AC
interaction is unimportant, then the average change would be

ay —a, = .0820 4 .0820 = .1640 g/cc, regardless of the mesh size.

The least squares equation is

§ = 54234 80.51z; — 40463 + 137.2za+ .UBS'IT#E + 275.72; —_ 3.933!%
—9.130z,27 — .94272;23 + 28.602323

and the corresponding R? is .938. This equation is not very simple nor easy to interpret.

The least squares equation is
§ = 3.865 + 4.9504z2) — 5.6537z; — 3.503025

with corresponding R? = .967. A decrease of about 3.5030 log(cycle) accompanies a
1 In(g) increase in z3.

The regression equation is

§f = 1571 + 5.1650(z} — z}) — 3.5030z}
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There are no strong patterns in the residual plots, and the R? value is very high for such a
simple model. The equation seems to summarise the data well, and is much simpler than
the one from (a). The implied power law is

l.'.'ﬂ’c'ﬂ" Inzy g lﬂ-lreﬂ: Inzy

8
o (2)" a2
T3

y =
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(d) For z; = 300, z3 = 9, and z3 = 45,

' = 1571 4 5.1650(In(300) — In(9)) — 3.5030In(45) = 6.348,

so § = e%34% = 571. For z; = 325, 2; = 9.5, and =3 = 47,

§' = 1.571 + 5.1650(In(325) — In(9.5)) — 3.5030In(47) = 6.329,

g0 § = €539

= 561. It would not be wise to make a similar prediction at z; = 375,

z3 = 10.5, and z3 = 51 because there is no evidence that the fitted relationship is correct
under these conditions. This would be an exirapolation. Some data should be obtained
under conditions like these before making such a prediction.

8.  The averages needed are given in the table below.

PROPELLANT (Factor B)

Lighter Carburetor
Fluid Gasoline Fluid
cnﬁraﬂif:f]lzii 25ml | §1; =538 | §12= 76.6 | §13 =84.6 | §1. = 71.67
5.0ml | §a1 = 64.0 | §a2 = 93.8 | 23 =084 | g2 =854
§.1 = 58.9 | §.p = 85.2 fa =915 f.. = T8.53
The fitted main effects are
] = gl- —y_ = —B6.87
az = §z. — §.. = 6.87
by =44 —§.=-19.63
by =§.2 —§. = 6.67
by = g3 —#.=12.97
The fitted interactions are
abyy = 11 — (§. +ay + b)) = LTT
abip = f1z2 — (§.. + a1 + b3) = —1.73
abyz = §1a — (§.. + @y + ba) = —.03
abyy = §21 — (#.. + a2 + b)) = - 1.77
abaz = Y2z — (§.. + @z + b2) = 1.73
abyz = §23 — (§.. + az + ba) = .03
]
— ; Ke‘f s w =28 M.q—
3 x =5.0md
8 8
8
a8 R
b
a2
Lighter Gassline Cnr'blAI-t"."dr
Fluid Propeliani i
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The plot shows near parallelism, indicating that interactions may be small and unimportant.
This is also reflected in the fitted interactions, since they are small relative to the fitted main
effects. If interactions are assumed to be unimportant, it then makes sense to summarize the
results in terms of the main effects only. Both factors seem to have an effect, but Propellant
appears to have a slightly larger effect than Charge Size. For each Charge Size, gasoline and
carburetor fluid result in longer distances than lighter fluid. Carburetor fluid gives slightly
longer distances than gasoline, Switching from lighter fluid to gasoline results in an increase of
about bz — by = 26.3 feet, and switching from gasoline to carburetor fluid increases the
distance by about b3 — b; = 6.3 feet. For each Propellant, the 5.0 ml charge results in a longer
distance. The increase in distance due to changing Propellant from 2.5 to 5.0 ml is about

a3 — a1 = 13.73 feet.

(2) Using the Yates algorithm:

Combination § Cyclel Cycle2 Cycled Cycle4 Cycled = 16

Ti} 9 79 128 223 282 1T835 =3.
a 70 50 94 59 184 11.600 = a3
b 8 68 17 149 —96 —6.000 = b,
ab 42 26 42 35 -4 ~4.625 = aby;
c 13 9 85 -7l —10 —.626 =r¢e;
ac 55 8 54 ~25 —24 ~1.500 = acjyz
be 7 33 9 =57 —36 —2.250 = bcyg
abc 19 ] 26 —17 —26 —1.625 = abezyg
d 3 61 —28 —35 —164 —-10.250 = dj
ad 6 34 —42 25 —114 ~7.125 = ad;;
bd 1 42 -1 —4] 46 2875 = bd;;
abd T 12 —24 17 40 2.500 = abdizg
cd 5 3 —-27 -13 60 3.750 = edy;
acd 28 6 -30 -23 o8 3.625 = acdyn
bed 3 23 3 -3 =10 —.625 = bedaog
abed 6 3 —-20 —23 —20 —1.250 = abedzzsn

The dominant effects seem to be the A, B, and D main effects, and the AxD and AxB
interactions.

rain
(b) Using the fitted effects and interactions identified in (a), the reverse Yates algorithm gives

Fitted Effect Value Cyclel Cycle2 Cycle3 Cycle 4 (3)

abedazzsg 0 0 0 -—17.375 1250 = jabcd
bedaag 0 0 -—17.375 18.500 1.626 = §p.4
acdzqg 0 0 (1} —3.125 2237 = !:'a.cd
cdaz 0 -=-17.375 18.500 4.750 4375 = ﬁcd
abdagg 0 1 0 -17.375 1125 = ﬁabn:l
bdya 0 0 -3.125 39.750 1.625 = ﬁbd
adz; =7.125 —10.625 0 —3.125 22375 = g'ad
d —10.250 20,125 4.750 7.500 4.37% = i‘d
abeaza 0 0 0 -—17.375 35.875 = §.pc
beyg 0 0 =17.375 18.500 T8l = f'"bc
aczz 0 0 0 —-3.126 ar.12s = i'a,c
c3 D —3.125 39.750 4.750 10.625 = ye
abz; —4.625 0 0 ~17.375 35875 = f"ab
by —6.000 0 -3.125 30.750 7.8T8 = 3

az 11,600 -1.376 0 —3.125 567.125 = ga
T 17.625 6.125 T.500 7.500 10.625 = _ﬁ“]
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Standard Normal Quantiles

Residuals

Residuals

The residuals are computed as y — § for each observation. They are (in Yates standard
order) —1.625, 12.875, .125, 6.125, 2.375, —2.125, —.875, —16.875, —1.375, —16.375,
—.625, 5.875, .625, 5.625, .375, and 4.875.
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-15
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The plot of Residuals versus A indicates that there is more variation in the response for
glazed surfaces than for unglazed surfaces, and the plot of Residuals versus Fitted Values
suggests that variation tends to increase for larger values of the response. The normal plot
identifies two unusually large (negative) residuals, and both of these correspond to glazed
surface observations. The patternless plot of Residuals versus C indicates that C is not
important (since it is not in the current fitted model).

(c) According to the model, C is not important, so set it to its cheapest level (probably
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normal, since time is money). Then te minimize the number of pull-outs (based on the
smallest fitted responses), set A at glazed (+), B at 1.5 times normal (+), and D at no
clean (+).

10. The fitted main effects are:

a; = .02814815 a3 = —.01685185 a3 = —.01129630
by = .03203704 by = .04648148 by = —.07851852
¢y = —36.65185 ¢5 = —21.68185 c¢3 = 58.33370
The ab;;’s are:
]
| 1 2 3

1| .021851852  .009074074 —.03092593
2| —.008148148 —.012592593  .02074074
3| —.013703704  .003518519  .01018519

The ac;i’s are:

I s L LS. T ol
1 |[—-.025925926 —.0159259259 041851852
2 007407407 —.0009259259 —.006481481
3 .D18518519 0168518519 —.035370370

The beji's are:

e | .2 ot
. 1| —.0331481481 —.001481481  .03462963
7 2| —.0009259259 —.020025926  .02185185
3| .0340740741  .022407407 —.05648148

The abe;;i’s are:

J
1 pans e T Nt
i 1| —.024074074 —.002962963  .0270370370
TR s 2| .012592693 —.004629630 —.0079629630
3| .011481481  .007592593 —.0190740741
& 1| —.010740741 —.002962963  .0137037037
a2 i 2 004259259 —.011296296 0070370370
i 3] 006481481  .014259259 -—.0207407407
1| .034814815 005925926 —.0407407407
3 3 2| —.016851852  .015925926  .0009259250
3| —.017962963 —.021851852  .0398148148

Refer to the solution to Ex. 5 Ch. 3, for a graphical summary. The b’s show that Scale 3
reads lower than the other two scales on average, since bs is negative and b; and b; are
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1.

12.

Residuals

positive. Student 1 may have a tendency to produce higher measurements than students 2
and 3, according to a;. The fitted main effects for Factor C (Weight) are the largest, as would
be expected.

The interactions are harder to interpret, especially the three-way interactions. The graph for
20 gram weighings given in the solution to Ex.5,Ch.3, shows a lack of parallelism, and this
is measured by the ab’s. The lack of consistency in all 3 graphs is measured by the abc’s. The
roles of the factors in the graphs would need to be switched to see the lack of parallelism that
is measured by the ac’s and the be’s.

If a situation can be accurately described without interactions, each factor may be set
independently of the rest. This simplifies the task of improving and controlling the process.
When interactions are present, the effect of changing one factor depends on the current
settings of the other factors, so making changes to improve and control a system is more
difficult and complex.

(a) The least squares equation is
l-;:?,: = 18.750 — 5.1209Inz; — 3.73791In z,,
with an R? of .960. The relationship yz{*23> = C implies that
Iny=InC —eylnzy —azlnz,,

0 &3 = —by = 5.1209, & = —by = 3.7379, and C = e*o = 1.39 x 108,

(b)
o 1 o :
(=] (=]
: - ) % -g ::‘ . -
o . : ! . 8 o : :
g p—s : & 3 A .
- - - ; i : E -
- . ) 2 1 - |’ . .
2 @
60 6.2 64 66 -4.1 4.0 -39
log(Cuting Spoad) (S (¢ yw) log(Feed) (8eq ipr)

ﬁ‘-‘-“l Inxa
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Residuals
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(c)

(d)

(e

Standard Normal Quantiles
0
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Fitted Values , fh y

-0.2

0.0 0.2

Residual Quantiles

04 0.6

The plot of Residuals versus l;:;l shows a slight amount of curvature, but the pattern is
not strong. The plot of Residuals versus Inz; shows that there is more spread in the
response when Inz; = 6.2146 (z; = 500), and the plot of Residuals versus In z; shows that
there is more spread in the response when Inz; = —4.05094 (2, = .01725). The normal
plot of residuals is fairly linear, indicating that the residuals are bell-shaped. Overall, the
residual plots do not reveal any major problems with the fitted model.

For z; = 550 and =3 = .01650,

A .
Iny = InC — &; In(b50) — &4 In(.01650) = 1.7789,

= 5.92 minutes.

g -
Q
-_— 0
5 o
E ®
=
o - - - -
w
o
L= T T T ; T
400 500 600 T00 BOO

Culting Speed (sfpm)

This is subjective, and also more difficult with surface fitting than with line fitting.
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13.

(a)

(b)

almost

Mileage (mpg)
34 36 38

3z

30

60

65 70

Speed (mph)

Key: + = %7 octane
X = 90 octane

The lines*crass, but only because they are so close together. Relative to the effect of Speed
the interactions appear to be small. They are large relative to any Octane main effect.

The averages needed are given in the table below.

SPEED (Factor B)

55 60 65 70
OCTANE 87 | §1; = 35.7T | §12 =34.5 | 13 = 33.4 | §14 =315 | #1. = 33.775
(Factor A) 90 | §a1 = 36.9 | §23 = 35.7 | a3 = 33.4 | faq = 32.4 2. = 34.6
§1=2363 | g.g=35.1 | §3 =334 | §.4 =31.95 | 7. = 34.187%
The fitted main effects are
a; = ij. —§. = —.4125
as =i — §. = .4125
by=f1—F. = 2.1125
by =gz —§.=.9125
by=F3—F.=—.T875
by = 3.4 — §.. = —2.2375
The fitted interactions are
abyy = g1y — (§. + a1+ b)) = —.1875
abyz = §12 — (§.. + a1 + b)) = —.1875
6513 = fla — (ﬂ + aj + &3) = -4125
abys = T14 — l:ﬁ 4+ a4 bq) = —.0375
abzy = §21 — (.. +az + by) = .1875
abaz = f22 — {ﬂ + az + 53) = .18756
abya = 23 — (T.. + az + b3) = —.4125
abys = §aa — (§.. + a2 + bs) = .0375
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“ 90 octane Kt\f : o= obscr\mi 3
,g g D:-?;js?"r.+m+bj
g 3
: g
=1
85 60 65 70
Speed (mph) , A

The fitted values match up well with the observed data for 55 and 60 mph, but they are
not able to cross and account for the possible interaction in the cbserved values.

(c) With Speed = z; and Octane = z3, the least squares equation is
j = 28.2B75 - .295z; + .275z,.
For 87 octane, the equation is
§ = 28.2875 — .295z, + .275(87) = 52.2125 — .2952,.
For 90 octane, the equation is

§ = 28.2875 — 2952 + .275(90) = 53.0375 — .295z,.

a8

(Lq.g octane He\’: e = 97 actane

g a X = 40 octane
s 3
a8

55 60 65 70
Speed (mph) X %

(d) For the 87 octane data, the least squares equation is
7 =509 - 274z,.
For the 90 octane data, the least squares equation is

i = 54.35 — .316x;.
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14.

(e)

()

(a)

}(e-f: o = 87 octane
X =90 octane

36

Mileage (mpg)
34

32

55 60 65 70
Speed (mph) , X,

The plots in (b) and (c) are fitted models that do not account for interactions
(non-parallelism). The plot in (b) is more flexible than the one in (c) because factorial
models are (in general) more flexible than curve and surface models. The plot in (d)
represents a model that allows interactions, as reflected by the non-parallelism of the lines.
This was possible because the two lines were fit separately for each level of Octane. None
of the models fit the data perfectly, and it is hard to say if any fits better than the rest.

Thete is no replication (multiple experimental runs at a particular Speed-Octane
combination). Replication would validate any conclusions drawn from the experiment, and
it would allow for better comparisens among the different possible models. The second
weakness is a potential problem because any apparent effect of changing the Octane could
be attributed to differences in conditions hetween the early runs and the later runs.

The least squares equation is
I;:; = 20.539 — 1.20601ln=z; — 1.3988 In ;.
with corresponding R? equal to .782.
The relationship yz7'z3? = C implies that
Iny=InC—aylnz; —azlnz,,

80 6y = —by = 1.2060, &3 = —b; = 1.3988, and C = e’ = 8.317 x 108,

For 3 = 3000, the equation is y = 11331:1:{“:":""tl

for =5 = 6000, the equation is y = 43[6:[*'”50

for 22 = 10, 000, the equation is y = 21 12=l"1-=°5°
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Residuals

Residuals

(b)
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For this equation, there are interactions between z; and z;. This is reflected by the
non-parallelism of the plots.
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: : T i £
- ’ g q’ - .
2 3 4 5 40 05 00 05 10
Fitied Values , Jiy Residual Quantles

The plot of Residuals versus E;\y is patternless, so it reveals no problems with the fitted
model. The plots of Residuals versus Inz; and Inz; both have a slight
negative-positive-negative pattern, indicating that there may be something about these
variables that the model is not accounting for. In addition, the plot of Residuals versus
Inz; shows that there is more variation in y when Inz; = 9.21034 (when z; = 10, 000).
The normal plot of residuals is fairly linear, indicating that the residuals are bell-shaped.
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(c) For z; = 20 and z; = 10,000,
-
Iny = 20.539 — 1.20601n(20) — 1.3988In(10, 000) = 4.043,

so § = e*%3 = 57 0 hours.
(d) For z; = 15 and z; = 1500,
A
Iny = 20.539 — 1.2060 In(15) — 1.3988 In(1500) = 7.043,
50 § = €793 = 1145 hours.

(a) The least squares equations are

fp = —.4750 + .0200002; + .140000z,

with corresponding R? = .998, and
gz = .1200 — .020000z, + .024000z,,

with corresponding R? = .600. Based on the R? values, it seems that y; is well described
as a linear function of z; and =z, but not ys.

(b) Solving the first equation for z, yields

1
Ty = (E) [y; — . l4z4 4 7475:].

Plugging this into the second equation and solving for z; gives

_Yaty+.355

3
: 164

Predictions using this equation and the one from theory can be compared to the actual
values for z3:

£z &a(Theory) &3( Eq)

25 23.2  24.7256
25 24.0 25.3354
30 29.6 29.6037
30 32.0 30.2134
35 36.0 35.7012
35 37.6 34.4817
40 41.6 39.9695
40 43.2 39.9695

The data-derived equation above does seem to do a better job than the one from chemical
theory, but the data-derived equation was fit “especially” to this data set. The two
equations should be compared in an additional experiment.

(c) The least squares equation is -
&z = 3.007 + 6.1396y, + 3.511y

with corresponding R?=.996. This is not the same as the equation derived in (b).

(d) The equation in (c) is guaranteed to win, because the method of least squares minimizes
the sum of squared differences between the predicted and observed values of z; in (c).
The equation derived in (b) came from two least squares equations that minimized this
quantity for ¥; and y; respectively, not z,.
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16.

Compressive Strength , \I

The relationship is not quite linear.

(b) The calculations are given below:

(<)

= .
&
&
200 250 00 380
Splitting Tensile Strength | >
i o z} vs v ziyi
1 207 42849 1420 2016400 293940
2 233 54289 1950 3802500 454350
3 254 64516 2230 4972900 566420
4 328 107584 3070 9424900 1008960
b 325 105625 3060 9363600 994500
6 302 91204 3110 9672100 939220
7 258 6GB564 2650 7022500 683700
8 335 112225 3130 9796900 1048550
9 315 99225 2060 8761600 932400
10 302 91204 2760 7617600 833520
2859 835285 26340 72451000 7753560

¥ oy — (222)(w)

‘/(EQ“—J-) (o2 - )

7753560 — {2889)(36340)

-—

‘/ (835285 — 285917 (72451000 — (25530017)

.951.

This is close to 1, so there is a fairly strong positive linear relationship between y and =z.

by

= (3 ::;“HE Vi) 7753560 - ;nsss}}:mu}
= 3 - 2858)7
Sa? - (Z;:az 835285 — 128591
26340

b{):ﬂ'—b:If:——l—u—-w—

95

2859
(12'45?69)T = —927.6531

= 12.45769
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Residuals

So the least squares equation is

¥ = —927.6531 4 12.45769z.

(d) There is an approximate by = 12.45769 psi increase in compressive strength that
accompanies a 1 psi increase in splitting tensile strength.

() R?=1r?=(.951)% = .904.

(f} For = = 245,

§ = —927.6531 + 12.45769(245) ~ 2124 psi.

(g) The residuals e; are computed below.

i i ¥ §; = —927.6531 4 12.45769z, ép=uy—1
1 207 1420 1651.088 —231.088401
2 233 1950 1974.988 —24.988204
3 254 2230 2236.600 —6.599746
4 328 3070 3158.469 —88.468673
5 325 3060 3121.096 —61.095609
6 302 3110 2834.569 276.431220
7 258 2650 2286.430 363.569501
8 335 3130 3245.672 —115.672491
9 315 2860 2996.519 —36.518727
10 302 2760 2834.569 —T4.568780
& 8

100
Residuals
0 100

200
-200

220 240 280 280 300 320 340 2000 2500 3000
Splitting Tensile Strength , % Fitted Values , q
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(h)

Standard Normal Quantiles
[v]

1

*]

200

-100

0 100

200 300

Residual Quantiles

The plots of Residuals versus z and § show a negative-positive-negative pattern, indicating
that the line does not account for the curvature in the relationship between y and z. The

normial plot is not very linear, indicaling that the residuals are not bell-shaped.

The following printout was produced using Version 9.1 of Minitab.

MTB > print ci c2

ROW y

1420
1950
2230
3070
3060
3110
2650
3130
2960
2780

D0~ OE WM -

-
L=

X

207
233
254
328
325
302
258
335
316
302

MTB > regress ci on 1 x variable c2;

SUBC> fits c¢3;

SUBC> residuals c4.

The regression equat

y=-928 4+ 12.6x

Predictor
Constant

s = 191.7

Analysis of Variance

Coef

SOURCE DF
Regression 1
Error 8
Total Q

be

R-sq =(60.4%) R-sq(adj) = 89.2}

~p

l.utsjf spcs 4
Stdev t-ratio
414.1 -2.24 0.0B65
1.433 8.69 0.000

S8
2777491
293949
3071440

MS
27774981
36744

97

F
75.59

P
0.000

Chapter 4



Unusual Observations

Obs., x ¥y Fit Stdev.Fit Residual 5t.Resid
T 258 2650.0 2286.4 72.6 363.6 2.0BR

R denotes an obs. with a large st. resid.

MTB > name ¢3 'fits’ c4 ’resids’

MTB > corr ¢l c2

Correlation of y and x =
=

MTB > print cl-c4

ROW y x fits resids
1 1420 207 1661.09 -231.088
2 19850 233 1974.99 -24.988
3 2230 254 2236.60 =6.600 i {
4 3070 328 3158.47 -88.469 resmlua >
5 3060 326 3121.10 -61.096
6 3110 302 2834.57 275.431
7 2650 258 2286.43 363.570
8 3130 335 3245.87 -115.673
g 2960 315 2996.52 -36.519

-
o

2760 302 2834.57 -T4.B69

(i) The least squares equation is
i = —7634.571 4 62.59917z — .09 13284927

with corresponding R? equal to .956. This equation does appear to be an important
improvement in describing the relationship between y and = in the range of the data.

(i) The increase in R? is from .904 to .956. The quadratic equation is guaranteed to have a
larger R?, so you should look at the size of the increase in R*. The increase here may be
considered large enough to use the quadratic equation, especially after looking at the
scatterplot.

(k) For z = 245,
§ = —7634.571 4 62.59917(245) — .09132849(245)% ~ 2220.2 psi.
This is relatively close to the prediction in (f).
(1) For the linear equation at = = 400,
§ = —927.6531 + 12.45769(400) &~ 4055.4 psi.
For the quadratic equation at z = 400,
§ = —7634.571 + 62.59917(400) — .09132849(400)? ~ 2792.5 psi.
These are not as close as the predictions for z = 245. It would be unwise to use either of

these predictions without collecting some data around z = 400, since there is no way of
knowing what the relationship between y and z is like from the given data. (It is certainly
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17.

18.

Residuals

unlikely that y decreases after z increases beyond a certain point, as is suggested by the
quadratic equation.)

It is important to have replication (several y observations for at least some 2’s) so that you can
be more sure of the true relationship between the variables. Replication validates any
conclusions drawn from the experiment, and provides more information to confirm the
appropriateness of any particular fitted equation.

(a) This is a complete (full) factorial data structure. There is no replication (multiple
experimental runs at a particular (z;, z2) combination).

(b) The first least squares equation is
Gy = 96.621 — 01570z,
with R? = .537. The second least squares equation is
71 = 100.61 — 19167z,
with ®? = .227. The third least squares equation is
i1 = 115.788 — .01570z; — 19167z,

with RB? = .764. The third equation is more complex than the first two, but seems to do a
much better job of fitting the data (the increase in R? is large). It would probably do a
better job of predicting v, even though it is more complex.

(c) The residuals are: —2.25937, —2.53944, —.03452, 4.57397, 5.29388, —.20119, —4.59270,
2.12722, and —2.36785.

= x -+ v
(] . ] .
gl B .
ed . o1, &
? b -
600 80O 1000 1200 80 80 100 110 120
Agitator Speed , x| Polymer Concenlration ; Xa
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Residuals

15

0.5

Standard Normal Quantiles
0.5

1.5

75 B0 85

e
Fitted Values , \r

90 -4 -2 0

2 -

Residual Quantiles

The plots of Hesiduals versus =; and 3, are patternless, revealing no problems with the
model. The plot of Residuals versus z; has a negative-positive-negative pattern,
indicating that there may be some curvature in the relationship between z; and ; that
the model is not accounting for. The normal plot of residuals is fairly linear, so the
residuals are roughly bell-shaped.

For @y = 1350, the equation is
h =
For z; = 950, the equation is

h =

Far ¢, = 600, the equation is

-

115.788 — .01570(1350) — .19167=;
94.593 — .19167z,.

115.788 — .01570(950) — 19167z,
100.873 — .19167z5.

th = 115.788— .01570(600) —.19167=z3
= 106.368 — .19167x,.
e =,= (60
g
E £ Ktn’t
8 a
e 8 1T i
% w3 i 1| - ‘]5’6
i -
# - L= |350
[
54
80 S0 100 110 120

Polymer Concentralion 3 %2

100

: 1 =1350 ™
1 = 950 rpm
3: boo r?\-q
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(e) For zy = 1000 and z3 = 110,

{i = 115.788 — .01570(1000) — .19167(110) = 79.00%.

(f) The least squares equation is
1 = —17.92 + .019522, + 2.235z; — .000017462] — 01208323 — .000010421z,

with R? = .915. This is a big increase from the third equation in part (b), but the
quadratic equation is much more complex.

For 2y = 1350, the equation is
g1 = —17.924 .01952(1350) + 2.235z; — .00001746(1350)*

—.01208323 — .0000104(1350)z,
—23.37535 + 2.22086z; — .012083z3.

Il

For =y = 850, the equation is

iy = —17.92 4 .01952(950) + 2.235z, — .00001746(950)*
—.01208323 — .0000104(950)z5
= —15,12415 4 2.225122; - .012083z3.

For z; = 600, the equation is

i = —17.92+.01952(600) + 2.2352; — .00001746(600)°
—.01208323 — .0000104(600)z;
= —12.4876+ 2.22876z, — .01208323.

2
e . K“‘f: j_t-IBS'Orrm
E 7 = 9s0 rtn-
@ 5 3 = boo L8 L
& 2
ae k=]
£ i
80 g0 100 110 120

Polymet Concentration |, X4

It is hard to notice, but the three curves are not parallel because of the zyz; term. This!
lack of parallelism represents an interaction (although it is very small for this fitted
equation).
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(e)

3—_‘__“_‘_ ]{e,}l : 1= 1350 rpm
5‘ 4 950 rpm
g ! = 6% rpm
¥

65 70 75 BO 85 90
m\
/
e
1] n

a0 80 100 110 120

Pelymer Conceniration , B

The plot shows that the effect on 3, of changing Polymer Concentration depends on the
Speed (there seems to be an interaction), It would not be wise to use the filted main
effects alone to summarize the data, since there may be an importantly large interaction.
(The interaction seems to be almost as large as either main effect.)

The averages needed are given in the table below.

POLYMER CONC. (Factor B)

80 100 120
1350 | gu =77 12 = 80 fia = 67 | 3. = T4.67
950 g?l =83 ﬂzz = 87 !.7:3 = 80 5‘2; =83.33
600 gu =91 faz = 87 a3 = 81 fa. = 86.33
71 =83.67 | 5.2 =84.67 | 7. =176.0 | 7. = 84.44

SPEED
(Factor A)

The fitted main effects are

a =1i. —7%.=—6.T8
a; =% —3.= 1.89
a3 =13 —§.=488
b=%,-3.=2.22
by =g2—9.=3.22
by =Fa—§.=-544

The fitted interactions are

abyy =g — (§.. + a1+ b)) = .11
abyz = §12 — (#.. + @1+ ba) = 2.11
abiz = §13 — (§.. + ay + b3) = —2.22
abzy = §21 — (ﬁ + az + bj:l = —2.56
abzz = §22 — (.. + az + by) = .44
abgs = faz — (§.. + a2 + ba) = 2.11
abay = a3 — (i. + az 4+ bi) =244
abaz = §az — (§.. + as + bz) = —2.56
ab;;;:;'m-(y‘.. +a3+b3:| -3 6

(h) No, since z; and =3 enter the equation additively. This can be seen graphically in part
(d). The parallelism indicates that the effect on y; of changing z; does not depend on the
setting of zy. The equation in part (f) does imply an interaction because there is an =25
term. The plotted curves in (f) are (slightly) non-parallel.
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19.

Residuals

Residuals

(a) Exercise 18 on previous page

(b) The first least squares equation is

(€)

-10

-10

§2 = 60.08 — .002840z,
with R? = .012. The second least squares equation is
fa = 91.50 — .3417z,
with R? = .478. The third least squares equation is
Y2 = 94.25 — .002840z, — .3417=z;

with R? = .490. The third equation is more complex than the first two, and does not do
much better in fitting the data than the second equation (the increase in R? is small).
The second equation would probably do a better job of predicting ya, since it fits almost
as well as the third and is simpler.

The residuals are: 3.9221, —10.2140, 4.7919, —4.2446, —.3807, 7.6252, 4.5888, 1.4527, and
~7.5414.

e
.

Residuals

-10

800 1000 1200

Agitator Speed 3 Xy

B8O 80 100 110 120

Polymer Concentration , ¢ 5

0.5

0.5

Standard Normal Quantiles

-1.5

55 60
) A
Fitted Values 3 \;

-10 -5 0 5
Residual Quanliles

The plots of Residuals versus z3 and {j; are patternless, revealing no problems with the
model. The plot of Residuals versus z; has some slight hint of a positive-negative-positive
pattern, indicating that there may be some curvature in the relationship between z; and
y2 that the model is not accounting for. The normal plot of residuals is fairly linear, so
the residuals are roughly bell-shaped.
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(d) For z; = 1350, the equation is

94.25 — .002840(1350) — .34172;
90.416 — .3417z,

Il

Y2

For z; = 950, the equation is

§2 = 94.25 — .002840(950) — .3417z;
= 91.552 —.34172,

For z; = 600, the equation is

§2 = 94.25— .002840(600) — .3417z,
= 92.546 — .34172;

=

: ',{g\j : 1= 350 rpm
g B 2 =950 rrm
E =1
2w 2 = goo rp™
8
*8
& P %=1350

80 80 100 110 120

Polymer Concentration ’ *q

(e) For z; = 1000 and z3 = 110,

§13 = 94.25 — .002840(1350) — .3417(110) = 53.82%.

f) The least uares uation is
( 5q €q
fja = 125.3 — 1076z, + .015z; + .000032702? - .003?53% + .0004068z,z,

with R? = .632. This is a fairly large increase from the third equation in part (b), but the
quadratic equation is much more complex.

For z; = 1350, the equation is

92 = 125.3—.1076(1350) + .0152, +.00003270(1350)% — .00375z3 + .0004068(1350)z;
= 39.636 + .56418z; — .00375z3.

For 2, = 950, the equation is

§2 = 125.3—.1076(950)+ .0152; + .00003270(950)° — .003752} + .0004068(950)z;
52.592 + 4014623 — 0037623,

For z1 = 600, the equation is

125.3 — .1076(600) + .015z; + .00003270(600)* — .0037522 4 .0004068(600)z;
72.512 + .25908z; — .00375z3.

=
)
|
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% Kaoline Recovery
45 50 55 &0 65 70

X, =950

H

}4@1: 1 = 350 rpm
950 v‘l('-‘M

?:=E>D°r?m

M
1]

80 80 100 110

Polymer Conceniration , 2.,

The three curves are not parallel because of the ;25 term. This lack of parallelism means
that an interaction is implied by the equation.

(g)

g 3 : = |350 r
2 @ 1 = 9s0o rTm
s 8 : 3 = poo o
=
el 1 :
-
$ 8

g 3

@0 a0 100 110 120

Polymer Concentration , 3

The plot shows that the effect on y; of changing Polymer Concentration depends on the
Speed (there seems to be an interaction). It would not be wise to use the fitted main
effects alone to summarize the data, since there seems to be a large interaction. (The
interaction seems to be as large as either main effect.)

The averages needed are given in the table below.

POLYMER CONC. (Factor B)

80 100 120

1350 f11 =67 fhz = 52 1a = 54 | §h. = BT7.67

(Ps,:;ﬁfg) 00 | fn =0 | ha=57 | $os=52 | h—AD
600 a1 =70 iz = 66 flaz = 44 3. = 60.0

J.1=63.67 | 2 =058.93 | §.3 =500 7. = b7.33

The fitted main effects are

a; =i —§.=.33
gz =2 —F.=—-3.0
a3 = §a. — §.. = 2.67
bhh=g,-9.=633
b =F2—-%.=1.0
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bs=§3—4.=—7.33
The fitted interactions are

abyy = g — (§. + a1+ b)) = 3.0
abyz = iy — I:ﬂ +ay + bz) = —6.67
abyz = 13 — (ﬂ + a1+ 53] = 3.67
21 = thtL — li],l'- -+ az -+ b]_) = —B.67
abaz = §az — (§.. + a2+ bz) = 1.67
abas = P2z — (§.. + a2 + ba) = 5.0
aba; = a1 — (ﬂ +aa+ ﬁl] = 3.87
abaz = faz — (ﬂ + az 4+ bz) = 5.0
absz = a3 — (ﬂ. + aaz + !}3) = —§8.67.

(h) See 4-34.

20. (a) Using the Yates algorithm:

Cycle 4
Comb g Cyclel Cycle2 Cycled Cycled + 16
(1) 6.25 21.75 45.25 66.00  129.75 8.10037 =1j..
a 15.50 23.50 20.7h 63.75 32.75 2.04687 = a,
b 7.00 10.25 43.00 21.00 10.75 67188 = bs
ab 16.50 10.50 20.75 11.75 3.75 23437 = abz
c 4.75 17.00 18.75 2.00 -46.75 —2.9218B8 =c;
ac 5.50 26.00 2:26 8.75 —22.76 —1.42188 = acy;
be 4.50 10.50 9.00 1.00 —-10.75 —.6T188 = bex,
abe 6.00 10.25 2.75 2.75 -2.75 —.17188 = abczaz
d 7.00 9.25 1.75 —24.50 —2.25 —.14083 = d;
ad 10.00 9.50 25 —=22.25 —9.25 —.57813 = ady;
bd 10.00 J18 9.00 —16.50 6.75 42188 = bdag
abd 16.00 1.50 —.25 —6.25 1.75 10938 = abdass
cd 4,50 3.00 3 .25 —1.50 2.25 14063 = cdas
acd 6.00 6.00 15 ~9.25 10.25 .64063 = acdzaz
bed 4.50 1.50 3.00 .50 —7.16  —.48437 <= bedaa:
abed 5.T5 1.25 —.2b —3.25 -3.75 —.23437 = abedsays

(b) The fitted effects that stand out are ay, cz, and acza. Since aj is positive, the tee wing
planes generally flew farther. c; is negative, which means that overall, the notebook paper
planes flew farther. The negative sign of acy; indicates that the difference in flight
distance between straight wing and tee wing planes is larger for notebook paper than it is
for construction paper. (This can be seen by looking at the raw data.) Because of this
interaction, the experiment should not be summarized in terms of main effects only; there
is more to the story.

(c) Using the fitted effects and interactions for only factors A and C, the reverse Yates
algorithm gives
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Fitted Effect

<
5
5

Cyclel Cycle2 Cycle3 Cycle 4 ()

abedza; 0 0 0 0 5.8125 = f,pq
bedaaz 0 0 0 5.8125 4.5625 = fpcq
acdzaz 0 0 —4.3437 0 58126 = ﬂﬂ-ﬂd
edpz ] 0 10.1563 4.5625 4.5625 =g 4
abdyz; 0 0 0 0 14.5000 = g4
bdzz 0 —4.3437 0 5.8125 1.5625 = g4
adz; ] 0 —1.5000 ] 14.5000 = 4,4
d 0 10.1563 6.0625  4.5625 7.5625 = {4
ﬂﬁngg 0 0 0 0 5-8125 = ﬁabc
beaz 0 0 0 14.5000 4.5625 = fpe
acsz —1.42188 0 -—4.3437 0 58125 = fac
€2 —2.92188 0 10.1563 7.5625 4.5625 = 4
ﬂ-f.'g: 0 0 0 0 14.5000 = y"ab
bz 0 -1.5000 0 14.5000 7.5625 =1
as 2.04687 0 —1.5000 0 14.5000 = fa
F.... 8.10937 6.0625 6.0625 7.5625 7T.56286 = ﬁ(l)

The residuals are computed as y — § for each observation. They are (in Yates standard
order) —1.3125, 1.0000, —.5625, 2.0000, .1875, —.3125, —.0625, .1875, —.5625, —4.5000,
2.4375, 1.5000, —.0625, .1875, —.0625, and —.0625.

n o : - E -
g I :
& o & o
Straight J‘.‘e Nene fages
Wing Plane Design , 9 Nose Weight , B ax
o | adis :
g ° 1 §°0 :
v v
N rhe bos' Constrockion  Straight Beat
Paper Type, C Wing Tips , D X
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21.

Residuals

-2

(d)

(a)

(b)

(<)

(d)

- N -
-l B
- =
o - e A
- - § i =
- E & : -
- u -
b o =
-E —
- S
ﬁ .
L]
- q’ -
& 8 10 12 14 4 -2 0 2
Fitled Values , Residual Quantiles

Each plot reveals an outlier; it is from the combination ad. There is a slight increasing
pattern for the plot of Residuals versus Factor B, which indicates that B may have a small
effect that the model is not accounting for. The plot of Residuals versus Paper Type
shows that there is more variation in distance for notebook paper than there is for
construction paper. This is also reflected in the plot of Residuals versus Fitted Values.
Overall, the plots show no evidence that the fitted model is inadequate; it seems to
summarize the data well.

ne Solyi — 9 — Do(w — tu)* _ 271.9961 — 36.01563 _ s
» Sw — 3)? o 271.9961 o

This is a fairly large R? value. Based on this and the work in part (c), this model seems to
provide an effective summary of flight distance.

The first least squares equation is
§ = —886 4 8.267z,
with an B? of .115. The second least squares equation is
§ = 211.0+ 2.6388z,
with an R? of .504. The third least squares equation is
§ = —1674.1 4 7.6122, + 2.59392,

with an R? of .601. The third equation is more complex than the first two, but accounts
for 10% more variability than the second equation. The addition of z; to the second
equation seems to be important, so the third equation may do a better job of predicting y
even though it is more complex.

The correlation between z; and y is equal to the square root of B? for the first equation,
.340. The correlation between z; and y is equal to the square root of B? for the second
equation, .710.

Based on the B®'s and r’s, Hardness seems to have a strong effect on Ballistic Limit, while
Thickness seems to have a minor effect. One reason for this could be that the thicknesses
used in the experiment vary over a small range. If a greater range of thicknesses were
tested, the effect of thickness might be more important.

The residuals are: —147.074, —144.511, —154.001, —207.999, —28.697, —85.107, 105.970,
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Residuals

Residuals

100

-100

-200

()

98.970, 127.444, 69.917, 85.476, 51.804, 116.914, —118.509, 115.294, 38.957, 140.183,

—8.907, 94.052, and —150.176.

235 240 245 250 255 260
Thickness ) b
900 1000 1100 1200 1300 1400

Filted Values | q

Standard Normal Quanliles

Residuals

-100

100

250

300 400

Hardness | X o

450

-200

100
Residual Quantiles

The first three plots look random, indicating no problems with the third fitted equation.
The normal plot is not very linear, indicating that the residuals are not very bell-shaped

Hardness
250 300 350 400 450

235

240

245

250 255 260
Thickness

This (2, z2) combination is not within the space of the data used in the study, so this
would be extrapolating. There is no information from the data about the relationship
between 21, ¢2, and y for these z's. More data should be collected for 2's like these before

making such a prediction.
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22.

(a)

(b)

85
ah
(1]
w
3
x

6.5

Time to Stop (sec)
75 B.5
\m

The plot shows that, overall, Tread Type seems to have a slightly larger effect on Time to
Stop than Tire Width. Smooth tires generally take longer to stop than treaded tires, and
wide tires generally take longer to stop than narrow tires. The lines on the plot are
slightly non-parallel, indicating the possibility of an interaction between Tread Type and
Tire Width. Specifically, it looks like there might be a bigger difference between the two
types of treads for larger tire widths than for smaller tire widths. The size of the
interaction is not too large relative to the main effects.

The averages needed are given in the table below.

TIRE WIDTH (Factor B)

TREAD

(Factor A) Treaded

19¢ 25¢ 32
Smooth | @11 =7.30 | §12=8.44 | 43 =9.27 | §;. = 8.337
fa1 = 6.63 | fag=6.87 | faz = 7.07 | .. = 6.857
§.1=6.965 | §., = 7.655 | .3 = 8.17 | §.. = 7.597

The fitted main effects are

a) = §1. e 3;- =l
a2 = fz. — 9. = —.T4
by = g4 — 7. = —.632
bz =43 — §. = .068
by = g.3 — §.. = .573

The fitted interactions are

abyy = §11 — (3.
abiz = G2 — (3.
l'.'l.bla = tha — (f..
aba1 = ga1 — (#..
abzz = §2z — (3.

+ay+by) = —.405
+a;+by) = .045
+ay + bg) = .36
+az + by) = .405
+ag + by) = —.045

abas = fas — (§.. + aa + b3) = —.36

The a’s quantify half of the average distance between the two lines on the plot. The b's
quantify the average slope of the lines. The ab's quantify the lack of parallelism in the
lines. The relatively large values of ab;; and aby; reflect the lack of parallelism for the

700/19c¢ tire width.
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23 (a)

Scatterplot of Y vs X, Problem 23

6 —
>
[ |
L N [N
5. | ®
...
L ]
>~4 &
_ [
:* .
T »
*!

] | ] I I I ] T I I
02 03 04 05 06 07 08 09 10 11

X

(b) The sample correlation coefficient is .975. There is a strong linear
relationship between y and x.

(€) D (x—¥)p-3)=8693, > (x—¥)*=2653 ,by=28.693/2.653 = 3.276

b, =4.28 - 3.276(.6517) = 2.144

¥(x)=2.144+3.276x

Regression Plot
y= 214472 + 327664 x

§=0228372 R-5q=851% R-Sqladj)=950%

02 03 0.4 05 0.6 o7 o8 oo 10 11
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(d)3.276 increase in detonation velocity for 1g/cc increase in PETN density. A
3276 increase in detonation velocity for .1g/cc increase in PETN density.

(e) 95.1% = R?

(f) 7(x=.65)=2.144+3.276(x = .65) = 4.2734 is the predicted detonation
velocity for a PETN density of .65 g/cc.

5 =2.144 + 3.276x implies x = .872 g/cc is the "predicted" density that would
produce a 5.00 km/sec detonation velocity.

(9)

Normal Probability Plot of Residuals, Prob 23g

L]
| | | I I | ] ] I I
-05 -04 -03 -02 -01 00 01 02 03 04

Sorted Residuals

Upon examination of the three plots, it seems the straight line model is

appropriate and the usual assumptions (normal distribution and common
variance ) hold.
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Residual

Residuals Versts x
(resparseis y)

04—

0.3

03

04
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Residual

04

03—

Q1

Qo

01

03+

04

05+
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Residuals.

-0.117283
-0.090050
-0.141116
0.258885
-0.133882
0.392286
0.282286
0.316753
-0.173678
-0.489210
0.166957
0.086957
-0.213043
-0.106875
0.097797
-0.477736
-0.016035
-0.386035
-0.099868
0.390133
0.163534
-0.016466
0.072468
0.012468
-0.023064
0.098636
0.038636
-0.121364
0.070337
0.157571

(h)

Regression Analysis: y versus x

The regression eguation is
yo= 2,14 + 3,28 x

30 cases used 1 cases gontain missing values

Predictor Coef 8E Coef o
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Constant
®

5 = 0.2284

R-Sq =

2.1447
3.2766

Analysis of Variance

Source
Regression
Residual Error
Total

Obs x
1 0.19
2 0.20
3 0.24
4 0.24
5 0.25
3 0.30
T .30
g B0:32
9 0.43

10 0.45
11 0.50
12 0.50
13 0.50
14 0.55
15 Q.75
16 Q.77
17 .80
18 0.80
19 0.85
20 0.85
21 .91
22 0.91
23 0.95
24 0.95
25 0.97
26 1.00
27 1.00
28 1.00
29 1.03
30 1.04
il 0.65

DF

1
28
23

¥
2.6500

2.7100
2.7800
3.1900
2.8300
3.5200
3.4100
3.5100
3.3800
3.1300
3.8500
3.8700
3.5700
3.,8400
4.7000
4.1300
4.7500
4.3800
4.8300
5.3200
5.23%00
5.1100
5.3300
5.2700
5.3000
5.5200
5.4600
5.3000
5.5900

5.7100
*

95

0.1003 21.38 0.000
0.1400 23.41 0.000
1% R-Sgladj) = 95.0%
ss MS
28.570 28.570 547.8
1.460 0.052
30.0320
Fit SE Fit
2.7673 0.0769
2.8000 0.0757
2.9311 0.0711
2,9311 0.0711
2.9639 0.0700
3.1277 0.0645
3.12%7 0.0645
3.1932 0.0624
3.5537 0.0520
3.6192 0.0504
3.7830 0.0468
3.7830 0.0468
3.7830 0.0468
3.9469 0.0441
4.6022 0.0433
4.6677 0.0443
4.7660 0.0466
4.7660 0.0466
4.9299 0.0501
4.9299 0.0501
5.1265 0.0552
5.1265 0.0552
5.2575 0.0590
5.2575 0.0530
5.3231 0.0610
5.4214 0.0642
5.4214 0.0642
5.4214 0.0642
5.5197 0.0674
5.5524 0.0685
4.2745 0.0417

0 0.000

Residual
=0.1173
-0.0900
=0.1411

0,.2589
-0.1339
0.3823
0.2823
0.3168
~Q.1737
-0.4892
0.1670
0.0870
-0.2130
-D.1069
¢.0978
-0.4777
-¢.0160
-(0.3860
-0.09589
Q.3901
0.1635
=0.0165
0.072%
0.0125
-0.0231
0.0988
0.0388
-0.1214
0.0703

0.1576
*

R dencotes an cbservation with a large standardized residual
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=0.55
~0.42
=0.65

1.19
=0.62
1,79
1.25
1.44
=0.78
-2.20R
0.75
0.35
={..95
-0.48
0.44
-2.13R
-0.07
-1.73
-0.45
1.75
0.74
=0.07
0.33
g.06
-0.10
0.45
0.18
-0.55
0.32
0.72
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24(a)

Regression Plot
y=516245 + DB TIO x
-0.0149974 2
S=124760 R-Sq=677% R-Sqad)=638%

B —J
m — ® . .
8 —
50 —
-
40 —
o Qe
0 —
10 —
] I I I I I I I ] I
0 10 20 a0 40 50 &0 70 B0 80
X
Regression Plot
y= 784284 - 0577071 x
5=150225 R-Sq=502% R-Sqlad)=472%
B8 —
TD —
60 —
80 —
=
a0 —
30 —
- - -
20 —
o =

50.2% of raw variability is accounted for using the straight-line approach. 67.7% of the
raw variability is accounted for using the quadratic approach.
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(b)

Leaving out x = 0 and y = 45 gives:

™

25

Regression Plot

y= 774007 - 0193488 x
- 0,0053214 2

$=123174 R-S3=703% R-Sqladj)=864%

69.7% of the raw variability is accounted for using the straight-line model. 70.3% of the

raw variability is accounted for using the quadratic model. A single point can

75

25

Regression Plot

y= 002844 - D.760358 x

S=120487 R-S5q=687% R-Sglad)=678%

116
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significantly affect how well a particular model fits the data (in this case, the
straight-line model).

(c)Taking the derivative and setting it equal to zero and solving for x (from the
fitted quadratic model in (a)) gives x = 29.73 (in 10~ in. above .400). | would
screw a few studs into the block at this depth and measure the torque
required to strip the stud out. If the torque was close to the maximum given at
x = 29.73, then recommend this level for the assembly process.

25 (a)
Scatterplot of Y vs. X for Prob 25a
Bm___ L]
L ]
500 — L]
< s
> 400 — . g
L]
300 — . °
L]
200 — ®
T I I | | | | | | I |
0 10 20 30 40 & & 70 8 S0 100
X
(b)

The graph relating InY to X appears to be slightly more linear (see (b)).
(c) The sample correlation between InY and X is r = - .943. A strong linear

relationship exists between the natural log of Y = grip force and X= % drag. As X
increases, InY decreases in a linear fashion.

(d) X (x-%)*=19,857.59, > (y'-7)x-X)=-203.367
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Regression Plot
Iny = 630925 - 0.0102413 x

5=0123405 R-Sq=8800% R-Sgiad))=883%

B4 —

59 —

Iny

54 —

(e) 10(-.0102) = -.102 change in log grip force when drag is increased by 10% ,
i.e., from, say 20% to 30% or from 30% to 40%. The raw grip force after
increasing drag by 10% is about 90.3% of the raw grip force before the drag was
increased by 10%.

(f) 89% of the raw variability in log grip force is accounted for in the fitting of a
line to the data in part (d).
(g) ¥(x =40)=6.399-.0102(40) = 5.9896. This is the log grip force (log Ibs.)

predicted with 40% drag. Exp(5.9896) = 399.25 Ibs. is the predicted raw-grip
force.
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(h)

Residuals Versus x
(response is Iny)

0.2
- L]
L]
0.1 — L
. -
L]
‘—' -
3 00— P = S S, W, 0 YO e )
w
& .
-0.1 — ’
-
L ]
L]
0.2+ -
] I | [ I I I T o | I
4] 10 20 30 40 50 60 70 80 80 100
x
i Residuals Versus the Fitted Values
(response s Iny)
0.2
L]
L L}
L ]
0.1 .
L] L]
-
E L]
L]
o
i)
m L]
0.1 =
[ ]
2 L]
0.2 — ]
T | T T T T | T T |
54 55 56 57 58 59 60 61 62 63
Fitted Value
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Normal Probability Plot of Residuals Prob 25h

2 — [ ]
.
1 — = -
L ]
[
®
.
N 04 o*
[ ]
.
.
= .
= e .
L ]
2 1w
1 1 | ] T
-0.2 -0.1 0.0 0.1 0.2
Sorted Residuals

It seems linearity between y' and x is reasonable together with the usual
assumptions of normal distribution and common variance.

(i)

Regression Analysis: Iny versus x

The regression egquation is
Iny = 6.40 - 0.0102 x

19 cases used 1 cases contain missing wvalues

Predictor Coef SE Coef T P

Constant 6.39925 0.05172 123 .72 0.000

x -0.0102413 0.0008749 -11.71 0.000

S = 0.1234 R-Sg = 89.0% R-Sq(adj) = 88.3%

Analysis of Variance

Source DF ss MS F P

Regression 1 2.0868 2.08686 137.02 0.000

Residual Error 17 0.258% 0.0152

Total 18 2.3455

Obs X Iny Fit SE Fit Residual
120
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03 =) O U s W RS

T e e = A
QW oA n BN E O W

26 (a)

10 6.3099 6.2968 0.0447 0.0131
10 6.1312 6.2968 0.0447 -0.1656
10 6.4135 6.2968 0.0447 0.11686
20 6.2344 6.1944 0.0383 0.0400
20 6.0162 6.1944 0.0383 -0.1783
20 6.3630 6.1944 0.0383 0.1686
30 61527 6.0920 0.0330 0.0607
30 5.88861 £.0820 0.0330 -0.20589
30 6.1738 6.0820 0.0330 0.08B18
50 5.9861 5.8872 0.0283 0.07%0
50 5.7366 5.8872 0.0283 -0.1506
50 5.9515 5.8B72 0,0283 0.1043
70 5.7038 5.6824 0.0335 0.0214
70 5.6348 5.6824 0.0335 -0.0476
70 5.8289 5.68B24 0.0335 0.1466
100 5.521% 5.3751 0.0525 0.1463
100 5.2983 5.3751 0.0525 =0.0768
100 5.2983 5.3751 0.0525 -0.0768
100 5.2983 5.3751 0.052% -0.0768
40 * 5.9856 0.02585 w
Scatterplot of All Data Prob 26a
1500 —
a
a
s i
1000 — . .
L ]
]
L]
L]
500 —
L]
:
L]
I I |
4 5 7 8

1 i i |
HEOoOOoOHFOOOoOHFOFRPHOHKEDO

[ I T |
a oo

P 3

.44
.01
.34
52
(44
.51

.73
69
BB
.25
.87
.18
.40
23
: 31
.69
.69
.69

For X= 5 to 7 the graph looks linear. For all the data, the plot looks curvilinear

(like a parabola).

(b) The correlation coefficient between X and Y for X=5,6,and 7 isr=-778. It
appears there is a strong linear relationship between Y and X for X from 5 to

il
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(c)

Regression Plot
= 2089.08 - 193 xx

5=124734 R-5q=621% R-Sqfad))=584%

1200 — *

yy
g
|

Y(x-x%)*=7.998, D (x-x)(y-y)=-1543.697
b1=-193 , bp= y-bix¥ = 2089.08
$(x) = 2089.08 —193x

(d) by =-193 , i.e., there is a decrease of 193 in permeability for 1% increase in
asphalt content (change in x of 1).

(e)R? = 62.1% of raw variability in permeability is accounted for by the straight-
line fit.

(f) ¥(x = 5.5) = 2089.08 —193(5.5) = 1027.6
(g)Three Plots

It seems the straight-line model fits well the data for X=5, 6, and 7. The common
variance assumption and normal distribution seems reasonable.
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Residuals Versus xx

(response is yy)
200 —
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L ]
100 — . .
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Residuals Versus the Fitted Values
{response is yy)
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L }
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| I ] ] ]
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Fitted Value
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Normal Probability Plot of Residuals Prob 26g

T T T | |
-200 -100 0 100 200

ordered Residuals

(h)

Results for: prob 26.mtw

Ploty * x

Correlations: xx, yy

Pearson correlation of xx and vy = -0.788
P-Value = 0.002

Macro is running ... please wait

Regression Analysis: yy versus xx

The regression eguation is
Yy = 2085.08 - 193 xx

S = 134.734 R-8g = 62.1 % R-8g({adj) = 58.4 %
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Analysis of Variance

Source DF S8 MSs
Regression 1 297992 2975942
Error 10 TRABE3 18153
Total 11 475525

Fitted Line Plot: yy versus xx

Regression Analysis: yy versus xx

The regression equation is
Yy = 2089 - 193 xx

12 cases used 1 cases contain missing values

Predictor Coef SE Coef T
Constant 2089.1 288.4 7.24
o =1593.00 47 .64 -4 .05
S = 134.7 R-8g = 62.1% R-Sgladj) =

Analysis of Variance

16.4

0
0

58.4

Source DF 55 Ms

Regression 1 297992 297992

Residual Error 10 181533 18153

Total 11 478525

Obs XX Yy Fit SE Fit
1 5.00 1227.0 124,21 £1.5
2 5.00 1180.0 1124.1 61.5
3 5.00 980.0 1124.1 61.5
4 5.00 1210.0 1124.1 61.5
5 6.00 707.0 931.1 38.9
& 6.00 927.0 931.1 38.9
7 6.00 1067.0 931.1 38.9
B 6.00 g822.0 931.1 38.9
9 7.00 835.0 738.1 61.5
10 7.00 300.0 738.1 61.5
N 5 7.00 733.0 738.1 61.5
12 7.00 585.0 738.1 815
13 5.50 » 1027.6 45.6

125

F p
153 0.002
P
000
002
%
F

16.42 0.002

Residual
102.89
559
-144.1
B5.9
-224.1
-4.1
135.9
-108.1
96.9
161.9
=54

=153.1
-

St

Resid

-1

-0.
<05
-0.
.81
«35
.04
.28

-0
=

.86
.47
s
o
. T4

20

03
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(i) Quadratic Fit to All data

Regression Plot
y= 44 BATS + 550,184 x
= 845313 ¥*2
5=1435M1 R-5q=B838% R-Sqlad))=82.1%

1500 —
1000 —
>
500 —
I T T T T T
a 4 5 & 7 f
X
(i) Linear Fit and Plot to All data
Regression Plot
y=1T718.87 - 150.65 x
S=218970 R-Sg=60.1% R-Sqlad))=543%
1500 —
>

Since R? = 83.6% for the quadratic model and only 60.1% for the straight-line
model, it seems the quadratic model is much better and should be implemented.
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(k) For the quadratic model using the whole set of data, y(x =5.5)=1078.51. In

(f), the prediction was 1027.6. We see a large difference in the prediction.
Since all the data was used in (k) and curvature was permitted, prediction
based on the quadratic model is preferred, although the prediction based on
the linear model with restricted data, is reasonable.

For the quadratic model using the whole set of data, y(x=2)=2815.28.

For the straight-line model using the whole set of data, y(x =2)=1417.57.
For the straight-line model using only the restricted set of data
y(x=2)=1703.08. Since x=2 is significantly outside the domain of the
observed x values, extrapolating (extending) the fitted model is very unwise.
It is unknown whether a straight-line or quadratic model is appropriate for x
values outside the domain of the observed x values. In (f)and (k), x=55is

inside the domain of the x values and therefore predictions made at x = 5.5
can be legitimately considered as reasonable.

27(a)
Interaction Plot - Data Means for y
x1
3 «  0.1250
® 0.1875
300 — + 0.2500
l-__“ i
= 200 — “\-\.
m g
% h = b G -*‘
100 — e -
S = —— _ = e
—‘——-—“—R__. Rt —
0 | -
| I I
4 8 12
X2

It appears that y is not linear in x2 for each fixed x1.
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(b)

Interaction Plot - Data Means for Iny

x1
B « 01250
0.1875
5 | «  0.2500
AT
=
©
Q
= 3 —

|
8
x2

It seems Iny is linear in x2 for each x1.
() Iny=-0261+216x1, R?>=515
Iny=6.22-0.303x2, R%*= 414

Iny =2.17 + 21.6 x1-0.303 x2, R?= 929

It seems the model relating Iny to x1 and x2 as a "plane" fits best according to

R?.

(d)

128

Chapter 4



Interaction Plot - Data Means for FITS1

x1
. » 01250
8= Tt - 01875
+ 02500
5 —|
S 4
i
=
3 —
g

predicted Iny(x1=.2, x2=10) = 3.46157. So the predicted "y" is exp(3.46157) =
31.8669. Since the ordered pair (x1 = .5, x2 = 24) is outside the domain of the
(x1,x2) ordered pairs used in the study, it is not wise to extrapolate the fitted
plane and predicted Iny or for that matter y at (x1 = .5, x2 = 24).

(e)
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Residual

Residual

Residuals Versus x2

(response is Iny)
0.5 — 5 .
l L]
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]
[ ]
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] I I | | T ] | 1
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Residuals Versus x1
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Residuals Versus the Fitted Values

(response is Iny)
-
0.5 — N *
" |
[ ] S . .
" -
E [ ]
L ]
2 e T B
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L ] | | .
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T I I ] T
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Normal Probability Plot Problem 27e

2 —
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[ ]
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1 s of
[ ]
[ ]
L ]
2|
[ ]
T T T
05 0.0 0.5

ordered residuals

Yes, these plots suggest something concerning the x1 variable needs to be
addressed (see the residual plot vs. X1). Also, the residual plot vs the fitted
values suggests there needs to be some change in the model (possibly involving

a transformed version of the x1 variable).
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(f) The fitted equation is : Iny = 14.9 + 3.96 InX1 - 2.18 InX2 and R? = .948.

The fitted equation y as a function of X3 is: y = - 44.1 + 25443 x3 and R? = .955.
Interaction Plot - Data Means for FITS4

= «  0.1250
0.1875

(g) low X1 = 20.3 - 102.6333 = -82.333

medX1 = 103.7-102.6333 = 1.0667

hi X1 =183.9 - 102.6333 = 81.2667

lowX2 = 205 - 102.6333 = 102.3667

medX2 = 77 - 102.6333 = -25.6333

hiX2 =26-102.633 = -76.6333
LowX1/LowX2 = 51.675 - (102.6333 -82.33+102.3667) = -70.995
LowX1/medX2 = 6.725 -(102.6333 - 82.33 -25.6333) = 12.055
LowX1/hiX2 = 2.575 - (102.6333 - 82.33-76.6333) = 58.905
MedX1/LowX2 = 220.8 - (102.6333 + 1.0667 + 102.3667) = 14.733
MedX1/MedX2 = 71.275 - (102.6333 + 1.0667- 25.6333) = -6.7917
MedX1/hiX2 = 19.075 - (102.6333 + 1.0667 - 76.6333) = -7.9917
HiX1/LowX2 = 342.425 - (102.6333 + 81.2667 + 102.3667) = 56.1583

HiX1/MedX2 = 153.025 - (102.6333 + 81.2667 - 25.6333) = -5.2417
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HIX1/HIX2 = 56.325 - (102.6333 + 81.2667 - 76.6333) = -50.9417,

. The Low and Hi levels of X1 have larger effects than the interaction terms. The
Low and Hi levels of X2 also have larger effects than the interaction terms. It
does seem that interaction effects are important using the "raw" data.

(h) Using the InYs we have:

LowX1:  2.2471-3.7977 = -1.5506
MedX1: 4.1928 - 3.7977 = 3951
HiX1: 4.9532 - 3.7977 = 1.1555

Low X2:  5.0531-3.7977 = 1.2554
Med X2: 3.7139-3.7977 =-.0838
Hi X2: 2.6261 - 3.7977 = -1.1716

LowX1/LowX2:  3.92872 - (3.7977 - 1.5506 + 1.2554) = 4262
LowX1/MedX2: 1.88568 - (3.7977 - 1.5506 -.0838) = -.27762
LowX1/HiX2: 92689 - (3.7977 - 1.5506 - 1.1716) = -.14861

MedX1/LowX2: 5.39637 - (3.7977 + 3951 + 1.2554) = - .05183
MedX1/MedX2: 4.23968 -(3.7977 + .3951 - .0838) = .13068
MedX1/HiX2: 2.94249 -(3.7977 + .3951 -1.1716) = - .07871
HiX1/LowX2: 5.8343 - (3.7977 + 1.1555 + 1.2554) = - .3743
HiX1/MedX2: 5.01644 - (3.7977 + 1.1555 - .0838) = .14704
HiX1/HiX2: 4.00888 - (3.7977 + 1.1655 - 1.1716) = .22728

The same main effects are larger than the interactions as when the data were not
transformed. The plot in (b) suggests that working with InYs eliminates
interaction effects.

28 (a)

7, =7.0752+.9935x"  R*= 417

§, =9.1283+.6770x,"  R®=.549

i =10.2665 + .99372x,'+.6772x,' R*= 966

It appears the 3" equation fits well (without having looked at the residuals).
Also, since the coefficients of x;' and x;' are almost the same when the other
variable is not in the model, suggests there is little correlation between x," and x;.
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(b)

Residual

Residual

0.1

0.1

00

=01 —

0.1

0.0 —

Residuals Versus Inx2

(response is Iny1)

-4.,0

Residuals Versus Inx1
{response is Iny1)

-1.3 #1.2 =11 -1.0 -0.9 0.8
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Residuals Versus the Fitted Values
(response is Iny1)

0.1+

DO s e e e e T e T T T o

Residual

01—

I | I
55 6.0 6.5

Fitted Value

Normal Probability Plot of Residuals, Problem 28b

2 iy
[ ]
) [
[ ]
[ ]
N 0 — 3 .
[ ]
[ ]
1 L ]
== .
L]
1 e
I I |
0.1 0.0 0.1
ordered Residuals

The Residuals vs Inx2 plot suggests perhaps a need for a cross-product term or
"squared" term of Inx2 is needed. The other plots do not reveal any real
evidence to say the chosen fitted model is in appropriate.
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(c) Setting x4 = .36 and x; = .011, the predicted Iny, = 10.2665 + .99372 In(.36) +
.67712In(.011) = 6.19760. The predicted y; is thus, exp(6.19760) = 491.568.
Since x; = .45 and x, = .017 is outside the domain of the observed set of (x4 ,
X2 ) pairs, it is not wise to use the fitted equation involving both Inx1 and Inx2
to predict y4 or Iny;.

(d)

Plot of YhatPrime vs. X2 for a selected value of X1

6.5, —1

Yhat1Prime

Plot of Exp(Yhat1Prime) vs. X2 for a selected value of X1

600 —

Exp(Yhat1Prime)

The "circle points" correspond to x1 = .25, the "plus" points correspond to x1 =
.318 and the "cross" points correspond to x1 = .406. It seems there is some
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interaction in the "raw" y values, since these lines above are not parallel. It does
seem, however, that on the log scale, there is no interaction (X1 by X2).

(e)

Interaction Plot - Data Means for y1

x1
= » 0250
550 — e 0.406
450 —| i
E %
(1] o
[04] d-f_,..-
E -
350 —
250 —
I |
0.006 0.013
X2
Main Effects

Lo X1 = 302.5 - 387.5 = -85
Hi X1=472.5-387.5=285

Lo X2 = 302.5 - 387.5 = -85
Hi X2 = 472.5- 387.5 =85

Interactions:

Low X1/Low X2 = 230 - (387.5 - 85 - 85) = 12.5
Low X1/Hi X2 = 375 - (387.5 - 85 + 85) = - 12.5
Hi X1/Low X2 = 375 - (387.5 + 85 - 85) = - 12.5
Hi X1/Hi X2 = 570 - (387.5 + 85 + 85) = 12.5

It seems the effect of Diameter on Thrust is smaller at the low (.006) feed rate
compared to the Diameter effect at the hi (.013) Feed Rate. In both cases, the
interaction plot reveals minimal interaction. The larger Diameter produces a
larger Thrust for a given feed rate.
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(f)

Interaction Plot - Data Means for Iny1

6.3 —
6.2 —
6.1 — -
6.0 — FET
59 4 ¥

58 —
8.7 —
56 —
55 —
54 —

Mean

0.013

0.250
0.406

At the low level (.006) of Feed Rate (X2), the Diameter effect on Thrust is larger
than the Diameter effect on Thrust at the hi level (.013) of Feed Rate (X2). For
both diameter levels, as Feed Rate (X2) increases, Thrust (InY1) increases about

the same amount.

Main Effects

Low X1 = 5.682505 - 5.909395 = - .22689

Hi X1 =6.136285 - 5.909395 = .22689

Low X2 = 5.682505 - 5.909385 = - .22689

Hi X2 = 6.136285 - 5.909395 = .22689

Interaction Effects

Low X1/ Low X2 = 5.43808 - (5.909395 - .22689 - .22689) = - .017535

Low X1/ Hi X2 = .017535
Hi X1/ Low X2 = .017535
Hi X1/ Hi X2 = - .017535

(g) Yes, the plots in (d) complement what is seen in parts (e) and (f).
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29.

(a) v =4.30188, a; = .31187, by = .54312, ¢, = .34563, d2 = -.09688,

abg; = -.00438, acy= .16062, ady, = -.04938, bey; = 14937, bdz, = 37437,
cdse = .01437, abcsss =-.13813, abdsz, = -.01063, acdze; = . 19687,
degzz = -.02187, abCszgzz = -.01688.

(b) It appears there is an important A, B, and C main effect together with an
important BD interaction effect. The higher level of glue, the higher pre-drying

temperature, the higher tunnel temperature and the higher level of pressure
applied will maximize adhesive force.

(c)
Residuals Versus the Fitted Values
(response is y)
0.5 —
- L ]
- a
- [ ] o
Hg? e e ST S T S T RS L e L= o i W=
°
2 o
[
o .
-0.5 — a "
| T T
4 5 6
Fitted Value
1359
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Residual

Residual

Residuals Versus A

(response is y)
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Residuals Versus B
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Residual

Residual

Residuals Versus C

141

(responseis y)
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Residuals Versus D
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Normal Probability Plot of Residuals Prob 29¢

—

0.0

0.5

ordered residuals

There appears to be more variability at the high level of D, not so consistent
results may occur when factor D is set at its high level. The other plots do not

reveal anything noticeably unusual.

Residuals
0.324375
0.240625
-0.273125
0.153125
-0.216875
0.039375
0.355625
0.151875
0.563125
-0.530625
0.028125
-0.505625
-0.688125
0.268125
-0.093125
0.183125

Predicts y
3.47563 3.80
4.09938 4.34
3.81313 3.54
4.43688 4.59
4.16688 3.95
4.79063 4.83
4.50438 4.86
5.12813 5.28
2.72688 3.29
3.35063 2.82
456188 4.59
5.18563 4.68
3.41813 2.73
4.04188 4.31
5.25313 5.16
5.87688 6.06
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(d) R? = .846 using the model that includes factors A,B,C and BD interaction.
When factors A,B,C and the interaction term BD are included in the linear
model representing adhesive force, 84.6% of the overall variability of the
responses about their grand mean is explained by the A B and C main effects
and the BD interaction effect.

(30)

(a) ¥ =495.063, ap=-16.5625, b, = 12.0625, c; =-163.438, d; =-3.4375,
aby, = -5.5625, acyp= 10.9375, ads = -3.8125, by, = -13.4375,
bdy; = 10.5625, cdjz; =-5.4375, abcyy; = -1.0625, abdjz; = 1.1875,
acdzze = .1875, bedga, = 7.0625, abedazge = -6.3125.

(b) Itis clear the C effect is an important contributor to the variability of average
sheet resistivity. In fact, at the high level of C, average sheet resistivity is
significantly minimized. The A and B main effects and their interaction with C
are somewhat influential on variability of the average sheet resistivity. The
high level of A decreases average sheet resistivity, the high level of B
increases the average sheet resistivity. The AC interaction (both at their high
levels) somewhat increase average sheet resistivity and the BC interaction
(both at their high levels) somewhat decrease average sheet resistivity.

(c) ¥ =495.063, c, =-163.438
Predictions  Residuals vy

658.500 -12.500 646
658.500 -35.500 623
658.500 55.500 714
658.500 -15.500 643
331.625 28.375 360

331.625 27.375 359
331.625 -6.625 325
331.625 -13.625 318
658.500 7.500 666
658.500 -61.500 297
658.500 59.500 718
658.500 2.500 661

331.625 -27.625 304
331.625 -22.625 309
331.625 28.375 360
331.625 -13.625 318

143 Chapter 4
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Residual

Residuals Versus the Fitted Values
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Residual

Residual

Residuals Versus B

(response is y)
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Residuals Versus D

(response is y)
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The residual plots vs A and B suggest perhaps A and B should be in the model
and there seems to be different variability of average sheet resistivity at the high
level of the factor of C.

(d) The R? = .964 for the C main effects only model. It would appear from the
residual plots there is a need for factors A and B and their interactions together

with an interaction term AC. However, the C main effects only model does okay,
especially with such a large R?,
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Chapter 5: Probability: The Mathematics of
Randomness

Section 1. (a)

1
L=} = —
@ o
o o
] o —_———
?O ED
= o L o
= o
o
p P
o L~ s
o o
2 3 4 5 6 2 3 4 5 6
X x

(b) Using equation (5-1),
EX =2(.1) +3(.2) +4(.3) + 5(.3) + 6(.1) = 4.1.
Using equation (5-2),
VarX = 22(.1) + 3%(.2) + 4%(.3) 4 5%(.3) + 6%(.1) — (4.1)* = 1.29,

80 the standard deviation of X is +/1.29 = 1.136.

2 (a) X has a binomial distribution with n = 10 and p = 3. Use equation (5-3) with n = 10 and
1
P= 5.

P(X =z)
.0173
0867
1951
2601
2276
1366
0569
0163
0030
0003
0000

000 = U W= O

—
[ =]

(b) Assuming that they are just guessing, how likely is it that 7 (or more) out of 10 subjects
would be correct? This is P(X > 7) = .0197. Under the hypothesis that they are only
guessing, this kind of extreme outcome would only happen about 1 in 50 times, so the
outcome is strong evidence that they are not just guessing.
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(2)

03

01 0z

Relative Frequency

0.0

Using equations (3-4) and (3-5), p =4, 0* = §, and o = 1.201.

(b)

z |2 3

5

P(I=3)|% 1

e | e

1
6

Tile= | T

Since all members of the population are equally likely to be chosen, the probability
histogram for X is the same as the population relative frequency distribution. Using
equations (5-1) and (5-2), EX = 4 and VarX = §.

(¢) Label the values 2, 3, 4,, 44, 5, 6.

Use equation (5-3) with n = 5.

1x)

VarX =
p| S(0) f(1) f(2) f(3) f(4) f(5) EX=np np(l—p) St Dev.
.1 | .5b905 .3280 .0729 .0081 .0006 .0000 .5 .45 6708
.3 | .1681 .3601 .3087 .1323 .0283 .0024 1.5 1,05 1.0247
5| 0312 .1582 3126 .3125 .1562 .0312 2.5 1.25 1.1180
.71 .0024 .0284 .1323 .3087 .3601 .1681 3.5 1.05 1.0247
.9 | .0000 .0004 .0081 .0729 3280 .5906 4.5 .45 6708
=3
3 s | i
- -
(=] — L=
E
g 3
o o
(=] (=]
4 5
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F*,S Y‘._I'

0.6
06

04
04

f{x}
fi{x)

02
02

00
00

0.6

04

f(x)

02

0.0

Use the binomial distribution, equation (5-3), with n = 8 and p = ,20.
(a) P(W =3)=.1468,

(b) P(W <2)= P(W =0)+ P(W = 1) + P(W = 2) = .7969.

(c) Using equation (5-4), EW = np = 1.6.

(d) Using equation (5-5), VarW = np(1 - p) = 1.28.

(e) V1.28 =1.1314.

Use the geometric distribution, equation (5-6), with p = .20.

(2) P(Y =5)=.08192.

(b) P(¥ <4)=P(¥ =1)+P(Y =2)+ P(Y =3) + P(Y = 4) = .5004.
(¢) Using equation (5-8), EY = % =5

(d) Using equation (5-9), VarY = 1—;53 = 20.

(e) vio=4.4721.
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8.

Use equation (5-10).

1{x)

f(x)

P(X =z)
T A=.5 A=10 A=20 A=4.0
0 .B065 L3679 1353 0183
1 3033 3679 2707 0733
2 .0758 .1839 L2707 .1465
3 0126 0613 .1804 .1954
4 0016 0153 .0902 .1954
5 0002 0031 .0381 .1563
6 0000 .0ons 0120 .1042
7 0000 .0001 L0034 0595
] 0000 0000 0009 .0298
9 0000 0000 .0002 .0132
10 0000 .0000 .0000 0053
11 0000 0000 .0000 0019
12 0000 .0000 L0000 0006
EX =) B 1.0 2.0 4.0
VarX = A B 1.0 2.0 4.0
Std. Dev. 7071 1.0 1.4142 2.0
o J\ = -'5- w )\ = }-O
=] o h
X, : =
=1 &
=
] N
=1 o
e o ..
o =1
6 8 10 12 4 6 10 12
® x
o A . o
p o
b -
(=3 .o
=
(] o
P =
o o
D' (=]

(a) Use the Poisson distribution, equation (5-10), with A = 2.

P(X >2)=1- P(X <2)=1-—.6767 = .3233,
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10.

1.

(b) Use the Poisson distribution, equation (5-10), with A = 1.

P(X = 0) = .3679.

(2) Use the Poisson distribution, equation (5-10), with A = 5.

P{x = 0) = .00867.

(b) Y ~ Binomial with n =4 and p = .0067. Use equation (5-3) with n = 4 and p = .0067.

P(Y = 2) = .00027.

Frobability is a mathematical system used to describe random phenomena. It is based on a set
of axioms, and all the theory is deduced from the axioms. Once a model is specified,
probability provides a deductive process thal enables predictions to be made based on the
theoretical model.

Statistics uses probability theory to describe the source of variation seen in data. Statistics
tries to create realistic probability models that have (unknown) parameters with meaningful
interpretations. Then, based on observed data, statistical methods try to estimate the
unknown parameters as accurately and precisely as possible. This means that statistics is
inductive, using data to draw conclusions about the process or population from which the data
came.

Neither is a subfield of the other. Just as engineering uses calculus and differential equations
to model physical systems, statistics uses probability to model variation in data. In each case
the mathematics can stand alone as theory, so calcu|ug is not a subfield of engineering and
probability is not a subfield of statistics. Conversely, statistics is not a subfield of probability
just as engineering is not a subfield of calculus; many simple statistical methods do not require
the use of probability, and many engineering techniques do not require calculus.

A relative frequency distribution is based on data. A probability distribution is based on a
theoretical model for probabilities. Since probability can be interpreted as long-run relative
frequency, a relative frequency distribution approximates the underlying probability
distribution, with the approximation getting better as the amount of data increases.
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Section 1. (a) Use equation (5-13) and solve for k = %.

2
(b)
2
_J 3(6-2) ford<z<1
=) = { 3 otherwise.
3
>
-
(=]
p=
£02 00 02 04 06 0B 10 1.2
x
(¢)
75
P25 < X <.16) = /j{:}dz
25
= uh

(d) Using equation (5-16),

Flz) = P(X <z)

1]
ALl
L4
—
Gl
=
. ]

0 forz<0
= (52— 32?) for0<2<1

1 forz>1.

0.8

Fx)

04

0.0

£02 00 02 04 06 08 10 12

X
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(e) Using equation (5-18),

13
EX =—.
27

Using equation (5-19),
VarX = .08299,

s0 the standard deviation of X is .288.

The values of ®(z) = P(Z < z) are given in Table B-3. All of these probabilities correspond to
areas under the standard normal curve.

(a) P(Z < —.62) = ®(—.62) = .2676.

(b) P(Z>1.06)=1- P(Z <1.06) =1 - ®(1.06) = 1 — .8554 = .1446.

(¢) P(—.37T< Z < .51)=P(Z < .51)— P(Z < —.37) = .6950 — .3557 = ,3393.

(d) P(|Z]| < AT)= P(-A4T< Z < 47)= P(Z < .AT) — P(Z < —.47) = .6808 — .3192 = .3616.
(e) P(|Z]> .93)= P(Z < —.93) + P(Z > .93) = 2(P(Z < —.93)) = 2(.1762) = .3524.

(f) P(-3.0<Z <3.0)=P(Z<3.0)-P(Z<.-3.0)=.9987 - .0013 = .9974.

(g) Looking up .90 in the body of the table, # =~ 1.28.

(h) P(|Z| < #) = .90 is equivalent to P(Z < #) = .95 (by symmetry). Looking up .95 in the
body of the table, # ~ 1.645.

(i) P(|Z|> #) = .03 is equivalent to P(Z < #) = .985 (by symmetry). Looking up .985 in
the body of the table, # == 2.17,

Probabilities involving X are just areas under the normal curve with p = 43.0 and ¢ = 3.6.
Each of these areas has an equal corresponding area under the standard normal curve.

Define Z = 5_;5-745:1._0' Then Z is a standard normal random variable. Re-express each of the
problems below in terms of Z.

(a) P(X < 45.2) = P(Z < .61) = .7291.
(b) P(X < 41.7) = P(Z < —-.36) = .3594,

(c) P(43.8< X <47.0)=P(.22< Z < 1.11) = P(Z < 1.11) - P(Z < .22)
= .8665 — .5871 = .2794.

(d) P(|X — 43.0| < 2.0) = P(41.0< X < 45.0) = P(—.56 < Z < .56)
= P(Z < .56) — P(Z < —.56) = .7123 — .2877 = .4246.

(e) P(|X -43.0]>1.7)=1-P(|X -43.0/<1.7)=1-P(41.3< X < 44.7)
=1-P(-47<Z< 47)=1-(P(Z < 47) - P(Z < —47))
=1— (.6808 — .3192) = .6384.

(f) P(X < #) = .95 is equivalent to P(Z < £5%9) = 95. Looking up .95 in the body of!.!
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table,

# — 43.0

7= 1.645
3.6

50 # A 48.922.

(g) P(X > i] = .30 is equivalent to P(X < #) = .70, which is equivalent to
P(Z < #5%9) = 70. Looking up .70 in the body of the table,

# —43.0

&~ .52
3.6

s0 # = 44,872,

(h) P(|X — 43.0] > #) = .05 is equivalent to P(|X —43.0| < #) = .95, whu:h is equivalent to
P(X — 43.0 < #) = .975 (by symmetry). This is equivalent to P(Z < 3 ] = 9Th.
Looking up .975 in the body of the table,

#
— 2= 1.96
3.6 b

so # = 7.056.

The probability that one journal is within specifications is the same as the long-run
fraction of journals within specifications, if successive journal diameters can be thought of
as repeated observations of the same random variable X. Since X is normal with

= 2.0005 and o = .0004, Z = x_—&gp_‘_gg is a standard normal random variable.

(2

e

P(1.9995 < X < 2.0005) = P(X < 2.0005)— P(X < 1.9995)
= P(Z<0)-P(Z< —2.50)
5 — .0062 = .4938.

(b) Because of the symmetry and shape of the normal distribution, setting u to the midpoint
of the specifications will increase the fraction of diameters in specifications. (This assumes
that it is easy to make an adjustment that will change u as desired.) With u = 2.0000,

P(1.9995 < X <2.0005) = P(X < 2.0005)— P(X < 1.9995)

= P(Z <1.25)- P(Z < —1.25)
8944 — 1056 = .7888.

(¢) Want
P(1.9995 < X < 2.0005) > .95.
This is equivalent to
P(X < 2.0005) > .975

because of the symmetry of the normal distribution. Expressing this in terms of Z,

P(Z < %) > .975.
Looking up .975 in the body of Table B-3,
.0
ﬁ > 1.96
a
so ¢ < .0002551 will do the trick.
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5 (a)

E(X)=1000=a=p, o*= o =Var(X)=(1000)>=10°, c=10°.

Consider equation (5.25). P( X <500) =1 - exp[ - .001(500) ] = .3934

P(X > 2000) =1 - (1 - exp[ -.001(2000)] ) = exp[ -2 ] = .1353.

(b) Consider equation (5.25). .05 =1 - exp[-.001(x) ] or

.95 = exp[ -.001(x) ] or In(.95) = -.001x which implies that x = 51.29. Thus, the
.05 quantile is x = 51.29. The .90 quantile can be found in a similar fashion.
Consider equation (5.25). .9 =1 - exp[-.001(x) Jor .1 =exp[-.001(x) ].
Therefore, In(.1) = -.001(x) and x = 2,302.58. The .90 quantile is x = 2,302.58.
6. (a)

Weibull Probability Density: Shape parameter = 2.3,
Scale parameter = 80

0.012
0.011 —
0.010 —
0.008 —
0.008 —

f(x)

0.007 —|
0.006 —
0.005 —|
0.004 —

=
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(b) Let x = median lifetime. Since X is Weibull (c« = 80, p = 2.3), equation (5-26)

gives:
5=1-exp[ -(x/80)%° ]
.5 = exp[ -(x/80)*° ]
In(.5) = -(x/80)*>
x = 68.2156 X 10° is the median lifetime.
(c) Continuing, using equation (5-26),
.05 = 1 - exp[ -(x/80)** ]
.95 = exp[ -(x/80)%* ]
-.051293 = -(x/80)%>
x =21.99 X 10° is the .05 quantile.
Using equation (5-26), let x equal the .95 quantile.
95 = 1 - exp[-(x/80)*° ]
.05 = exp[ -(x/80)>° ]
2.99573 = (x/80)*°

x = 128.903 X 10° is the .95 quantile.
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Section
3

1.

Data that are being generated from a particular distribution will have roughly the same shape
as the density of the distribution, and this is more true for larger samples. Probability plotting
provides a sensitive graphical way of deciding if the data have the same shape as a theoretical
probability distribution. If a distribution can be found that accurately describes the data
generating process, one can then estimate probabilities and quantiles and make predictions
about future process behaviour based on the model.

Fit a line (by hand or some other method) through the points on the plot. The z-intercept is
an approximate mean, and an approximate standard deviation is :

b)

(a)

o, ¥ As A data quantiles
slope = Ay A std. normal quantiles’

For Minitab Version 9.1, with the data in C1, the commands are

MTB > nscores cl ¢2
MTB > name c2 *SNQT*
MTE > gstd
* NOTE »* Standard Graphics are enabled.
Professional Graphics are disabled.
Use the GPRO command to enable Professional Graphics.
MTB > plot c2 ci

The plot given in section 2 prob. 3 was produced by a user-written function in S-Plus.
See the solution to saciion 2, prob. 3

# = x-intercept = 69.6;

i
o= =2.1.
slope

The first 3 coordinates of the normal plot of the raw data are: (17.88, —2.05), (28.92,
—1.48), (33.00, —1.23),

g ¥
= .
= . .
- ~—
o -
g P
o o ik
2 £
E f :-
e e
50 100 150
Lifetime Quanliles

This normal plot is not linear, so a Gaussian (normal) distribution does not seem to fit
the raw data.

The first 3 coordinates of the normal plot of the natural log of the data are: (2.884,
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—2.05), (3.365, —1.48), (3.497, —1.23),

2

Standard Nermal Quantiles
0
s

3.0 3.5 40 45 50
log(Lifetime) Quantiles

This normal plot is fairly linear, indicating that a normal distribution fits the
log-transformed data well (the lognormal distribution fits the raw data well). To find an
approximate p and o for the lognormal distribution, fit a line to the normal plot of the
log-transformed data.

f = x-intercept = 4.15;

o =

54,

slope =
(You could also use the sample mean and standard deviation of the log-transformed data.)

For these parameters, the .05 quantile of In(life) is the # that satisfies the expression
P(In(life) < #) = .05.
This is equivalent to

# —4.15

Plas S =g

=08,

where Z is a standard normal random variable. Looking up .05 in the body of Table B-3,

# —4.15

= —1.645
.54

so # % 3.26. This corresponds to a .05 quaantile of €325 = 26.09 for raw life.

(b) The computations necessary for the Weibull plot are given below.
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i ith Smallest Life In(ith Smallest Life) p = =5 In(—In(1 - p))
1 17.88 2.8837 0217 -3.8177
2 28.92 3.3645 0652 -2.6965
3 33.00 3.4965 .1087 -2.1622
4 41.52 3.7262 1522 -1.8013
5 42.12 3.7405 1957 -1.5245
6 45.60 3.8199 2391 -1.2972
7 48.40 3.8795 .2826 -1.1022
8 51.84 3.9482 .3261 -.9297
9 51.96 3.9505 .3696 -.7736
10 54.12 3.9912 4130 -.6296
11 55.56 4.0175 4565 -.4947
12 67.80 4.2166 5000 -.3665
13 68.64 4.2289 .5435 -.2432
14 68.64 4.2289 .5870 -.1231
15 68.88 4.2324 .6304 -.0046
16 84.12 4.4322 6739 .1139
17 93.12 4.5339 7174 2340
18 98.64 4.5815 .7609 3582
19 105.12 4.6551 8043 4894
20 105.84 4.6619 8478 6327
21 127.92 4.8514 8913 7971
22 128.04 4.8523 .9348 1.0043
23 173.40 5.1556 9783 1.3425
t: :
3 o !
¥
E :
3.0 a5 4.0 45 50
in{Life) Quantiles

The Weibull plot is fairly linear, indicating that a Weibull distribution might be used to
describe bearing load life. From a line fit to the plot,

Ina &~ x-intercept = 4.396
s0 o = 1396 = g1.12.
B = slope = 2.30.

To find the p quantile of the distribution, set the CDF equal to p and solve for z:

Flz)=1-¢(2)" = »
nfa =) e _(E)’
z = a(-In(1-p)*

Using p = .05 and the above approximations for @ and g, the .05 quantile is
approximately z = 22.31.
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5. (a)

Fraquency

2 .3 4 5 6

1

500

1000

1500 2000 2500 3000

Mileage at First Failure

The distribution of the data is right-skewed.

(b) The plotting positions are given in the following table.

Standard Exponential Quantiles

i L;'éj' Q@ lﬁé QExp(t_Ii_s
1 02777778 162 02817088
2 .08333333 200 08701138
3 .1388888Y 271 .14953173
4 .19444444 320 21622311
5 .25000000 393 28768207
6 .305555566 508 .36464311
7 .38111111 539 44802472
8 .41666667 629 .538949650
9 47222222 706 .63907996
10 52777778 777 .75030559
11 .5B333333 B84 87546874
12 .63888880 1008  1.01856858
13 69444444 1101 1.18562367
14 75000000 1462  1.38629436
15 .B0555556 1603  1.63760879
16 86111111 1984  1.97408103
17T .91666667 2355  2.48490665
18 .97222222 2880  3.58351894
l.-'.-
500 1000 1500 2000 2500 3000

Mile'age al First Fallure Quantiles

The plot is very linear, indicating that the data have an exponential shape. It seems that
the exponential distribution fits the data well. Since a line fit to the plot gives Q(0) = 0,
no strong need for a threshold parameter greater than zero is indicated.
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Section 1. If X and Y are independent, then they are uncorrelated—they do not influence each other in
4 any way. Put differently, if the probability distribution of X and ¥ are both known
completely, observing the actual value of X does not in any way change the probability
distribution of the yet-to-be-observed ¥, and vice-versa.

One practical advantage of X and ¥ being independent is that the variance of a linear
combination of the two can be easily computed using equation (5-59). Another advantage is
that it is easy to describe the joint probability distribution of X and ¥—it is just the product
of the marginal distributions. In general, independence allows the probabilily of two events
happening together to be computed as the product of the probabilities of each event.

2. (a) Compute fx(z) by summing down the columns and fy (y) by summing across the rows.

z| 0 1
Fx@@) | 5 4 1

v 0 1 2 3 4
friv) |21 19 26 21 .13

(b) No, since f(z,y) # fx(z)fy(y). For example, f(0,0) = .15 and
fx(0)fy(0) =.5(.21) = .105.

(c) Use equations (5-1) and (5-2), and the marginal distribution of X from part (a).
EX = (0)(.5)+ (1)(4)+(2)(.1)=6
and
VarX = (0)%(.5) + (1)2(.4) + (2)*(.1) - (.6)* = .44.
(d) Use equations (5-1) and (5-2), and the marginal distribution of ¥ from part (a).
EY = (0)(-21)+ (1)(-19) +(2)(.26) + (3)(-21) + (4)(.13) = 1.86
and
Var¥ = (0)%(.21) + (1)(.19) + (2)?(.26) + (3)?(.21) + (4)3(.13) — (1.86)* = 1.7404.

(e) Use equation (5-42). For example

J(0,0) 15
) =—-=—-——=—=—=.3
fy1x(0]0) 0] z
The rest are given in the table below.
] g ale g
frix@) [ 3 2 2 2 1

Using equation (5-1),

B(YX = 0) = (0)(.3) 4 (1)(2) + (2)(2) + (3)(:2) + (4)(.1) = L6,
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(a) If X = 0, then all of the specimens will be tested with probability 1.

If X =1, and the contaminated specimen is equally likely to be tested first, second, third,
or fourth, then all possible values of Y are equally likely.

The joint distribution can be obtained using equation (5-52): f(z,¥) = fyx (vlz)fx(2)-

f(z,v)

1
25(1=p)
.25(1 — p)
25(1— p)
25(1—p)

M| L) B =
=N E=JE—] =] -]

Use the marginal distribution for Y. This is obtained by summing across the rows of the
table for f(z,y):

y | fr(v)
1| .25(1-p)
2 | .25(1-p)
3| .25(1—p)
4| .25(1—p)+p
Then applying equation (5-1),
EY = (1)((-25)(1 - p)) + (2)((-25)(1 — p)) + (3)((-25)(1 — p)) +(4)(-25)(1 ~ p) + p)

= 254 1.5p

For the second method, ¥ has two possible values, 1 and 3. P(Y =1)=P(X =0)=p
because if there is not a contaminated specimen, this will be known after the first
composite test. If there is a contaminated specimen, then the lab must do 3 tests, and the
probability of this is P(Y =3) = P(X = 1) = 1 — p. Applying equation (5-1),

EY = (1)(p) + (3)(1 — p) = 3 — 2p for the second method. Based only on the criterion of
minimizing EY, the second method will be better when

3—2p < 2.5+ 1.5p.

Solving this inequality for p results in p > .143. This makes sense, because if p is large it is
likely that there are no contaminated specimens, in which case the second method is more
efficient.
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4.

(a) Since X and Y are independent, f(z,y) = fx(z)fy(y) (definition (5-27)).

11
for z € (1.97,2.02) and y € (2.00, 2.06)
- J06 .06 1 1
f(z9) { 0 otherwise

333.33 for z £ (1.97,2.02) and y € (2.00,2.06)
0 otherwise

(b) Integrate f(z,y) over the region in which y < z.
PY-X<0) = PY<X)
202 =z

333.33dzdy

2.00 2.00
.0667.

5(a) f(x) =2x for 0 < X <1 and 0 otherwise. f(y)=2(1-y)forO<Y <1and0
1

otherwise. So, p=E(X)= Iledr =(1/3)(2x%). Letting X = 1 gives 2/3. Letting X
0

=0, gives 0. Thus, E(X) = 2/3.

(b) Yes, since f(z,y) = fx(z)fr(y).

(c) Integrate f(z,y) over the region defined by z + 2y > 1. This is equivalent to the region
defined by y 21;2{1 - z).

PX+4+2Y >1) = 4z(1 — y)dydz
oii-=)
= .7083.
(d) f(x| y ) = f(x.y)f(y) = [4x(1-y)]/ [2(1 -y)]. Fory= .5 f(x|y=.5) becomes

2x. Thus, ,
E[ (X|y=.5)]= jzr"dr = (1/3)(2x") = 2/3.
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(a) Since X and Y are independent, f(z,v) = fx(z)fyr(v) (definition (5-27)).

s e e ¥ forz>0andy>0
ftz,3) = { 0 otherwise

(b) Integrate f(z,y) over the region in which both z and y are greater than t.

fe_=e_” dz dy
t

= &M 450

P(X>tandY >t) =

(c) Use Eq_ud'ib'n [5'”.).

] otherwise.

—3¢
fly = {2e for!l}-f.l

T has an exponential distribution with mean .5.

(d) Integrate f(z,y) over the region in which both z and y are less than t.

T
PX<LtandY< t) = ffe"’e“"'dzdy
= (1—e")P,t>0

(¢) The answer to (d) is F(t). Using egud’hfl g l'!\,

., 2(1 —et)e~t fort>0
fle) = { 0 otherwise

Using equation (5-18),

ET

==
/2&(1—e He *dt

(~2e~*(t+1) + in)e_zt{zt + )
= L5
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Section 1.
5

The total thickness is the sum of the thicknesses of the layers. Define X3,
thicknesses of the layers; then U = X + -+ + X is the total thickness. Using equation (5-58),

EU=EX;+---+ EXs = .750 in.
To use equation (5-59), you have to square the given standard deviations first.
Varll = VarX, + - - + Var X = .000014,

so the standard deviation of U7 is +/.000014 = .00374 in.

voey Ag to be the

(a) Take the given measured values to be approximately equal to the means of the random

variables. The following Minitab (Version 9.1) session shows a simulation of observed a’s

using a normal distribution for each input random variable.

MTIB > random 1000 ci;
SUBC> normal 50 .1.

MTB > name ci1 'T1?

MTE > random 1000 c¢2;
SUBC> normal 100 .1.

MTB > name c2 T2’

MTB > random 1000 c3;
SUBC> normal 1.0 .00005.
MTIB > name c3 ‘L1’

HIB > random 1000 c4;
SUBC> normal 1.00095 .00005.
MIB > name c4 'L2‘

MTB > let c5 = (c4 - c3)/(c3%(c2 - ¢1))

MTB > name c5 ‘alpha’

MTB > gstd

* NOTE * Standard Graphics are enabled.
Professional Graphics are disabled.
Use the GPRO command to enable Professional Graphics.

MTB > hist cb

Histogram of alpha N = 1000
Each * represents 5 obs.

Midpoint  Count

0.0000155 2 =
0.0000160 19  #*%%
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0.0000165 21 kwkRs

0.0000170 BB kkkwdkkdkkkkE

0.0000175 Bl tkkrdbdkkh ke

0.0000180 135 ekkdkhdkkkdkErdkhesikrkEikE
0.0000185 142 wweddkddkkphrbbhhks kbbb bbhh
0.0000190 155  *wkdsmdmkkhdokdhbhdkthokkdhRkhghk
0.0000195 115 s*hkdsrdrrecditnbrhhddhss
0.0000200 100 whkddhdrkbbrrhbebrshks
0.0000205 5O  kwkddddedbedy

0.0000210 51 seskekskokokokokokdok

0.0000215 34 w¥edvks

0.0000220 15 #*%%

0.0000225 b *

0.0000230 0

0.0000235 i1 +»

MTB > stdev cB
ST.DEV. =0.0000013380

The sample standard deviation of the simulated values of & is .0000013380. This can be
used as a rough approximation to the underlying standard deviation of the probability
distribution of c.

To use the propagation of error formula (5-59), the partial derivatives need to be
evaluated at the means of the input random variables:

da _ —Li(Ta - Ti) - (La— L)(Ta = Th)

= = —.020019
oL, (Li(T2 — Tv))?
o 1
- =02
8Ly~ Li(T3 - Th)
o _ Lyl —1In) L‘]z =3.8%10~7
aTl (L](Tz - T1))
fa  —hifLi—Li) _ sgocqet

0Tz~ (L(T2 —T0))*
Then applying equation (5-59),

Var(a) = (—.020019)%(.00005)% + (.02)?(.00005) + (3.8 x 10~7)%(.1)*
+(—3.8 x 1077)3(.1)?
= 1.0019x 107" £ 107" 4 1.444 x 1075 4 1.444 x 107%®
2.0047889 x 10712,

so the approximate standard deviation of o is

/2.0047889 x 10-12 = .000[!'01415%

This is almost the same as the approximation from the simulation.

The lengths, since their terms (variance x squared partial derivative) contribute much
more to the propagation of error formula than the temperatures’ terms.
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(¢) T; can only be made so large before the brass melts. It is difficult to measure the length of
melting brass. Also, it may be difficult to find measuring instruments that will accurately
and precisely measure extremely cold or hot temperatures.

From Exercise 1, Section 2, Chapter 5, EX == 13 and VarX = o = .28808.

(a) Using equation (5-55), EX = pu = 33. Using equation (5-56),

vVarX = —%
28808
— = .06762.
V25

(b) Because n is large and the individual X’s are independent, the central limit theorem says
that the distribution of X is approximately normal. From part (a), the distribution of X
is approximately normal with mean %% and standard deviation .05762.

(c)
P(X > .5)

1-P(X < .5)

v _ 13 |
= 1—P(X ,57{.5 ﬁ)

05762 — .05762
1— P(Z < .321) where Z is standard normal
= 1-.6255= .,3745.

(d)
P(.4615 < X < .5015)

P(X < .5015) — P(X < .4615)
P(Z < .35) — P(Z < —.35)
= .B368 —.3632 = .2736.

(¢) X is approximately normal with mean 12 and standard deviation %’—1’%! = .02881.

P(X>5) = 1-P(X<.5)
G - x_%%e:'ﬁ_%%)

.02881 — .02881
1 - P(Z < .64) where Z is standard normal
1—.7389 = .2611.

P(.4615 < X < .5015)

P(X < .5015) — P(X < .4615)
= P(Z <.69)— P(Z < —.89)
— .7549 — .2451 = .5098.
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All of these sample sizes are large. A simple random sample from a large population results in
random variables that are approximately independent. The central limit theorem then says
that X is approximately normal, even if the individual X’s are not. Equation (5-55) says that
the mean of X is equal to g, the mean of the individual X’s. Equation (5-56) says that the

standard deviation of X is ﬁ;, which is equal to %

For n = 25,

P(u —.0001 < X < u+.0001) P(R < p+.0001) — P(X < p—.0001)

.0001 —.0001
= P|l\ZS—mr | —PlE< —)
( T ) ( =
= P(Z <1.25)— P(Z < -1.25)
.8944 — 1056 = .7888.

I

For n = 100,

P(p—.0001 < X < p+.0001) = P(X<p+.0001)— P(X <p—.0001)
P(Z < 2.5) - P(Z < -2.5)
= .9938 — .0062 = .9876.

For n = 400,
P(u—.0001 < X <p+.0001) = P(}<pu+.0001)- P(X < p—.0001)
= P(Z<5)-P(Z<-5)
= 1-0=1.
Rearrange the relationship in terms of g:
_ 4n’L
g= T’ d

Take the given length and period to be approximately equal to the means of these input
random variables, To use the propagation of error formula (5-59), the partial derivatives need
to be evaluated at the means of the input random variables:

dg 4x?

Sy = —7 = 6.418837
89 —8x°L
3 .22 3 = —25.8824089

Then applying equation (5-59),

Var(g) =~ (6.418837)%(.0208)° + (—25.8824089)%(.1)
01783 + 6.699
= 6.7168 ft* /sect,

so the approximate standard deviation of g is
+/6.7168 = 2.592 ft /sec?.

The precision in the period measurement is the principal limitation on the precision of the
derived g because its term (variance x squared partial derivative) contributes much more to
the propagation of error formula than the length’s term.
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End
Chapter
Exercises

1.

Use equation (5-3) with n =6 and p = .9.

(a) P(X =6)=.531.

(b) P(X > 4) = .984.

(¢) P(X <4)=1-P(X >4)=.016.

(d) EX =np=54.

(e) VarX = np(1 — p) = .54; std. dev. of X = /54 = .735.

Use the binomial distribution, equation (5-3), with n = 10 and p = .15.
(a) P(X =2)=.276.

(b) P(X >1)=1-P(X <1)=1—P(X =0)=1-.197 = .803.

(¢} EX =np=15.

(d) VarX = np(1 —p) = 1.275.

(e) +/1.275=1.129.

The Poisson distribution, equation (5-10), is often used in these kinds of situations.

(a) It is given that the mean of Y is equal to 1.3, since ¥ is the number of defects on one
bumper. A is the mean of the Poisson distribution (see equation (5-11)), so use A = 1.3.
P(Y = 2) = .230.

(B P(Y 21)=1-P(¥ <1)=1-P(Y =0)=1-.273 = .T27.
(c) Using equation (5-12), v/Var¥ = vA = v/1.3= 1.14.

(d) If the average number of defects per bumper is 1.3, then the average number of defects per
2 bumpers is 2.6, Use the Poisson distribution for W = Y + Z, with A = 2.6.

P(W>2)=1-P(W < 2) 1 - (P(W =0)+ P(W = 1))

1—(.0743 + .1931) = .7326.
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4. (a) Use equation (5-13) and solve for k = .9231.

_ [ 8231((z—.5)*+1) for0<z<1
fl=) = { otherwise.

1.2

\—//

i(x)
0.8

0.4

0.0 02 04 06 0.8 1.0

(b) All of the following probabilities correspond to areas under f(z).

X >:5) = jf{z}d::
5

P(X>.5) = P(X>.5)=

P(.75> X > .5)

I
ety
~
3
[0
-]

[
)
L
&

P(|JX-.5|>.2)) = 1-P(X-.5]<.2)
= 1-P(-2<X-.5<.2)
= 1—P(3<x<.'r))

= 1= / f(z)dz

= l= 3742— .6258.
(¢) Using equation (5-18),

EX = 5.

Using equation (5-18),

VarX = .08846.
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(d) Using equation (5-16),

F(z) = P(X<a2)
z
z f_f(z)d:
-0
0 forz <0
= 9231(32° — 12® +1.25z) for0<z <1
1 forz > 1.
@
@ -
o >
w
E [ =]
S
(=]
o Y
[=]
(=}
(=]

0.0 02 04 0.6 0.8 1.0

The .8 quantile of the distribution is the z such that P(X < z) = .8. This is just F~(.8),
so you need to find .8 on the vertical axis, and find the = that produces this value for
F(z). (By trial and error, the exact value is z = .81458.)

The values of ®(z) = P(Z < z) are given in Table B-3. All of these probabilities correspond to
areas under the standard normal curve.

(a) P(Z < 1.13) = ®(1.13) = .8708.

(b) P(Z > -.54)=1— P(Z < —.54) = 1 — $(—.54) = 1 — .2046 = .7054.

(¢) P(-1.02< Z < .06)= P(Z < .06)— P(Z < —1.02) = .5230 — .1539 = .3700.

(d) P(|Z] < .25) = P(-.25< Z < .25) = P(Z < .25) - P(Z < —.25) = .5087 — .4013 = .1974.
(e) P(1Z]> 1.51) = P(Z < —1.51)+ P(Z > 1.51) = 2(P(Z < —1.51)) = 2(.0655) = .1310.

(f) P(-3.0< Z < 3.0)=P(Z < 3.0) - P(Z < —3.0) = .9987 — .0013 = .9974.

(g) P(|Z] < #) = .80 is equivalent to P(Z < #) = .90 (by symmetry). Looking up .90 in the
body of the table, # = 1.28.

(h) Looking up .80 in the body of the table, # ~ .84.

(i) P(|Z]|> #) = .04 is equivalent to P(Z < #) = .98 (by symmetry). Looking up .98 in the
body of the table, # = 2.05.

Probabilities involving X are just areas under the normal curve with 4 = 10.2 and & = .7.
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Each of these areas has an equal corresponding area under the standard normal curve.

Define Z = ——.,—'H Then Z is a standard normal random variable. Re-express each of the
problems below in terms of Z.

(a) P(X <£10.1)= P(Z < —.14) = .4443.
(b) P(X >10.5)=1— P(X £10.5)=1- P(Z < .43) = 1 — .6664 = .3336.

(c) P(9.0< X <103)=P(-1.T1 < Z < .14)= P(Z < .14)- P(Z < —-1.71) =
5557 — .0436 = 5121.

(d) P(|X —10.2] < .25) = P(9.95 < X < 10.45) = P(~.36 < Z < .36)
= P(Z < .36) — P(Z < —.36) = .6406 — .3504 = .2812.

(e) P(]X —10.2|> 1.51) =1 - P(]X —10.2| < 1.51) =1— P(8.69 < X < 11.71) =
1-P(-2.16 < Z < 2.16) = 1 —(P(Z < 2.16)— P(Z < —2.16)) = 1—(.9846—.0154) = .0308.

(f) P(|X —10.2| < #) = .80 is equivalent to P(X — 10.2 < #) = .90 (by symmetry). This is
equivalent to P(Z < i.,.} = .90. Looking up .90 in the body of the table,
#
= = 1.2
7 1.28
so # =~ .896.

(g) P(X < #) = .80 is equivalent to P(Z < #3%2) — 80. Looking up .80 in the body of the
table,

#-10.2

7 = .84

so # =~ 10.788.

(h) P(|X — 10.2| > #) = .04 is equivalent to P(|X — 10.2| < #) = .96, which is equivalent to
P(X — 10.2 < #) = .98 (by symmetry). This is equivalent to P(Z < #) = .98. Looking
up .98 in the body of the table,

~lHE
Lt§
b
o
&

so # = 1.435.

The probability of one part failing to meet inspection is equal to the long-run fraction of parta
failing to meet inspection, if the part measurements are considered to be identical random
variables. You need to make p small enough so that

P(X > 3.150) < .03.

This is equivalent to P(X < 3.150) > .97, which is equivalent to P (Z < 2133=#) > .97, where
Z is a standard normal random variable. Looking up .97 in the body of Table B-3,

3.150— p

o0z~ L8

or 4 < 3.14624.

(a) Let Xi,...,Xso be the 50 individual strengths., The strength of the cable is then
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U = ¥ X;. Using equation (5-55), the mean of the sum is the sum of the means:
EU = EX; + EX; +---+ EXgo = 50(45) = 2250 1bs.

Assuming that the individual strengths are independent, you can use equation (5-56) to
say that the variance of the sum is the sum of the variances:

Varll = VarX; + VarX; + --- + VarXso = 50(4)% = 800 1bs.?,

so the standard deviation of IV is +/800 = 28.28 |bs,

(b) Since n = 50 is large, the central limit theorem says that X = %—gj is approximately
normal. The mean of X is 45 and the standard deviation of X is :"‘Eﬁ (see equations

(5-55) and (5-56). Since X = &,

P(U32230)=P(‘>@) = 1_p(3<@)
= b0 50
2230 _
= I—P(Zc:i‘_ﬁ)
V50

1-P(Z<-.71)
1 — .2389 = .7611.

1l

(Z is a standard normal random variable. )

Assume that the nominal values given are approximately equal to the means of these input
random variables.

(a) To use the propagation of error formula (5-59), the partial derivatives need to be
evaluated at the means of the input random variables:

ap RxD? a
3L ..~—.4L= = —B8.4823 x 10
dp 2RxD o8
Vs S g 1.69646 x 10
i
:—; = % =xx10"°

Then applying equation (5-59),

Var(p) =~ (—8.4823 x 107°)*(107%)? + (1.69646 x 10~°)?(107")*
+(r x 107%)*(5 x 107%)?

7.1949 x 1077 4 2.87798 x 107® 4 2.467397 x 10~ '8
7.72948 x 10~ (f2m)?,

i

I

so the approximate standard deviation of p is

7.72048 x 10-17 = 8,792 x 10~? Qm.

(b) Length, since its term (variance x squared partial derivative) contributes more to the
propagation of error formula than the other input measurements’ terms.
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10.

:

(c) Over a period of years, there may be other sources of variation (besides measurement
error for these 3 variables) that affect the relationship. These might include variation in
the purity of the wires, the accuracy of temperature measurement, and the deviation from
cylindricalness of the wires, just to name a few.

Let X1,..., Xa70 be the 370 individual sheet thicknesses. The thickness of the text is then
U = 3 X;. Using equation (5-53), the mean of the sum is the sum of the means:

EU = EX, + EXa2+ -+ EXaro = 370(.1) = 37.0 mm.

Assuming that the individual thicknesses are independent, you can use equation (5-54) to say
that the variance of the sum is the sum of the variances:

Varll = VarX; -+ VarXs + - -+ VarXaqg = 370(.003]! = .00333 mm?,

so the standard deviation of I/ is 4/.00333 = .0577 mm.

(2) To find an approximate mean for I, use formula (5-58):
EI = EV ( : + 1 ) =18A
- ER, ER;)

To use the propagation of error formula (5-58), the partial derivatives need to be
evaluated at the means of the input random variables:

ar 1 % 1 =om
8V T Ry R,

al Vv
_—= —— =09
TR et
al v
. m

Then applying equation (5-59),

Varl =~ (.2)%(.2)% 4 (-.09)*(.1)% + (—.09)%(.1)?
.0016 4 .000081 + .000081

I

= .001762,

so the approximate standard deviation of [ is

+/.001762 = .041976 A.

(b) Voltage, since its term (variance x squared partial derivative) contributes much more to
the propagation of error formula than the sum of the terms for the two resistances.

174 Chapter 5

T W ™

4 bbbl S

P L = O AT R0 P LR LN



12.

13.

(a)

(b)

(a)

(b)

P(48 < X < .52) = P(X < .52) — P(X < .48) = P(Z < .67) - P(Z < —.67)

where Z is a standard normal random variable. From Table B-3, this is equal fo
7486 — .2514 = 4972,

From equations (5-55) and (5-56), the mean of X is .5 and (assuming that students’
measurements are independent), the standard deviation of X is ‘0235 = .0086.

P(48< X < 52)= P(X < .52) - P(X < 48) = P(Z < 3.33) — P(Z < —3.33)

which from Table B-3 is equal to .9996 — .0004 = .9992.

Use the binomial distribution, equation (5-3), with n = 5 and p = .4972.

P(Y>2)=1-P(Y <2)=1~(P(Y =0) + P(Y = 1)) = 1 — (.03213 + .15888) = .80898,

Let X be the strength of a particular individual cable. Using the normal distribution,

X — 450 _ 400 - 450
P(X < 400) = P( 20 < 50 )
= P(Z < —1) where Z is a standard normal random variable
= .1587

from Table B-3. Now let ¥ be the number of cables that fail. If the cable strengths are
independent, ¥ has a binomial distribution, equation (5-3), with n =5 and p = .1587.

P¥>1)=1-P¥Y <1)=1-P(Y =0)=1- .4215 = .5785.

Since the sample size is large, it is not necessary to assume that the individual cable
strengths are normally distributed. The central limit theorem says that the sample mean
X will be approximately normal, regardless of the distribution of the individual X’s.
From equations (5-55) and (5-56), the mean of X is 45 Ib, and the standard deviation of
X is 2= 1b.

Il

T 240 e (x ;450 2 45?;450)
V100 oo

P(Z < 1.4) where Z is a standard normal random variable
9192

Il

from Table B-3.
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Using equation (5-18),

EX

Il
S—i

2
.3::dz:+[.'?mdz
1

|
o

2.

using equation (5-18),

1 2
VarX = /.3::’ dz -1-].7:’&:— (1.2)%
0 1

= .2933.

P(X > 2045)= 1 — P(X < 2945) = 1 — P(Z < .75).

(Z is a standard normal random variable.) From Table B -3, this is equal to
1—.7734 = .2266.

(b) Use the binomial distribution, equation (5-3), with n = 4 and p = .2266.
PY>1)=1-P(Y <1)=1-P(Y =0)=1-—.3578 = .6422.
(¢) Using equations (5-55) and (5-58), the mean of X is 2930 psi and the standard deviation
of X is J%.
P(2925 < X <2935) = P(X <2935)— P(X < 2925)

= P(Z<1.25)— P(Z < —1.25)
~ 8944 .1056 = .7888.

(Z is a standard normal random variable.)

(d) The Poisson distribution, equation (5-10), is often used in this type of situation to model
the number of occurrences. A is the mean. In this situation, since the average number of
air pockets is 1 per 50 cubic yards, A = 3.

L Ll oy Lo o f it gt L Pl

e Db i o SR m s Lo b s e o

16.

using equation (5-18),

P(W>2)=1-P(W <2)=1-(P(W=0)+P(W =1))
1 — (.049787 + .1493612) = .80085.

1
P(X < 1.0) = f.sz dz = .25.
i

EX =
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17.

18.

19.

(2) To use the propagation of error formula (5-59), the partial derivatives need to be
evaluated at the means of the input random variables:

an L

5F = 54 = 13289 x 107°
:_: = —% = —1.59278 x 10~
? = ;‘3— = .004004
% = —% =—6.6737 x 107"

Then applying equation (5-59),

Var(n) =~ (1.3259 x 107°)2(.05)% 4 (—1.59278 x 1075)2(.2)% + (.004004)%(.05)?
+(—6.6737 x 107%)?(1)?
= 4395x 107" 4 1.014776 x 107> 4+ 6.41358 x 10™7 + 4.453878 x 10~°
= =44534x10

so the approximate standard deviation of 7 is
V44534 x10° = 2110310

(b) The approximation above only takes measurement error into account. Other effects that
change over time and from place to place could also affect the relationship, causing more
variability. These might include differences in the shapes of the container and the rotor,
variability in oil quality, and differences in experimental techniques, just to name a few.

(a) Using equation (5-59),

Var(A) = (—.249)*(.1)% + (.199)%(.1)? 4 (—.00199)%(1)? + (.00199)*(1)?
+(.000825)%(10)? + (.000332)3(1)?

00062001 + .00039601 + 3.9601 x 10~ ° + 3.9601 x 10~°
+6.80625 x 107% 4 1.10224 x 1077

001092,

1l

so the approximate standard deviation of A is

+/.001092 = .033047.

(b) D, followed by L. These two variables’ terms (variance x squared partial derivative)
contribute the most to the propagation of error formula.

Use the binomial distribution, equation (5-3), with n = 5 and p = .15.

P(X <1)= P(X =0)+ P(X = 1) = .4437 4 .3915 = .8352.
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20.  Since the sample size is large, the central limit theorem says that the distribution of X is
approximately normal. Using equation (5-55), the mean of X is p and the standard deviation

of X is 7;—5

P(p— .03 < X < p+.03)

P(X < p+ .03) = P(X < p—.03)

X - 03 X- —.03
P(_J_FgT)_P( e )
ET V5 Vs Vs
P(Z < 1.5)— P(Z < -1.5)
9332 — 0668 = .8664.

(Z is a standard normal random variable.)

21. (a) Using equation (5-59),

Vary =

(5.09 x 10%)%(10)? + (~6.11 x 10%)?(.001)? + (1.54 x 10%)*(.01)?
+(—1.53 x 108)*(.01)?

2.59081 x 10! 4 3.733211 x 10 4 2.3716 x 10"% 4 2,3409 x 10
5.3449 x 102,

so the approximate standard deviation of Y is

v/5.3449 x 1012 = 2,311, 904.41,

(b) Lo, followed closely by L;. These two variables’ terms (variance x squared partial
derivative) contribute the most to the propagation of error formula.

(¢) F and D will have important interactions. The equation says that the effect on AL of
changing F depends on D, and vice-versa. The slope of a plot of AL versus F would be
different for different values of D.

22. (a)

Standard Normal Quantiles

1

s}

A

50 100 150
Lifetime Quanliles

The smallest data point is too large—it would need to be made smaller to make the plot
more linear, and thus make the data more bell-shaped. So the data have a shorter left tail
than the normal shape. Overall, the plot is not all that non-linear.

178 Chapter 5



(b)

P(Y < 40) P (Y —117.75 _ 40 - 11?.75)

5.1~ 511
P(Z < —1.52) where Z is a standard normal random variable
= .0643

I

from Table B-3.

(c) It would be high because the actual data have a shorter left tail than the normal
distribution. If the underlying distribution has a shorter left tail than the normal
distribution, then there will be less probability to the left of 40.

(a) Use equation (5-10) with A = .03,

P(X>1)=1-P(X<1)=1-P(X=0)=1-¢"%= 0208
(b) Now use A =.3.

PY>1)=1-P(¥Y <1)=1-P(Y =0)=1—e¢"% = .2502.
(c¢) Use the binomial distribution, equation (5-3), with n = 10 and p = .0296,

P{W = 1) = .2255.
If the mean is ideal, it is equal to 2 cm. Want
P(1.998 < X < 2.002) = .95

This is equivalent to P(X < 2.002) = 975, by symmetry. This is equivalent to
P(Z< %3} = .975, where Z is a standard normal random variable. Looking up .975 in the
body of Table B -3,

.00
——2 = 1.96,
o

or o = .00102. ¢ must be less than this number to ensure that 95% of the parts are within
these specifications.

z gs(z) gn(z) gp(z) %(2) |
5 6950 .6874 .6914 .6915

1.0 .8400 .8336 .8413 .8413

1.5 9350 .9187 .9332 .9332

2.0 .9800 9717 .9772 .9773

2.5 9900 9922 .9938 .9938

The last column of the table is from Table B-3. For these 2’s, gp(z) is the best approximation;
followed by gs(z). gn(z) is too low for moderate values of z.

P Qapprox(p) @Qiaplelz)

.01 -2.326 -2.33
.05 -1.645 -1.645
il -1.282 -1.28
3 -.524 -.52
.T .524 .52
9 1.282 1.28
.95 1.645 1.645
.99 2.326 2.33

The approximation is excellent for these p's.
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27.

(a) The comnputations necessary for the Weibull plot are given below.

i _ith Smallest Strength In(ith Smallest Strength) p = 52 In(=In(1 - p))
1 514 6.2422 0167 -4.0860
2 533 6.2785 0500 -2.9702
3 543 6.2071 .0833 -2.4417
4 547 6.3044 1167 -2.0870
b 584 6.3699 1500 -1.8170
6 619 6.4281 1833 -1.5969
7 653 6.4816 2167 -1.4008
8 684 6.5280 2500 -1.2458
8 689 6.5352 .2833 -1.0982
10 695 6.5430 3167 -.9656
11 T00 6.5511 .3500 -.8422
12 705 6.5582 3833 -.7269
13 708 6.5639 4167 -.6180
14 729 6.5017 4500 -.5144
15 729 6.5917 4833 -.4150
16 753 6.6241 5167 -.3188
17 763 6.6373 5500 -.2250
18 800 6.6846 5833 -.1330
19 805 6.6908 6167 -.0420
20 805 6.6908 .6500 0486
21 814 6.7020 6833 1397
22 818 6.7081 .T167 .2320
23 819 6.7081 7500 .3266
24 839 6.7322 .7833 4249
25 839 6.7322 .B167 .5285
26 849 6.7441 .8500 6403
27 879 6.7788 8833 7647
28 900 6.8024 9167 .9102
29 919 6.8233 9500 1.0972
30 978 6.8865 9833 1.4086
— a* J, '
5 s
63 64 B5 66 67 68 69

In(Strength) Quantiles

The Weibull plot is fairly linear, except in the lower tail. There tends to be more
variability in the tails of probability plots, so the Weibull model fits the data reasonably

well.
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Standard Normal Quantiles

2

(b)

(<)

-1

(d)

From a line fit to the plot,
In o = x-intercept = 6.672515
so a &2 1396 = 790.4.
B = slope = 7.202.

To find the p quantile of the distribution, set the CDF equal to p and solve for z:

F(z)= I—-e'(ﬂﬂ P

(i -p) = - (%)
2 = a(-In(l-p)?

The median strength is the .5 quantile. Using p = .5 and the above approximations for a
and f, the median strength is approximately z = 751.2. The strength exceeded by 80% of
such specimens is the .2 quantile; for p = .2, z = 641.8. For p= .1, ¢ = 578.3, and for
p= .01,z =4173.

The first 3 coordinates of the normal plot of the raw data are (514, —2.05), (533, —1.64),
(543, —1.41). The first 3 coordinates of the normal plet of the logs of the raw data are
(6.24, —2.05), (6.28, —1.64), (6.30, —1.41).

. _E o
. ° i -E .
" 2 bl "
.' . G " 0
L] L]
] . E (=] o0y i
"."' Z e
. " * § b :
i o i
500 €00 700 800 900 63 64 65 66 67 68 69

Strength Quantiles (MPa) In(Strength Quantiles) {In{MPa))

The normal plot of the logs of the data is not much more linear than the normal plot of
the raw data, but both of these plots are more linear than the Weibull plot. This suggests
a preference for the normal or lognormal model over the Weibull.

For the raw data, the approximate mean and standard deviation are

4 = x-intercept = 740.5;

o = 124.26.
slope
The p quantile is the number z such that
P(X <z)=p.

This is equivalent to P (Z < ’—;f‘—‘} = p, where Z is a standard normal random variahle. To
find the p quantile, look up p in the body of Table B-3, and find corresponding z in the
margin. Then set this z equal to £ and solve for z. For example, the .01 quantile can

181

Chapter 5



be found by looking up .01 in the body of the table. This gives z = —2.33. Use the
above approximations for u and o, and solve

L e

for =. This gives = = 451.0.

For the logs of the data, the approximate mean and standard deviation are

¢ = x-intercept = 6.59369;

[ g

- =.1770572.
e

slop

Quantiles are computed as shown above. In this case, the result needs to be exponentiated
to get it back into the original strength units.

The following table summarizes the estimated quantiles using each of the 3 fitted
distributions.

Quantile Weibull Normal Lognormal

.01 417.3 451.0 483.5
.10 578.3 581.4 582.3
.20 641.8 636.1 629.5
.50 751.2 740.5 730.5

The estimated quantiles agree more for larger quantiles. Different fitted distributions can
generally give very different results, especially in the tails of the distribution.

28. (a) The computations necessary for the Weibull plot are given below.
i ith Smallest Lifetime In(ith Smallest Lifetime) p= 5% In(—In(1—p))
1 10 2.3026 0294 -3.5115
2 12 2.4849 .0882 -2.3819
3 15 2.7081 1471 -1.8384
4 17 2.8332 .2059 -1.4674
b 18 2.8904 2647 -1.1793
6 18 2.8904 3235 -.9394
7 20 2.9957 .3824 -.7T301
8 20 2.9957 4412 -.5414
9 21 3.0445 5000 -.3665
10 21 3.0445 .5588 -.2005
11 23 3.135b 6176 -.0394
12 25 3.2189 6765 1209
13 27 3.2958 7353 .2845
14 29 3.3673 7941 ABTT
15 29 3.3673 .8529 6507
16 30 3.4012 9118 .8870
17 35 3.5553 .9706 1.2603
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29.

(b)

(¢)

(a)

- p})

In{-In{1

24

26

In{Lifetime) Quanliles

28

3.0

34 36

The plot is very linear, indicating that the Weibull distribution fits the data well. There is
no evidence that the Weibull distribution is an unreasonable description of roller life.

From a line fit to the plot,

Ina & x-intercept = 3.183074

s0 o = 3396 — 24 12

B = slope = 3.694.

To find the p quantile of the distribution, set the CDF equal to p and solve for =:

F(::) =1- g“(fjﬂ

In(1 — p)

-

:)ﬂ
o

a(=In(1 - p))*

Using p = .10 and the above approximations for « and 8, the .10 quantile is

approximately 13.1 shifts.

----- e e e 4~ Distance
-4.0

-12.0 -8.0

& =—1.04 and s = 5.17T mm.
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(b)

7] o -
g -
g -~ '-
g
g

E < i
2 e
o o,

-10 5 0 5

Distance Quantiles (mm)

p 2= x-intercept = —1.04 (I fit the plot using least squares);

[ -] . = 5.22,
slope

The graphical estimates should be reasonably close to % and s.

(¢)
P(X < -100r X >10) = 1-P(-10< X <10)
= 1-(P(X <10)-P(X < -10))
10 — (—1.04) ~10 - (—1.04)
= — < ————i ] o -
: (P(Z— 5.17 ) P(z‘: 5.17 )
= 1-(P(Z <2.14)- P(Z < —1.73))
= 1-—(.9838 —.0418) = .0580.
Even if properly aimed (@ = 0), the fraction falling outside of specifications is
P(X <—100r X >10) = 1-P(-10< X < 10)
= 1-(P(X <10)— P(X < —10))
10—-0 -10-0
= =P (zs 5.17 )*P(z‘: 5.17 ))
= 1-(P(Z<1.93) - P(Z < -1.93))
= 1-(.9732 - .0268) = .0536.
The process is only capable of producing about 95% of the deviations in specifications,
even if the process is properly aimed.
30. (a)

P(Green) = P(1.178< X < 1.182)

P(X < 1.182) - P(X < 1.178)
P(Z < .5)- P(Z < -1.5)
6915 — 0668 = .6247.

I

Il

I

184 Chapter 5



P(Red) = P(X < 1.1760r X > 1.184)
1-P(L1T6< X < 1.184)

1— (P(X < 1.184) — P(X < 1.1786))
1-(P(Z < 1.5) — P(Z < -2.5))

= 1-(.9332-.0062) = .0730.

P(Yellow) = 1 — (P(Green) + P(Red))= .3023.

(b) Use the geometric distribution, equation (5-6), with p = .0730.

P(Y >10) = 1-P(Y <10)

1—(P(Y =1)+ P(¥Y =2)+ -+ P(Y = 10))

= 1—(.0730+.0730(1 — .0730) + -- - +.0730(1 — .0730)?)
= .4686.

From equation (5-8), EY = ;} =137,

(¢) Use the binomial distribution, equation (5-3), with n = 8 and p = .1865.
P(W =2)=.2823. EW =np=1.49.

(a)
P{X < .32) = F{.ﬁ?) — E&ﬂ.(.ﬂﬂ) = .3146 rad

(b) Using equation (5-17),

0 forz<0
f(z) =< cos(z) forO<z< w2
0 forxm/2 <=z
(¢) Using equation (5-18),
x/2
EX = f z cos(z) dz
0
= (cos(z) + zsin(z)) |;“
= =/2-1=.5708

Using equation (5-19),

x/2
VarX = ./’::21.:'31:(:)&:—(J‘E.‘.?f:]n‘i

]
=/2

= (z%sin(z))[3/* -2 / zsin(z) dz — (EX)?

0
= (2?sin(z) — 2(sin(z) — z cos(z))) 3 _ (BEX)?
= (n/2)?—2—(.5708)* = .1416.
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32. (a)
ED =5EX + EY = 4.86.

(b) Use the joint distribution.

P(D<T) = P(BX+Y <)
P(Y <7-5X)
= .154.054 .10 .08 4 .10 4 .14 4 .10+ .05 = .77,

1l

(c) Use the geometric distribution with p = .77. From equation (5-8), the mean is -J; = 1.30.

33. (a) P(XY > 1) is equivalent to P(Y > ;5%). Integrate f(z,y) over the region defined by this
inequality.

1.1

p(ygf_) - ffz+y]dydz
.i_L
= .56256.

(b) Use definition (5-25).

Fele) = {j(z-%y)dy for0<z <1
0
(

otherwise
B z+.5) forfor0<a<1
== 0 otherwise
Using equation (5-18),

1

EX = /z(z +.5)dz
0

= .,b833.

Using equation (5-19),

L

/-.-:’(z + .5)dz — (.5833)?
0
076389,

VarX

1]

so the standard deviation of X is +/.07T6389 = .2764.

(c) No, since f(z,y) # fx(2)fy (v)-
(d) Using equation (5-53),
E(X +Y)=EX + EY = .5833 + .5833 = 1.167.

(EX = EY because the roles of z and y in f(z,y) are exactly the same.) Formula (5-54)
cannot be used because X and Y are not independent.
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34 (a) Forboth X and ¥,a=1and 8= 1. For X, a= 1.97 and = .05. For Y, a = 2.00 and
b = .06. Using formulas (5-28) and (5-29), EX = 1.995, VarX = .00020833, EY = 2.03,
and VarY = .0003.

(b)
E(Y - X)=EY - EX =.035
and
Var(Y — X) = Var¥ + (—1)*VarX = .00050833.
35, (2) Given that X = 5, use the binomial distribution (equation (5-3)) with n = 5 and p = .80.
P(Y = 3|X = 5) = .2048.
(b)
e~ 33"
f(z,0)=.2% = N

Summing this over all possible values of X gives

o0 —-3on
P(Y =0) = Ef‘zf
=0
—ax~ (-6)°
=% .—;o z!
e b b
ta -=.68
e ot !
="
e
= ;:3—,090?.

1 B e"“%i = 1, because this is the sum of all probabilities for a Poisson random
variable with A = .6.)

(c) Tn general, fy(y) = _e_"’%;'_-_*i Y has a Poisson distribution with a=3(8) =2.4.

36. (a)
P(V >15.07) = 1-— P(V < 15.07)

1 — P(Z < —.6) where Z is a standard normal random variable
1= .2743 = .T257.
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(b) Because this is a large sample, the central limit theorem says that X is approximately
normal. Using equation (5 55), the mean of X is 15.10. Using equation (5-56), the
standard deviation of X is 7—-—

P(X >15.106) = 1- P(X < 15.105)
1~ P(Z < 1.0) where Z is a standard normal random variable
1—.8413 = ,1587.

(c) Using equation (5-58),

P
T

Py R = 4.8 in.

To use formula (5-59), the partial derivatives need to be evaluated at the means of the
input random variables:

8h Y
B —4.80648

Then applying equation (5-59),

Var(h) = (-4.30343}’(,02}’+(l}’(.ns}’

w
0092409 + .000253302
0094942,

so the approximate standard deviation of h is

+/.0094942 = .097438 in.

(d) The variation in radius has the biggest impact, since its term (variance x squared partial
derivative) contributes much more to the propagation of error formula than volume term.

37. (a) Integrate f(=z,y) over the region where y < 1.5.

1.5 1 1y
PY <15) = /fee ’dzdy+/jes”d::dy
10 00

= .2487 4+ .3679 = .6166.

(b) Use definition (5-25).

otherwise

for0<z<1
otherwise

|

o0
JefeVlyfor0<z<1
0

1

0
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efe Vdrfor 0 <y <1

fr(y) = efe Viufory> 1

C o, O .

otherwise
1—e7¥ for0<y<1
eV —eV fory>1
0 otherwise

{(c¢) No. For example, given that X = .5, ¥ must be greater than or equal to .5, by the
definition of the joint density. Unconditionally, there is a positive probability associated
with the event ¥ < 5. However, given that X =.5, P(Y < 5) = 0. Since knowing the
observed value of X changes the marginal probability of ¥, X and ¥ are not independent.
It can also be seen that f(z,y) # fx(z)fy(v)

(d) Use equation (5-48).

otherwise

fyix(v]25) = { (’:;E;%%‘H for y > .25

A e?Pe Vv fory> .25
0 otherwise

Use fy|x(y].25) in equation (5-18) to find the conditional mean.

]

o0
E(Y|X = .25) /ye'“e" dy
25

e (—e Y (y+1)) 55
1.25.

38. (a) Use equation (5-10) with various A > 0. (Note: If A = 0 then there will certainly be zero
nonconformities, and so P(accept) = 1.)

OC(\) = P(X < 1) P(X = 0)+P(X =1)

= e* + e=2A.

Some of the points of the OC function are given below.
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(b)

A OC(A

.0 1.0000
.4 9384
.8 .B088
1.2 .6626
1.6 L5249
2.0 4060
24 3084
28 2311
3.2 1712
3.6 1257
4.0 0916
44 0663
48 .0477
5.2 .0342
5.6 .0244
6.0 .0174
=
e
2 5
g3
i -
E_ [
i
[
=
(=]
0 1 2 3 4 5

lambda = mean defects per inspection unil

As might be expected, as the mean number of defects per unit ()) increases, the

probability of accepting the lot decreases.

0C()) = P(X < 2)

Il

Some of the points of the OC function are given below.
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P(X =0)+P(X =1)+ P(X =2)

[ e-—-!l + 8—2-\2}‘ + E—?:\ (_2_'_3‘_}3
2 -
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A oc(\)

.0 1.0000
4 .9526
.8 7834
1.2 5697
1.6 .3799
2.0 .2381
24 .1425
2.8 0824
3.2 .0463
3.6 0255
4.0 0138
4.4 0073
4.8 .0038
5.2 .0020
5.6 .0010
6.0 0005
a
g @
o
L2 o
8 o
L
'-g_ o
@
g3
= <
=1
o 1 2 3 4 5 6

lambda = mean dalects per inspection unil

This OC curve is steeper than the one from part (a). This reflects the increase in
information about A, since here we are inspecting 2 units.
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39.

40.

41.

fix)

00 02 04 06 08 1.0

—
w
—

(b)

(<)

(a)

(b)
(c

L

(d)

(2)

Using equation (5-1),

Fix)

00 02 04 06 08 10

EX = (1)(.61) + (2)(-24) + (3)(.10) + (4)(.04) + (5)(.01) = 1.6,

Using equation (5-2),

VarX = (1)%(.61) + (2)*(.24) + (3)*(.10) + (4)%(.04) + (5)*(.01) — (1.6)* = .8,

so the standard deviation of X is +/.8 = .8944,

P(X>3)=P(X=3)+P(X =4)+ P(X =5)=.15.

P(X<3)=1-P(X2>3)=1-.15=.85.

Use equation (5-10), with A = 3.87,

P(X>2)=1-P(X <2)=1-(P(X =0)+ P(X = 1)) = 1 - (.0209 + .0807) = .8984.

Using equation (5-12), vVarX = v/A = v/3.87 = 1.967.

Note that A is the mean, or the average rate. If the average number of collisions per
8 minutes is 3.87, then the average number of collisions per 16 minutes is 7.74. Use the
Poisson distribution for W =X + Y, with A = 7.74. P(W = 6) = .1299.

PW>3)=1-P(W<3) = 1-(P(W=0)+P(W=1)+PW=2))
= 1—(.00044 4 .0034 + .0130) = .9832.

Use equation (5-13) and solve for k = .12.

fu) = { 12(z*(1—2z)) for0<z<1
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1.5

flx)
1.0

05

0.0

0.0 0.2 04 0.6 08 1.0

(b) All of the following probabilities correspond to areas under f(z).

P(X <.25) = f f(z)do

P(X < .75) = f fla)dz
o
~ 7383
P(25< X <.75) = P(X <.75)— P(X <.25)=.7383 — 0508 = .6875

P(|X - .5| > .1)) 1- P(|X —.5<.1))
1-P(-.1<X -.5<.1))

= 1-P(4< X <.6)

.6
T f f(2) dz
A
= 1-—.2960= .7040.

(c) Using equation (5-18),

EX = 6.
Using equation (5-19),
VVarX =04 = .2,
(d) Using equation (5-16),
F(z) = P(X<2)
= f (=) dz
193
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42

43.

(a)

(b)

(2)

12 (32° — 32') for0<z <1

0 forz <0
1 forz > 1.

Y

F(x)
00 02 04 06 08 10

0.0 0.2 04 08 08 1.0

L -d WL

ol s =

it D e T & L

The .6 quantile of the distribution is the = such that P(X < =) = .6. This is just F~'(.6),

so you need to find .6 on the vertical axis, and find the z that produces this value for

F(z). (By trial and error, the exact value is = = .67082.)

The probability of an individual depth being within specifications is the same as the
long-run fraction of depths within specifications, if successive shelf depths can be

considered identical random variables.

I

P(.0275< X < .0278) = P(X <.0278) — P(X < .0275)
P(Z<2)-P(Z<-1)
= .9773— .1587 = .8186.

(Z is a standard normal random variable.)

Assuming that g = .02765, we want
P(.0275 < X < .0278) = .98.

By symmetry, this is equivalent to P(X < .0278) = .99, which is equivalent to

= .99,

P (Z < .0278 ;.02?35)

Looking up .99 in the body of Table B-3, this means that

.00015 ~2.33
o

or that o == .00006438.

Let Xy,..., Xap be the 30 individual resistances. The resistance of the assembly is then
U = 3% X;. Using equation (5-53), the mean of the sum is the sum of the means:

EU=FEX,+EXz+ -+ EXz = 30(9.91) = 297.3Q.

4

e T e el Lo e i Lt e ok Sl e ey

Assuming that the individual resistances are independent, you can use equation (5-54) to -

say that the variance of the sum is the sum of the variances:

Varll = VarX; + VarX; + -+ VarXz = 30(.08)2 =.192 ﬂ’.
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so the standard deviation of IV is +/.192 = .438.1.

(b) Since n = 30 is large, the central limit theorem says that X= L:‘a‘é-& is approximately
normal. The mean of X is 9.91 and the standard deviation of X is ﬁ%g (see equations

(5-55) and (5-56). Since X = §,
298.2)

P(U > 298.2)= P (JE' > —

= = 1-P(X <9.94)

9.94 — 45
Va0

= 1- P(Z < 2.05)
= 1-.9798 =.0202.

(Z is a standard normal random variable.)

(a) Set u equal to the midpoint of the specifications to maximize the fraction of lengths in
specifications. (This follows from the symmetry and shape of the normal distribution.)
With p = 33.69,

P(33.68 < X < 33.70) P(X < 33.70) — P(X < 33.68)
P(Z <2)- P(Z < -2)

= .B773— .0228 = .Bb45.

(Z is a standard normal random variable. )

(b) All of these sample sizes are large. If individual lengths can be considered as independent,
the central limit theorem says that X is approximately normal, even if the individual X’s
are not. Equation (5-55) says that the mean of X is equal to u, the mean of the individual
X's. Equation (5-56) says that the standard deviation of X is =+ which is equal to %"rﬁ.

n
For n = 25,

P(p—.0005 < X < u+.0005) P(X < p+ .0005) — P(X < p—.0005)

-0005 —.0005
= P(ES—.T)—P(Z‘CW—)
i 4 T

= P(Z<.5)—-P(Z < ~.5)
= .6915—.3085 = .3830.

For n = 100,

P(u—.0005 < X < p+.0005)

P(X < p+ .0005) — P(X < pu — .0005)
P(Z<1)-P(Z < ~-1)
= .8413 - 1587 = .6826.

For n = 400,

P(u - .0005

1A
54
IA

p+.0005) = P(X < p+.0005) — P(X < pu—.0005)
= P(Z<2)-P(Z<-2)
&~ 9773 — .0228 = .9545.
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45.

(a)

P(4.66 < X <4.70) = P(X <4.70)— P(X < 4.65)
= P(Z <.6T)-P(Z <-1)
= .7486 — .1587 = .58809.

(Z is a standard normal random variable.)

(b) Use the binomial distribution, equation (5-3), with n =5 and p = .5899.
P[Y = 4] = .2483.

(c) Use the geometric distribution, equation (5-6), with p = .5899.

P(W=2,3,0rd) = P(W=2)+P(W=3)+P(W=4)
= .24192 + .09921 + .04069 = .3818,

(d) Equation (5-55) says that the mean of X is equal to By the mean of the individual X’s.
Equation (5-56) says that the standard deviation of X is ﬁ, which is equal to j’%.

P(p—.01< X <p+.01) P(X< p+.01)— P(X < p—.01)

P(Eg%—)—P(Bc%)
V25 Vas

P(Z < 1.67) — P(Z < —1.67)
9525 — 0475 = 9050,

(e) Want
P(p —.005< X < p-+.005) =.90.
By symmetry, this is equivalent to P(X < p + .005) = .95, which is equivalent to
- (Z < %‘E) =190,
Jn
Looking up .95 in Table B-3, this means that

.005

v

or n = 97.42. Bump this up to the next highest integer (98), to make the probability at
least .90.
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46 (a) Since 1 - F(x) = exp( -x/ot) and « = 15,000,
1 - F(20,000) = exp[ -20,000/15,000 ] = .2636.

(b) Let Y = # disk drives that fail after 20,000 hours from 10 randomly selected
disk drives. Y ~ Binomial (n = 10, p = .2636).

P(Y >8)=P(Y =9) + P(Y = 10) = .000045 + .000002 = .000047.

47 (a) px=2.577, ox=.061 . For the "Box" uy =9.566 and oy = .053.

E(U) = 9.566 - 4(2.577) = - .742

Var(U) = (.061)% + 4(.053)? = .014957.

ou = .1222.

(b) P(U<0)=P(Z<(0+.742)/.1222 )= P(Z < 6.067) = 1.00

(c) P(U<0)=P(Z<(0-7?).1222)=.005. Thus,

(0-7?)/.1222 = -2.575 or ? = .314665 = py - 10.308 (note: 10.308 = 4 (2.577))

wy = 10.6226.
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Chapter 6: Introduction to Formal Statistical

Inference
Section
L [6.3,7.9] ppm is a set of plausible values for the mean. The method used to construct this

3.

interval correctly contains means in 85% of repeated applications. This particular interval
either contains the mean or it doesn’t (there is no probability involved). However, because the
method is correct 95% of the time, we might say that we have 95% confidence that it was
correct this time.

(a) You can use equation (6-9), since this is a large sample. The appropriate z for 90%
confidence is 1.645. The interval is

98.2
142.7 + 1.645 (-—-—) = 142.74 31.68
V26
= [111.02, 174.38].
(b) Now z = 1.96, and the interval is
98.2
1427+ 1.96 | — = 142.7=+ 37.75
(V)

= [104.95, 180.45].

This interval is wider than the one from (a). In order to have more confidence of
containing the mean, the interval must be wider.

(c) To make a 90% one-sided confidence interval, construct a 80% two-sided confidence
interval, and use the upper endpoint. The appropriate z for a 80% two-sided confidence
interval is 1.28, so the 90% one-sided confidence interval is

198.2
142.7 4 1.28 | —= = 142.7 + 24.65
+128 (22) "
= 167.35.

This value is smaller than the upper endpoint from part (a). Setting the lower endpoint

equal to —oo requires you to move the upper endpoint in so that the confidence remains
at 90%.

(d) To make a 85% one-sided confidence interval, construct a 80% two-sided confidence
interval, and use the upper endpeint. This was done in part (a), so the 90% one-sided
confidence interval is 174.38. This is larger than the answer to (c); in order to achieve
higher confidence, you must make the interval “wider".

(e) [111.02, 174.3§ppm is a set of plausible values for the mean aluminum content of samples of
recycled PET plastic from the recycling pilot plant at Rutgers University. The method
used to construct this interval correctly contains means in 90% of repeated applications.
This particular interval either contains the mean or it doesn’t (there is no probability
involved). However, because the method is correct 90% of the time, we might say that we
have 80% confidence that it was correct this time.

n=[Z s/ B = [ (1.645)(98.2)/ 20 |? = 65.24 or about 66.
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Section 2
1.

(a) Z=4.6858 and s = .02900317.

(b) Since this is a large sample, you can use equation (6-9), with z = 2.33 for 98% confidence.
The two-sided confidence interval is

0290031 ?)

4.6858 + 009556884
V50

4.6858 + 2.33 (

1

[4.676,4.695] mm.

(¢) z = 2.58 for 98% confidence. The two-sided confidence interval is

= 4.68584 .0105823

4.6858 + 2.58 (M)

V50

1]

[4.675,4.696] mm.

This interval is wider than the one in (b). To increase the confidence that u is in the
interval, you need to make the interval wider.

(d) To make a 98% one-sided interval, construct a 96% two-sided interval and use the lower
endpoint. For a 96% two-sided interval, the appropriate z is Qgpn(.98) = 2.05. The
resulting 98% one-sided interval is

= 4.6858 — .008408418

4.6858 — 2.05 (M)

/50

= 4.677T mm.

This is larger than the lower endpoint of the interval in (b). Since the upper endpoint here
is set to co, the lower endpoint must be increased to keep the confidence level the same.

(e) To make a 99% one-sided interval, construct a 98% two-sided interval and use the lower
endpoint. This was done in part (a), and the resulting lower bound is 4.676. This is
smaller than the value in (d); to increase the confidence, the interval must be made
“wider”.

(f) [4.676,4.695] ppm is a set of plausible values for the mean diameter of this type of screw
as measured by this student with these calipers. The method used to construct this
interval correctly contains means in 98% of repeated applications. This particular interval
either contains the mean or it doesn’t (there is no probability involved). However, because
the method is correct 98% of the time, we might say that we have 98% confidence that it
was correct this time.

Since the natural logarithms of the data are more bell-shaped than the raw data ( see exercise
2chapter 3) it would be better to test the null hypothesis that the mean of the logs is equal
to In(200) versus the alternative that the mean of the logs is greater than In(200). However,
since this is a large sample, using the raw data poses no major problem.

1. Hg: pp = 200 ppm.
2. Ha: p > 200 ppm.
3. The test statistic is

_ £-200

Sk
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and the reference distribution is the standard normal distribution. Observed values of Z far
above zero will be considered as evidence against Hg.
4. The sample gives

z = —=2.98.
5. The ohserved level of significance is

P(a standard normal random variable > —2.98)
= P(a standard normal random variable < 2.98)

which is equal to .9986, according to Table B-3. There is no evidence that the mean aluminum
content for samples of recycled plastic is greater than 200 ppm.

(@) 1. Hp: p = .500 in.
2. Ha: g # .500 ppm.
3. The test statistic is

z - .500

3

/105

and the reference distribution is the standard normal distribution. Observed values of Z
far above or below zero will be considered as evidence against Hg.
4, The sample gives

z = 1.55.
5. The observed level of significance is

2P(a standard normal random variable > 1.55)
= 2P(a standard normal random variable < —1.55)

which is equal to 2(.0606) = .1212, according to Table B -3. There is some (weak) evidence
that the mean height of the punches is not equal to .500 in.

It is interesting to note that the rounded Z and s given produce a z that is quite a bit
different from what the exact values produce. £ = .005002395 and s = .002604151,
computed from the raw data given inexercise 9, ch. 3, produce z = 1.85, and a p-value of
2(.0322) = .0644.

(b) You can use equation (6-9), since this is a large sample. The appropriate z for 98%
confidence is 2.33. The interval is

.5002 & 2.33 (E) = .56002 + .000301

/405

= [.49990,.50050].

The mean of the punch heights is almost certainly not exactly equal to .50000000 inches. Given
enough data, a hypothesis test would detect this as a “statistically significant” difference (and
produce a small p-value). What is practically important is whether the mean is “close enough”
to .500 inches. The confidence interval in part (a) answers this more practical question,
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Section
3

4,

1.

1. Hp: p=4.70 mm.
2. Ha: p # 4.70 mm.
3. The test statistic is

_E—4.70

=

and the reference distribution is the standard normal distribution. Observed values of Z far
above or below zero will be considered as evidence against Hp.
4. The sample gives

z = —3.46.

5. The observed level of significance is
2P(a standard normal random variable < —3.46)

which is equal to 2(.0003) = .0006, according to Table B-3. There is very strong evidence that
the mean measured diameter differs from nominal.

Although there is evidence that the mean is not equal to nominal, the test does nol say
anything about how far the mean is from nominal. It may be “significantly”™ different from
nominal, but the difference may be practically unimportant. A confidence interval is more
practical for determining how far the mean is from nominal.

The normal distribution is bell-shaped and symmetric, with no outliers. The confidence
interval methods depend on this regularity. 1f the distribution is skewed or prone to outliers,
the normal-theory methods will not properly take this into account. The result is an interval
whose real confidence level is lower than the nominal value associated with it. For example, if
the data are skewed to the right (long right tail), a 80% normal-theory confidence interval for
the mean will tend to underestimate the mean, and so the method will produce intervals that
contain the mean less than 90% of the time.

(a) Itis required that the top bolt torques for each piece are independent and
approximately normally distributed. The normal probability plot suggests the
torque values for the top bolt come from a normal distribution.

n

(b) Ho: =100 vs. Ha: p =100 t=(¥—100)/(s//n)

(111 - 100)/(9.6732/+/15) = 4.4. p-value =2 P[t 14 > 4.4]
Ha:: p #100.

.001. Conclude

(c) T+ts//n becomes 111 +(2.624)(9.6732)/4/15 or 111 + 6.553. The
interval [ 104.45, 117.55] is a 98% confidence interval for the mean torque for the
top bolt.

(d) Since the data are paired, one should take the difference for each pair and analyze the
differences. This is a small sample (small number of pairs), so the differences need to be
iid normal to use the methods in Section 6-3. One way to check this assurnption is to
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make a normal plot of the differences. (I have taken the differences as Top—Bottom.)

2

e aw

-1

Standard Normal Quanliles
0

-2

20 -10 0 10 20
Top~ Botlom Quantiles

Given the number of ties in the data, this plot is fairly linear, indicating that the
differences are roughly bell-shaped. Other than the discrete (chunky) nature of the data,
there is no evidence against the assumption of a normal distribution for the differences.

(e) 1. Hg: pg=0.
2. Ha: pa <.
3. The test statistic is given by equation (6-26), with # = 0. The reference distribution is
the ;4 distribution. Observed values of T far below zero will be considered as evidence
against Hpg.
4. The sample gives

t=-2.10.
5. The observed level of significance is

P(a t14 random variable < —2.10)
= P(a t;4 random variable > 2.10)

which is between .025 and .05, according to Table B-4. This is fairly strong evidence that
there is a mean increase in required torques as one moves from the top to the bottom bolts.

(f) Use equation (6-25). For 98% confidence, the appropriate ¢ is t = Q4(.99) = 2.624, from
Table B-4.

—6.0 + 2.624 (11'05“) —6.0 + 7.4878
15
= [—13.49.1.49].

3. (a) Use equation (6-22). For 90% confidence, the appropriate z is 1.645. The interval is

= .0004 £ .002698308

0004+ 1.645 (M)

/50
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(b)

(b)

= [~0.0023,.0031] mm.

14 Ho*.' Hd = 0.

2. Ha: pg #0.

3. The test statistic is given by equation (6-24), with # = 0. The reference distribution is
the standard normal distribution. Observed values of Z far above or below zero will be
considered as evidence against Hp.

4. The sample gives

z=.24.
5. The observed level of significance is

2P(a standard normal random variable > .24)
= 2P(a standard normal random variable < —.24)

which is equal to 2(.4052) = .8104, according to Table D-3. There is no evidence of a
systematic difference in the readings produced by the two calipers.

The confidence interval in part (a) contains zero; in fact, zero is near the middle of the
interval. This means that zero is a very plausible value for the mean difference—there is
no evidence that the mean is not equal to zero. This is reflected by the large p-value in
part (b).

The data within each sample must be iid normal, and the two distributions must have the
same variance 2. One way to check these assumptions is to normal plot each data set on
the same axes (see Figure 6-15).

n

Ll ‘ -
: Koy = = Teendd
& a ¥ % ¥ = Smco"Hi
£ k '
Z n X ¢
n i % :

340 380 380 400
Data Quantiles

For such small sample sizes, it is difficult to verify the assumptions. The plots are roughly
linear with no outliers, indicating that the normal part of the assumption may be
reasonable. The slopes are similar, indicating that the ¢common variance assumption may
be reasonable.

Label the Treaded data Sample 1 and the Smooth data Sample 2.

1. Ho: py — pa = 0.

2. Ha: py — pa # 0.

3. The test statistic is given by equation (6-36) with # = 0, and the reference distribution
is the i, distribution. Observed values of T far above or below zero will be considered as
evidence against Hg.

4. The sample gives

t=249
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(c)

5. The observed level of significance is

2P(a 130 random variable > 2.49)
= 2(something between .01 and .025)

which is between .02 and .05, according to Table B-4. This is strong evidence that there is
a difference in mean skid lengths.

Use equation (6-35). For 95% confidence, the appropriate ¢ is t = Q10(.975) = 2.228 from
Table B-4, and the resulting interval is

384.83 — 359.83 + 2.228(17.377) é + 25.0 4 22.3529

| -
1}

[2.65, 47.35).

s
Il

( si?/ny +s2/nz )? dividedby ( si*/(ny-1)ns? + 8% (nz- 1)n? )
= [236.567/6 + 367.367/6 % divided by

(236.567)%/(5)(36) + (367.367)%/(5)(36) gives

o= 10,131.56/1,060.68 = 9.55

( si®/ny +s8,°/ny ) =[(236.567)/6 + (367.367)/6 1'% =10.033

Let the df be 10.

(% -5 i3 /n +53/ny), [=2228010df). Thus,

(384.833 - 359.833) + (2.228)(10.033)

25 + 22.3535 gives [2.65, 47.35]. Using 9 df., 7 =2.262(9df)
and the interval becomes [ 2.3, 47.7].
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Section 1. (a) Use equation (6-42) and Table B-5. For a 95% two-sided interval, U = Q5(.975) = 12.833
4 and L = Qg(.025) = .831. The resulting interval for 02 is [92.17123, 1423.385]; taking the
square root of each endpoint, the interval for & is [9.60, 37.73] cm.

(b) For a 99% one-sided interval, L = Qs(.01) = .554 and the interval for o? is
[—oo, 3315.584]; taking the square root, the interval for o is [—o0, 57.58] cm.

a

(c) L Hp: =h =1

]
2. Ha: 4 #1.

2
3. The test statistic is given by equalion (6-49) with # = 1, and the reference distribution
is the F5 5 distribution. Small or large observed values of F (relative to 1) will be
considered as evidence against Hy.
4. The sample gives

f = .644,
5. The observed level of significance is
2P(an Fs s random variable < .644).

It is necessary to switch the degrees of freedom, invert the observed f, and change the
inequality to find the probability to the left of this small quantile using Tables B-6.
(Switching the degrees of freedom has no effect here, since the degrees of freedom are the
same.)

1
644 :l
= 2P(an Fsg random variable > 1.55)
= 2(something greater than .25),

= 2P(an Fs s random variable >

so the p-value is greater than .5, according to Tables B-6. There is no evidence of a
difference in variability between treaded and smooth stopping distances.

(d) Use equation (6-47) and Tables B-6. For 90% confidence, U = Qs 5(.95) = 5.05 and
- - ’ -
L = Qg 5(.05) = QT,:(E = =55+ The resulting interval for EE is [.1275153, 3.25196].
Taking the square root of each endpoint, the interval for 71 is [.357, 1.803].

5 (a) [ y(n—1)s*/U + ] which becomes [ +14/23.685(9.67323),+e | or

[ 7.437, + = ] is a lower one-sided 95% confidence interval for the standard
deviation of the top bolt torques.

(b) [6+/(n—1)s* /U 40 ] becomes [ 44.622, + « ], a lower one-sided 95%
confidence interval for 6o,

(c) Torque of the top bolt is not independent of the torque on the bottom bolt for
a given piece.
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Section 1. (a) Using equation (6-57), the appropriate z for 95% confidence is 1.96. The resulting interval
5 is

1

.66 + 1.96
24/100

.66 + .098
= [.562,.758].

For a 95% one-sided interval, construct a 90% two-sided interval and use the lower

endpoint. The appropriate z for a 90% two-sided interval is 1.645, so the 95% one-sided
interval is

1
= .66 —.08225
24/100

= .578.

.66 — 1.645

Using equation (6-59), the appropriate z for 95% confidence is 1.96. The resulting interval
is

.66(1 — .66)

. i 66+ .
66+ 1.96 100 + .0928
= [567,.753).
A 95% one-sided interval is is
86— ks [0~ 08 L ook
100
= OB2:

The two different methods give similar results, because f = .66 is close to %
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(b) 1. Ho: p = .55.
2. Ha: p> .55.
3. The test statistic is given by equation (6-53) with # = .55, and the reference
distribution is the standard normal distribution. Observed values of Z far above zero will
be considered as evidence against Hp.
4. The sample gives

=221
5. The observed level of significance is

P{a standard normal random variable > 2.21)
= P(a standard normal random variable < —2.21)
= .D136

using Table B-3. This is strong evidence of an improvement in yield.

(¢) Label the small shot size Sample 1 and the large shot size Sample 2. Using equation
(6-65), the appropriate z for 95% confidence is 1.96. The resulting interval is

1 1 1
.66 — .53+ 1.96 (E) 100 - 0o = .13 4 13859

= [-.0086,.26886).

Using equation (6-67), the resulting interval is

.66 1—- .66 53(1-.5
.66 — .53+ 1. 93\/ ( ] ( 3) = .134.13487

100
[—.00487, .2649).

Both methods show that there is some evidence that the fraction conforming is larger for
the small shot size, but the evidence is not conclusive,

[d:l 1. Hp: ps — p2 = 0.
2. Ha:pi—-pa# 0.
3. The test statistic is given by equation (6-72), and the reference distribution is the
standard normal distribution. Observed values of Z far above or below zero will be
considered as evidence against Hy.

4. The sample gives

== 1.87
5. The observed level of significance is

2P(a standard normal random variable > 1.87)
2P(a standard normal random variable < —1.87)
2(.0307) = .0614.

using Table B-3. This is moderate evidence that the shot size affects the fraction of pellets
conforming. -
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2. To ensure that the sample size is large enough (no matter what p really is), assume that p= .5
and use the conservative interval given by equation (6-57). For 95% confidence, z = 1.96, so
K= 1,952—\?-:. We want this to be less than or equal to .01. Solving the inequality for n gives

n > 9604, Pollsters use A = .03, resulting in n = 1068, which is the minimum sample size that
you will usually see when the “margin of error” is +3%.

3. Using equation (6-57), the appropriate z for 88% confidence is 2.58. The resulting interval is

405 — 290 1
e B
405 2,/405

28385 4 .064101
= [.220,.348].

S R {&59). the appropriate z for 99% confidence is 2.58. The resulting interval is
28395+ 2,58,/ 2o005(1 — .28395)
105

4, 1. Hy: p;-—pz=(l.
2. Barpi—p2 # 0.
3. The test statistic is given by equation (6-70), and the reference distribution is the standard
normal distribution. Observed values of Z far above or below zero will be considered as
evidence against Hy.
4. The sample gives

.28395 + .067808
(226, .342].

z=-.87
5. The observed level of significance is

2P(a standard normal random variable < —.97)
= 2(.1660) = .3320.

using Table B-3. There is little or no evidence of a difference in machine nonconforming rates.
This suggests that large sample sizes are needed to detect even moderate differences in

underlying proportions. In general, large samples are needed to make definitive conclusions
based on qualitative data.

Section 1. A consumer about lo purchase a single auto would be most interested in a prediction bound,
6 because the single auto that the consumer will purchase is likely to have mileage above the

bound. This is not true for a confidence bound for the mean, so a confidence bound would be
less practical for the consumer. It may be more useful for the EPA official, since this person
wants to be sure that the manufacturer is producing cars that exceed some minimum average
mileage. The design engineer would be most interested in a lower tolerance bound for mest
mileages, to be sure that a high percentage of the cars produced are able to cruise for at
least 350 miles. A confidence or prediction bound does not answer this question.
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(a) x+usy/(1+1/n) becomes 215.1 + (1.833)(42.943)(1 + 1110)'? or

(132.543, 297.656) is a two-sided 90% prediction interval for an additional spring
lifetime under this stress.

(b) ¥+ 18 or 215.1 + (2.856)(42.943). Thus, (92.455, 337.745) includes 90%
of the population with 95% confidence.

(c) The 95% tolerance interval for 90% of the population (interval in (b)) is much
wider than the 80% prediction interval for the next observation (interval in
(a)). The interval in (b) contains 90% of future observations with 95%
confidence. In repeated applications, the interval constructed as in (a) will
contain an average of 90% of future observations. Any one interval

constructed like the one in (a) may contain less or more than 90% of all
future observations.

(d) The 90% interval for the mean lifetime (900 N/m?) is shorter than both
intervals given respectively in (a) and (b). The 90% interval for the mean
lifetime (at 900 N/m?) is such that 90% of all intervals similarly constructed

from samples of size n = 10 will cover or include the true average lifetime (at
900 N/m? stress).

(e) -1s/(1+1/n) produces 215.1 - (1.383)(42.943)\1.1 = 152.811

Thus, [ 152.811, + = ] is the 80% confidence lower one-sided prediction interval
for an additional spring lifetime under this stress.

() ¥ -78=215.1-(2.355)(42.943) = 215.1 - 101.13 = 113.969. Thus,

[ 113.969, + = ] is a 95% lower tolerance bound for 90% of all spring lifetimes
under this stress.

(a) Use equation (6-83). With 899% confidence, n /= 25, and p = .90, the appropriate value for
T3 is 2.506 (see Table B-7-A). The interval is then

4.9 + 2.506(.59) = 4.9 + 1.47854 = [3.42146, 6.37854).

Exponentiating each endpoint, [30.61,589.07] is a 99% tolerance interval for 90% of
additional raw aluminum contents.

(b) Use equation (6-78). For 90% confidence, the appropriate £ is 1 = Q25(.95) = 1.708, from
Table B-4. The resulting interval is

4.9 + 1.708(.59)4/1 + Elé = 4.9+ 1.026916

= [3.873084,5.926916].

Exponentiating each endpoint, [48.09, 375.00] is a 80% prediction interval for a single
additional raw aluminum content.
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(c) The interval in (a) is wider than the interval in (b). This is usually true when applying
tolerance intervals (with large p) and prediction intervals in the same situation, with
similar confidences.

4. 30 is the minimum value in the data set, and 511 is the maximum. Using equation (6-93), the
confidence in this interval as a prediction interval is

n—-1 2b
— = — =926
n+1 27

or 92.6%. Using equation (6-95) with p = .90, the confidence in this interval as a tolerance
interval for a fraction .90 of all future aluminum contents is

1—p* —n{l—p)p" ' =1—(.90)* — 26(1 — .90)(.90)*® = .749

or 74.9%.
End 1. () The two-sided 95% confidence interval is given by equation (6-20). The required ¢ is
Chapter Q(.975) of the tg distribution, since (by symmeiry) there must be probability .025 in each
Exercises tail. From Table B -4, t = Qq(.975) = 2.262. From the data, n = 10, £ = 9082.2, and
5 = B41.87, so the confidence interval is
9082.2 + 2.262 (841'37) = 9082.2-+ 602.19
/10

= [8480.0,9684.4] g.

To make the 95% one-sided confidence interval, construct a 90% two-sided confidence
interval and use the lower endpoint. The appropriate ¢ for a 90% two-sided confidence
interval is £ = Qg(.95) = 1.833, and so the 95% one sided interval is

= 0082.2 — 487.99

0082.2 — 1.833 (341'3?)

V10

{b) Use equation (6-78). The two-sided 95% prediction interval is

9082.2 = 2.262(841.87)4/1 + .llli

To make the 95% one-sided prediction interval, construct a 90% iwo-sided prediction
interval and use the lower endpoint.

9082.2 — 1.833(841.87)4/1 + %

(¢) Use formulas (6-83) and (6-85). p = .99, and from Table B-7-A, for 95% confidence, with
n= 10, 73 = 4.437. The resulting two-sided tolerance interval is

9082.2 + 1997.25
[7084.9, 11079.5] g.

]

Il

I

9082.2 — 1618.5
7463.7 g.

0082.2 4 4.437(841.87) = 9082.2+ 3735.37
= [5346.8,12817.6] g.
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(d)

(e)

()

From Table B-7-B, for 95% confidence, with n = 10 and p = .99, 1, = 3.981. The resulting
one-sided tolerance interval is

1]

9082.2 — 3.981(841.87) 9082.2 — 3351.48

8730.7 g.

Use equation (6- 42) and Table B-5. For a 95% two-sided interval, U = Qq(.975) = 19.023
and L = Qg(.025) = 2.700. The resulting interval for ¢? is [335314, 2362476]; taking the
square root of each endpoint, the interval for o is [579.1, 1537.0] g.

For a 95% one-sided interval, U = Q4(.95) = 16.919 and the interval for ¢? is [377013, oo];
taking the square root, the interval for & is [614.0, 00| g.

1. Ho: = 9,500 g.
2. Ha: p < 9,500 g,

3. The test statistic is
_#-9,500

Vio

and the reference distribution is the 1g distribution. Observed values of T far below zero
will be considered as evidence against Hg.
4. The sample gives

T

t=—L57
5. The observed level of significance is

P(a tg random variable < —1.57)
= P(ato random variable > 1.57)

which is between .05 and .1, according to Table B-4. This is moderate evidence that the
mean breaking strength of generic towels is less than 9,500 g.

1. Ho: o = 400 g.
2. Ha: ¢ > 400 g.
3. The test statistic is

2 (n—1)s?

X = ooy

and Lhe reference distribution is the.x3 distribution. Large observed values of X? will be
considered as evidence against Hg.
4. The sample gives

z? = 39.87
5. The observed level of significance is
P(a x2 random variable > 39.87)

which is less than .005, according to Table B -5. This is very strong evidence that the
standard deviation of breaking strengths of generic towels is greater than 400 g.
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2.

(a)

(b)

(¢)

(d)

Label the laid gears Sample 1 and the hung gears Sample 2. Since both of these samples
are large, use equation (6-31) as the test statistic.

1. Ho: gy — 2 = 0.
2. Ha: gy — pp < 0.
3. The test statistic is

P
LSS |
!'.1.|.+!5:

and the reference distribution is the standard normal distribution. Observed values of Z
far below zero will be considered as evidence against Hg.
4. The sample gives

z=-—4,18

5. The observed level of significance is

P(a standard normal random variable < —4.18)

which is less than .0002, according to Table B-3. This is very strong evidence that the
mean of the laying method is smaller than the mean of the hanging method.

Use equation {6-30). For a 90% two-sided confidence interval, the appropriate z is 1.645
(from Table 6-1).

17.949 — 12.632 &+ 1.645“‘%‘?) -+ %5 = 5.317 & 2.0927

[3.22,7.41).

1l

To make a one-sided 90% one-sided interval, make an 80% two-sided confidence interval,
and use the lower endpoint. For a 80% two-sided confidence interval, the appropriate z is
1.28, so the 90% one-sided confidence interval is

p“lT.SQ 14.83
5.317T - 1.284 ) —— + —— = 5.317- 1.62
30 + 8 1.6283

3.69.

Use equation (6-9) with z = 1.645. The two-sided confidence interval is

12.632 + 1.645 (_3_E§)

12.632 + 1.028
V/38

[11.60,13.66].

I

The distribution of the laid gears is slightly skewed to the right (is not bell-shaped). More
importantly, there is an outlier, which is not usual for a normal distribution. For the
prediction interval confidence, use (6-92).

n 38
—_— = = 974
n+1 39

so the confidence associated with 27 as an upper prediction bound is 87.4%. For the
tolerance interval confidence, use equation (6-94) with p = .95,

1-p" =1-—(.95)% = 858

so the confidence associated with 27 as an upper tolerance bound for 95% of additional

runouts is 85.8%.
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3.

(2)

(b)

(d)

(e)

Label the 2,000 psi data as Sample 1 and the 4,000 psi data as Sample 2.

1. Ho: py — pig = 0.

2. Ha: p1 — 2 < 0.

3. The test statistic is given by equation (6-36) with # = 0, and the reference distribution
is the t4 distribution. Observed values of T' far below zero will be considered as evidence
against Ho.

4. The sample gives

t=-11.99
5. The observed level of significance is

P(a t; random variable < —11.99)
= P(at, random variable > 11.99)

which is less than .0005, according to Table B -4. This is very strong evidence that
increasing pressure increases the mean density of the resulting cylinders.

Use equation (6-35). To make a 99% one-sided confidence interval, make a 98% two-sided
confidence interval and use the lower endpoint. For a 98% two-sided confidence interval,
the appropriate ¢ is Q4(.99) = 3.747 (from Table B-4), and so the 99% one-sided
confidence interval is

2.569 — 2,479 — 3.747(.0092286) %—i— % .09033 — .007535

.06210 g/ec.

Il

Il

2. Ha: =3 #1.

3. The test statistic is given by equation (6-49) with # = 1, and the reference distribution
is the Fy; distribution. Small or large observed values of F' (relative to 1) will be
considered as evidence against Hy.

4. The sample gives

f = .404.
5. The observed level of significance is
2F(an F; ; random variable < .404).

It is necessary to switch the degrees of freedom, invert the observed f, and change the
inequality to find the probability to the left of this small quantile using Tables B-6.
(Switching the degrees of freedom has no effect here, since the degrees of freedom are the
same.) :

. 1
= 2P(an F;3 random variable > i

2P(an F3 3 random variable > 2.48)
2(something greater than .25),

so the p-value is greater than .5, according to Tables B-6. There is no evidence of a
difference in variability between the two conditions.

Use equation (6-47) and Tables B-6. For 90% confidence, U = Q3 3(.95) = 19.00 and
L = Q3,(.05) = 5?51?7557 = 1555+ Lhe resulting interval for E; is [.021255, 7.673077).

Taking the square root of each endpoint, the interval for is [-14579, 2.77003].

There must be independence within and between samples, and the individual data points
from each sample must be normal. Also, the methods in (a) and (b) assume that o3 = o3.
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(4) p=18/26 = sample proportion of PET samples that had aluminum contents
above 100 ppm. An approximate 95% confidence interval for the true
proportion of PET samples that have aluminum contents above 100 ppm is

pEz(p(1- p)/n becomes .692 i1.96J(.692}(.308]f26 or .692 +.177.
Thus, the 95% confidence interval is [ .515, .869 ].

8. () Since this is a small sample, the data must be iid normal. One way to check this

assumption is to make a normal plot of the data.

o

Standard Normal Quantiles

1.124 1.136 1.128 1.140 1.142

Length Quantiies (in.)

The normal plot is roughly linear with no outliers, giving no evidence that the normal
assumption is unreasonable.

(b) The two-sided 90% confidence interval is given by equation (6-20). The required ¢ is
2(.95) of the ty5 distribution, since (by symmetry) there must be probability .05 in each
tail. From Table B-4, t = Q45(.95) = 1.753. From the data, n = 16, § = 1.13778, and
s = .002869, so the confidence interval is

= 1.13778 +.0012574

.0
1.13778 + 1.753 ( 02369)

V16

[1.13652,1.13904] in.

1l

(¢) To make a 90% one-sided confidence interval, construct a 80% two-sided confidence
interval and use the upper endpoint. The appropriate i for a 80% two-sided confidence
interval is 1 = Q,5(.90) = 1.341, and so the 90% one sided interval is

= 1.13778 4 .0009619

.00
1.13778 4 1.341 ( ? 2859)

V16

= 1.13874in.

(d) Use equation (6-78). For 90% confidence, the appropriate { is the same as the one in (b).
The resulting interval is

1.13778 4 .005184499
(1.13260, 1.14297] in.

1.13778 + 1.753(.002869)4/1 + ]1—5

(e) Use equation (6-83). With 95% confidence, n = 16, and p = .99, the appropriate value for
73 is 3.819 (see Table B-7-A). The interval is then

1.13778 -+ 3.819(.002869) = 1.13778 + .0109575 = [1.12682, 1.14874] in.
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(f) Using equation (6-93), the confidence in this interval as a prediction interval is

:—-_l_: = % = .882
or 88.2%. Using equation (6-95) with p = .99, the confidence in this interval as a tolerance
interval for a fraction .99 of all future bushing lengths is
1-p" —n(l—p)p" ! =1 —(.99)" — 16(1 — .99)(.99)'° = .011

or 1,1%. This interval is not very useful as a tolerance interval for a fraction .99 of all
future bushing lengths. n needs to be increased substantially to make the confidence
larger. Alternatively, you could be less ambitious and lower p to increase the confidence.

(a) The formulas are for comparing two means based on two independent
samples. Because each bushing was measured twice by each student, there is one paired
sample here, not two independent samples.

(b) Compute the differences between students A and B for each bushing, and use equation
(6-25). (I took the differences as Student A—Student B.) For 95% confidence, the
appropriate £ is £ = @45(.975) = 2.131, from Table B-4,

= —00009375 + .0002414191

00009375 4 2.131 (W)

V16

[~0.0003352, .0001477).

Since zero is in this interval, there is no evidence of a mean difference between students.
(a) Qs(.90) = 1.476, from Table B-4.
(b) @s(.10) = —Qs(.90) (by symmetry) = —1.476.
(c) Q7(.95) = 14.067, from Table B-5.
(d) Q(.05) = 2.167, from Table B-5.
(e) Qs,4(.95) = 6.04, from Table B-6-C.
(f) Qo.(-05) = gtz = 3 = -2604.
(a) Q13(.99) = 2.650, from Table 5 -4.
(b) Qi3(.01) = —Q13(.99) (by symmetry) = —2.650,
(c) Qs(.875) = 9.348, from Table B-5.
(d) Qa(.025) = .2186, from Table B-5.

(e) Q6,13(.75) = 1.53, from Table B-6-C.

(f) Qo12(-25) = gty = 15 = -5650.
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(a) Use equation (6-9) with z = 1.96 for 95% confidence. The two-sided confidence interval is

.0119
.0287 + 1.96 (—) = .0287 4 .003299
V50

]

[-02540, .03200] in.

(b) To make a 95% one-sided confidence interval, construct a 90% two-sided confidence
interval and use the lower endpoint. The appropriate z for a 80% two-sided confidence
interval is 1.645, so the 95% one sided interval is

0119
0287 — 1.645 | ——= = .0287 — .0027684
( V50 )
= .02593 in.

(c) 1. Hg: p2 = .025in.
2. Ha: p> 025 in.
3. The tesl statistic is
7 — ] —‘.025
/50

and the reference distribution is the standard normal distribution. Observed values of Z
far above zero will be considered as evidence against Hyg.
4. The sample gives

¢ = 2.20.
5. The observed level of significance is

P{a standard normal random variable > 2.20)
= P(astandard normal random variable < —2.20)

which is equal to .0139, according to Table B-3. There is strong evidence that the mean
wobble exceeds .025 in.

(d) No. The requirement in part (c) pertains to the mean. Individual wobbles have a
distribution around the mean, with a spread that is approximated by s = .0119. The

mean could be just below .025 in., but the lot could have many individual wobbles exceed
J

.025 in. because of the spread in the wobbles.

(e) Using equation (6-57), the appropriate z for 90% confidence is 1.645. The resulting

interval is
19 1
— + 1.645—— = .384.118
50 2+/50
= [.264,.496).

Using equation (6-59), the appropriate z for 90% confidence is 1.645. The resulting

interval is
.3311.5451f‘33{15;‘33 = .38+.113

[.267, .493).
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10. (a)

(b)

()

(d)

(e)

(f)

Use equation (6-78). For a 90% one-sided interval, construct a 80% two-sided interval, and
use the upper endpoint. For a 80% two-sided interval, the appropriate ¢ is
t = Q3(.90) = 1.886, from Table B-4. The resulting 90% one-sided interval is

8733+ 1.886(.01 lﬁ‘l?)”l + 7;

Use equation (6- 84). With 95% confidence, n = 3, and p = .90, the appropriate value for
71 15 6.155 (see Table B-7-B). The interval is then

I

8733 + .025147
= .898 cm.

.B733 + 6.155(.011547) = .8733 + .07107 = .944 cm.

For the mean, use equation (6-20). For a 90% two-sided interval, the required ¢ is Q(.95)
of the ¢; distribution, since (by symmetry) there must be probability .05 in each tail.
From Table B-4, t = @3(.95) = 2.920, and the confidence interval is

8733 £ .01947

i

8733+ 2.920 (101154?)

V3

[.854, .893] cmn.

For the standard deviation, use equation (6-42) and Table B-5. For a 90% two-sided
interval, U' = Q3(.95) = 5.991 and L = @3(.06) = .103. The resulting interval for ¢? is
[.00004451121, .002588997); taking the square root of each endpoint, the interval for o is
[.00667,.05088] cm.

Label Brand B as Sample 1 and Brand D as Sample 2. Use equation (6-47) and
Tables B -6. For 90% confidence, U = @;,2(.95) = 19.00 and

L = Qy,5(.05) = m = 1555 The resulting interval for E% is [.01754386, 6.3333].
Taking the square root of each endpoint, the interval for 2 is [.132, 2.517).

Use equation (6-35). For 90% confidence, the appropriate t is t = Q4(.95) = 2,132 from
Table B-4, and the resulting interval is

8733 + 2.132(.01633) —.1667 £ .02843

1l

L | e

+

Lo =

[-.195, .138] cm.

Since zero is not in this interval, there appears to be a difference between the mean stretch
values of the two brands.

1. Ho: gy — ua =0,

2. Ha: p1 — 2 # 0.

3. The test statistic is given by equation (6-36) with # = 0, and the reference distribution
is the t4 distribution. Observed values of T far above or below zero will be considered as
evidence against Hg. '

4. The sample gives

it = =12.5,

217 Chapter 6



11.

(a)

(b)

(c)

5. The observed level of significance is

2P(a t, random variable < —12.5)
= 2P(a t4 random variable > 12.5)

which is less than 2(.0005) = .001 , according to Table B-4. This is very strong evidence
that there is a difference between the mean strelch values of the two brands. This
conclusion agrees with the confidence interval in part (e).

Standard Normal Quantiles
o

9950 99.55 9960 9965 99.70 18975

Purity Quantiles (%)

The normal plot is fairly linear, except for the largest point. It would have to be pushed
in to make the plot more straight (and thus make the data more bell-shaped), so the data
have a longer right tail than a bell-shaped distribution.

The most common and easily applied small-sample methods assume that the data are
generated from an underlying normal distribution. If the data are not bell-shaped, these
small-sample methods are less valid.

Standard Normal Quantiles
1]

-1.6 1.4 -12 10 08
Transformed Purity Quantiles (In(%))

(d) Use equation (6-78). The appr'opria.t: tist = Qqo(.975) = 2.262, from Table B-4. The

two-sided 95% prediction interval is

=1.203 & 2.262{.253)1} 1+ 1——1[] = =—1.203 £ .6239427

218 Chapter 6



12.

(¢)

(2)

(<)

(d)

(e)

Il

[—1.826943, —.5790573].

To get this in terms of raw purity, exponeniate the endpoints and then add 99.3. This
results in [99.146, 99.860] %.

Use equation (6-83). With 99% confidence, n = 10, and p = .95, the appropriate value for
T2 is 4.294 (see Table B-7-A). The interval is then

—1.203 + 4.294(.263) = —1.203 + 1.129322 = [-2.332322, —.073678].

To get this in terms of raw purity, exponeniate the endpoints and then add 99.3. This
results in [93.397, 94.229] %.

1. Ho: Hyr = —1.61. T = f = (“131)
2. Ha: pypr < —1.61. 57'{'0'

3. The test statistic is
and the reference distribution is the iy distribution. Observed values of T far below zero
will be considered as evidence against Hg.
4. The sample gives
t= 4.894.
5. The observed level of significance is

P(a tg random variable < 4.894)

which is greater than .9995, according to Table B-4. There is absolutely no evidence that
the mean purity is substandard.

Use equation (6-20). To make the 80% one-sided confidence interval, construct an 80%
two-sided confidence interval and use the lower endpoint. The appropriate ¢ for an 80%
two-sided confidence interval is ¢ = Q1;(.90) = 1.363, and so the 90% one sided interval is

51.1
117.75 - 1.363 | —— = 117.75 - 20.10602
(V 12)
= 87.6 holes.

The test would have a large p-value because there are plausible values of 2 which are
below 100. Therefore, there is not strong evidence that p > 100, which corresponds to a
large p-value,

Use equation (68-78). To make the 90% one-sided prediction interval, construct an 80%
two-sided prediction interval and use the lower endpoint.

117.76 — 1.363(51.1)1,'1 + % = 117.75— 72.4932%

= 45.3 holes.
Use equation (6-83). With 96% confidence, n = 12, and p = .90, the appropriate value for
T3 is 2.670 (see Table B-7-A). The interval is then

117.76 4 2.670(51.1) = 117.75 + 136.437 = [-18.7, 254.2].

Embarrassingly, the lower bound is negalive. Set it equal to zero, since lifetimes cannot be
negative: [0, 254.2] holes. (It is common to analyze lifetime data on the log scale to avoid
this problem. The exponentiation at the end will always result in a positive interval.)

Use equation (6-40) and Table D-5. For a 90% two-sided interval, U = Q,,(.95) = 19.675
and L = Q11(.05) = 4.575. The resulting interval for o? is [1459.889, 6278.319]; taking the
square root of each endpoint, the interval for o is [38.21,79.24] holes.
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13.

(b)

(c)

(d)

1.5

;E . X ‘{E\’l: e = 37 Oc."mne
=
g w , : X = 90 Octane
o (]
[
E . X
Q
Z
T 9 ‘ X
4
=
r.% n . X
26 28 ao 32

Mileage Quantiles (mpg)

For such small sample sizes, it is difficult to verify the assumptions. The plots are roughly
linear with no outliers, indicating that the normal part of the assumption may be
reasonable. The slopes are similar, indicating that the commeon variance assumption may
be reasonable.

Use equation (6-32).

(4)(1.37467) + (4)(.80328)
8

= 1.088975

=

80 5p = 1.089. This measures the amount of baseline variation within either condition,
assuming it is the same for each condition.

Label the 87 Octane data Sample 1 and the 90 Octane data Sample 2. Use equation
(6-35). For a 95% two-sided confidence interval, the appropriate ¢ is @g(.975) = 2.306
(from Table B-4), and so interval is

1 1
28,198 — 31.464 + 2.305“.083)11‘5 + g = —3.266 £ 1.521943
= [-4.788, —1.744] mpg.

The test will produce a small p-value because zero is not in the confidence interval; there
is evidence against the null hypothesis.

1. Hg: py — pa = 0.

2, Ha: pyg — pg < 0.

3. The test statistic is given by equation (6-36) with # = 0, and the reference distribution
is the tg distribution. Observed values of T far below zero will be considered as evidence
against Hg.

4. The sample gives

t = —4949,
5. The observed level of significance is

P(a tg random variable < —4.949)
= P(a tg random variable > 4.949)

which is between .0005 and .001, according to Table B-4. This is very strong evidence
that the higher-octane gasoline provides higher mean mileage.
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14.

()

(f)

(a)

(b)

Use equation (6-78). To make the 95% one-sided prediction intervals, construct 80%
two-sided prediction intervals and use the lower endpoints. For each 90% two-sided
interval, the appropriate ¢ is t = @4(.95) = 2.132 (from Table B-4). For the 87 octane fuel,
the 95% one-sided prediction interval is

28.198 — 2.306(1.172463)4 /1 + % = 28.198 — 2.961755

= 25.236 mpg.

For the 90 octane fuel, the 95% one-sided prediction interval is
31.464 — 2.303(‘8932589}“] + é

Use formula (6-85). From Table B-7-B, for 95% confidence, with n = 5 and p = .85,
71 = 4.203. The resulting one-sided tolerance interval for the 87 octane fuel is

31.464 — 2.264036
29.200 mpg.

Il

]

28.198 — 4.203(1.172463) = 28.198 — 4.927862
= 23.270 mpg.

The resulting one-sided tolerance interval for the 90 octane fuel is

31.464 —4.203(.8952589) = 31.464 — 3.76697¢
= 27.697 mpg.

Using equation (6-57) for a 95% one-sided interval, construct a 90% two-sided interval and
use the upper endpoint. The appropriate z for a 80% two-sided interval is 1.645, so the
95% one-sided interval is

147
+ 1.645 - = .588 4 .05201947

250 2+/250
= .640.

Using equation (6-59), the appropriate z is the same. The resulting 95% one-sided interval
is

.588(1 — .588)

.588 + 1.64
+ 1.645 550

588 4+ .05120745
= .639.

I

Using equation (6-57) for a 95% one-sided interval, construct a 90% two-sided interval and
use the upper endpoint. The appropriate z for a 90% two-sided interval is 1.645, so the
95% one-sided interval is

12 1
e 1.645 ———
750 * Ym0

.048 4 .05201947

= LU

Using equation (6-59), the appropriate z is the same. The resulting 95% one-sided interval
is

.048(1 — .048)

.048 + 1.645
048 + 950

.048 + .02224001
= .070,
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(c)

(d)

Using equation (6-65), the appropriate z for 95% confidence is 1.96. The resulting interval
is

1 1 1
.588 — .048 + 1.96 (5) 350 4 280 = .54 + 08765386

452, .628].

Using equation (6-67), the resulting interval is

588(1 — .588) .048(1 — .048)

S50 550 = .54+ .06651906

= [.473,.607).

588 — 048 + 1.96‘/

There is a clear difference in defective rates for the two machines because even the
conservative interval does not contain zero. The test will have a small p-value, because
there is strong evidence against the null hypothesis.

1. Ho: py — P, =0.

2. Ha:pg—pL, # 0.

3. The test slatistic is given by equation (6-70), and the reference distribution is the
standard normal distribution. Observed values of Z far above or below zero will be
considered as evidence against Hg.

4. The sample gives

z = 12.96.

5. The observed level of significance is

2P(a standard normal random variable > 12.96)
= 2P(a standard normal random variable < —12.96)

which is less than 2(.0002) = .0004, using Table B-3. This is overwhelming evidence that
the defective rates are different. The high-speed operation has a higher defective rate.

(a) I computed the differences as 0.0°C — 21.8°C.

L]
ﬁ -
g :
% g 2
5 .
i |
®
o |,

022 020 -0.18 -0.16 D14 D12

Resistivity Quaniiles

Given the amount of data, there is no evidence that the normal assumption is
unreasonable. The plot is roughly linear with no cutliers.
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16.

(b) Use equation (6-25). For 90% confidence, the appropriate ¢ is t = Qg(.95) = 1.943, from

(c)

(a)

(<)

(d)

Table B -4.

—.15857 £ 02889055

— 15857  1.943 (W)

V7

Il

[~.1875, —.1207)im.

Use equation (6-78), with the same ¢ that was used in part (b). The two-sided 90%
prediction interval is

—.1535:&1.943(.039339?9)-,/1+% = —.15857 + .08171482
= [~.2403,—.0769)Qm.

Use equation (6-20). For a 99% two-sided interval, the required ¢ is Q(.995) of the tg
distribution, since (by symmetry) there must be probability .005 in each tail. From
Table B -4, t = Qg(.995) = 3.707, and the confidence interval is

2.6814 =+ .1272442

2.6814 + 3.707 (M)

VT

[2.554, 2.809]2m.

Use equation (6-78). The appropriate t is t = Qg(.975) = 2.447, from Table B-4. The
two-sided 95% prediction interval is

1

2.6814 + 2.447(.0908164)4/1 + 7 2.6814 + .2375714

[2.444,2.919]0m.

]

Use equation (6-83). With 95% confidence, n = 7, and p = .99, the appropriate value for
72 is 5,241 (see Table B-7-A). The interval is then

2.6814 + 5.241(.0908164) = 2.6814 4 .4759688 = [2.2055, 3.1574]Qm.

Use equation (6-42) and Table B-5. For a 95% two-sided interval, U = Qg(.975) = 14.449
and L = Qg(.025) = 1.237. The resulting interval for o? is [.003424854, .04000462); taking
the square root of each endpoint, the interval for o is [.05852,.20001]Q2m.

Label the copper data as Sample 1 and the aluminum data as Sample 2.

£

1. Hg: 3 =1.
2
as

2. Ha: 3 # 1.
E

3. The test statistic is given by equation (6-47) with # = 1, and the reference distribution
is the Fg g distribution. Small or large observed values of F (relative to 1) will be
considered as evidence against Hg.

4, The sample gives

f = .4036.
5. The observed level of significance is
2P(an Fg g random variable < .4036).

It is necessary to switch the degrees of freedom, invert the observed f, and change the
inequality to find the probability to the left of this small quantile using Tables B-6.
(Switching the degrees of freedom has no effect here, since the degrees of freedom are the
same.)
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17

18.

19.

(f)

(a)

(b)

(a)

(b)

(a)

]

1
2P F d bl

(an Fg ¢ random variable > 4038)
2P(an Fg ¢ random variable > 2.478)

2(something between .1 and .25),

Il

so the p-value is between .2 and .5, according to Tables B-6. There is no evidence of a
difference in precisions between the measured copper and aluminum resistivities.

Use equation (6-45) and Tables B-6. For 90% confidence, U = Q¢,6(-95) = 4.28 and
L = Qe,s(.05) = ?F.'_rﬁj 735+ The resulting interval for -—k is [.09429432, 1.727321).
Taking the square root of each endpoint, the interval for -l :s [.3071, 1.3143].

The appropriate ¢ is ¢t = Q4(.975) = 2.776, from Table B -4. So you need to find the
smallest integer n such that

2
e (2.775‘5)1.2?]) _ e

which gives n = 50. This means that a total of n = 50 resistors must be sampled, so an
additional ny = 50 — 5 = 45 resistors must be sampled.

The same ¢ and s, should be used. The resulting interval is

102.8 -+ 2.776 (['27)
et V50

Il

102.8 4 .49858
[102.30, 103.30] £2.

1l

For prediction interval confidence, use (6-52).

n _55
n+1l 66

= .985

so the confidence associated with 87 seconds as an upper prediction bound for a single
additional service time is 98.5%.

For tolerance interval confidence, use equation (6-94) with p = .95.
1-p" =1-(.95)%" = 964

so the confidence associated with 87 seconds as an upper tolerance bound for 95% of
additional service times is 96.4%.

For Employee 1, using equation (6-57), the appropriate z for 95% confidence is 1.96. The
resulting interval is

5 1
=+ 1. 86—=
54 24/54

]

09259 + .1333611

[—.041,.226).

Since proportions must be between zero and one, set the lower endpoint equal to zero:
[0,.226]. Still for Employee 1, using equation (6-59), the resulting interval is

.09259(1 — .09259)
54

09259 4 07731228
[.015,.170].

09259 + I.BGJ
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20.

(b)

(c)

(a)

For Employee 2, using equation (6-57), the appropriate z for 95% confidence is 1.96. The
resulting interval is

22

:i: 1. 952 30137 4+ .1147003

7

[.187,.416].

Still for Employee 2, using equation (6-59), the resulting interval is

.30137(1 — .30137)

7 30137 £ .1052612

[.196, .407].

30137 + 1.96\/

Using equation (6-65), the appropriate z for 95% confidence is 1.96. The resulting interval
is

—~.208778 4 .1759015

09259 — .30137 + 1.96 (%) o e

[~.385, —.033].

Using equation (6-67), the resulting interval is

09259(1 - .09259)  .30137(1 - .30137)
B4 73

.09259 - .30137 I.QGJ'

—.208778 =+ .1306028
[~.339, —.078].

ki Hu: P1— P2 =10.

2. Ha: pr—pm #0.

3. The test statistic is given by equation (6-72), and the reference distribution is the
standard normal distribution. Observed values of Z far above or below zero will be
considered as evidence against Hg.

4. The sample gives

= —2.84.
5. The observed level of significance is

2P(a standard normal random variable < —2.84)
= 2(.0023) = .0046.

using Table B-3. There is strong evidence of a difference in rates of unacceptable keys
produced by the two employees.

The optimal settings y; (or y2) data must be iid normal, because this is a small sample.
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Standard Normal Quanliles

0.03 0.04 0.05 0.06
Flalness Quanliles (mm), Optimal Sellings

For such a small data set, this plot is roughly linear (with no outliers), indicating that it
may be reasonable to treat the optimal settings flatness distribution as normal.

(i) The two-sided 90% confidence interval is given by equation (6-20). The required ¢ is
@Q(.95) of the tg distribution, since (by symmetry) there must be probability .05 in each
tail. From Table B-4, ¢ = Qg(.95) = 1.833. From the data, n = 10, = .0452, and

s = .01057, so the confidence interval is

0452 4 1.833 ('01057)
] ’ V10

= .0452 4 .006127

[.03907,.05133] mm.

(ii) Use equation (6-78). The t is the same as in part (i). The resulting interval is

0452 + 1.833(.01057)4/1 + -1% = .0452+.020321

[.02488, .06552].
(iii) Use equation (6-83). With 95% confidence, n = 10, and p = .90, the appropriate

value for 73 is 2.856 (see Table B-7-A). The interval is then

.0452 + 2.856(.01057) = .0452 + .030188 = [.01501, .07539].

(iv) Use equation (6-42) and Table B-5. For a 90% two-sided interval,

U = Qqg(.95) = 16.919 and L = Qg(.05) = 3.325. The resulting interval for o2 is
[00005943614,.0003024361]; taking the square root of each endpoint, the interval for o is
[.007709, .017391] mm.
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(d)

Standard Normal Quanliles
4]

0.04 0.05 0.06 0.07
Concentricity Guaniiles {mm), Optimal Sellings

This plot is fairly linear, giving no indication that the normal distribution assumption for
yz at the optimal settings is unreasonable.

(i) The two-sided 90% confidence interval is given by equation (6-20). The required £ is
Q(.95) of the tg distribution, since (by symmetry) there must be probability .05 in each
tail. From Table B-4, t = Q9(.95) = 1.833. From the data, n = 10, # = .0521, and

s = .01099949, so the confidence interval is

= .0521+.0063758

.0521+ 1,833 (M)

V10

[.045724, .058476] mm.

Il

(i) Use equation (6-78). The ¢ is the same as in part (i). The resulting interval is

.0521 & .021146

1l

1
.0521 4 1.833(.01099948)4 /1 + 10

Il

[.03095, .07325] mm.

(iii) Use equation (6-83). With 95% confidence, n = 10, and p = .90, the appropriate
value for 73 is 2.856 (see Table B-7-A). The interval is then

-0521 4 2.856(.01099949) = .0521 + .03141454 = [.02069, .08351].

(iv) Use equation (6-42) and Table B-5. For a 90% two-sided interval,

U = Qg(.95) = 16.919 and L = Qg(.05) = 3.325. The resulting interval for o? is
[.0000643596,.0003274887]; taking the square root of each endpoint, the interval for o is
(008022443, .01809665) mm.

(¢) Since both measurements are made on each of the 10 gears, the sample standard

deviations would not be based on two independent samples. The two sample standard
deviations are correlated; treating them as independent would result in underestimating
the difference between the two standard deviations.

(f) The data within each y; (or yz) sample must be iid normal. The two samples must be
independent (and this seems to be true). Also, the standard deviations of the two
distributions must be the same in order to compare the means.
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(h)

. %
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=
o . X
0.03 0.04 0.05 0.06 0.07

Flatness Quanliles {mm)

Both plots are fairly linear, giving no evidence against the normal assumptions. The
slopes of the plots are similar, giving no evidence that the equal variance assumption is
unreasonable.

(i) Label the Optimal Settings data Sample 1 and the Original Settings data Sample 2.

1. Ho: iy —pz = 0.

2. Ha: 1 — fz < 0.

3. The test statistic is given by equation (6-36) with # = 0, and the reference distribution
is the #1g distribution. Observed values of T far below zero will be considered as evidence
against Hop.

4. The sample gives

t = —2.865
5. The observed level of significance is

P(a tys random variable < —2.865)
P(a t15 random variable > 2.865)
(something between .005 and .01),

according to Table B -4. There is strong evidence that the optimized settings produce a
reduction in mean flatness distortion.

(ii) Use equation (6-35). To make a 90% one-sided confidence interval, make a 80%
two-sided confidence interval and use the lower endpoint. For a 80% two-sided confidence
interval, The appropriate ¢ is @15(.90) = 1.330 (from Table B-4), and so the 90%
one-sided confidence interval for py — i is

1 3
.0579 — .0452 — 1.330(.009912114) w0

0127 — .005B95667
10

= .0D068 mm.
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(i)

-1

8 ! s :
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§ %" 54:21-'“135

003" 004 005 006 007
Concenticity Quanliles (mm)

Given the number of ties (the data are rather discrete), both of these plots are roughly
linear, giving no strong indication that the normal distribution assumption is
unreasonable. The slopes are not similar; there appears to be less spread in the original
settings y; data. The common variance assumption may not be reasonable.

(i) Label the Optimal Settings data Sample 1 and the Original Settings data Sample 2.

1. Ho: g — pa =0,

2. Ha: py — p2 < 0.

3. The test statistic is given by equation (6-36) with # = 0, and the reference distribution
is the £;g distribution. Observed values of T far below zero will be considered as evidence
against Hg.

4. The sample gives

"t = —3.759.
5. The observed level of significance is

P(a t;5 random variable < —3.759)
= P(atys random variable > 3.759)
= (something between .0005 and .001),

according to Table B-4. There is very strong evidence that the optimized settings produce
a reduction in mean concentricity distortion.

(ii) Use equation (6-35). To make a 90% one-sided confidence interval, make a 80%
two-sided confidence interval and use the lower endpoint. For a 80% two-sided confidence
interval, The appropriate t is Q15(.90) = 1.330 (from Table B-4), and so the 90%
one-sided confidence interval for pz — py is

0668 — .0521 — 1.330(.00874484) % + = = .0147 — .005201379
= .0095 mm.

(a) The sample may still be reasonably representative of the entire parking lot of cars. One

might argue that the location of any car in the parking has little to do with whether the
cars tires are over- or underinflated. If this is true, the convenience sample is still fairly
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“random”, and might be treated as a random sample.

(b) Using equation (6-57), the appropriate z for 90% confidence is 1.645. The resulting
interval is

9 1

— +1.646—— = .36%.1645
25 2v/25
= [.196,.525].
Using equation (6-59), the resulting interval is
36(1 — .36)
= [.202,.518],

(¢c) Using equation (6-57), the appropriate z for 90% confidence is 1.645. The resulting
interval is

i -~ 1.545;

25 2/25

.56 + .1645

[-396,.725].

Using equation (6-59), the resulting interval is

.56(1 — .56)

.56+ 1.645
% - 25

56+ .1633113
[.397,.723].

(d) Using equation (6-57) for a 90% one-sided interval, construct an 80% two-sided interval
and use the lower endpoint. The appropriate z for a 80% two-sided interval is 1.28, so the
90% one-sided interval is

19 1
- 1.28

—= 28— 76— .128
25 24/25

I

= .632.

Using equation (6-59), the appropriate z is the same. The resulting 90% one-sided interval
is

; —.T
.76 —1.28 M = .76-—.1093333

25
= .6b1.

(¢) There would not be two independent samples. The sample proportion of cars with at least
one underinflated tire and the sample proportion of cars with at least one overinflated fire
were both computed from the same 25 cars. They are not independent, and so formula
(6-67) should not be used. There are other statistical methods fnot covered in the text)
that can be used to make such a confidence interval in this situation.

.

(a) Using equation (6-57), the appropriate z for 98% confidence is 2.33. The resulting interval
is

1

.39+ .0554134
2+/442

.39+ 2.33

I

[.335, .445].
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24,

(b)

Using equation (6-59), the resulting interval is

39(1 — .39)

394 2.33
442

.39 + 05405576
= [.336,.444].

Using equation (6-65), the appropriate z for QG% confidence is 1.645. The resulting
interval is

32 — .39 4 1.645 : : + - = 07 + .09108029

' ' ] 2) V442 100 :

[-0.161, .021].

Using equation (6-67), the resulting interval is

; = .39(1- .39
—.07 % 1.645¢ it = 85) + L ) = —.07+.08570174

100 442
[-.156, .016].

Both of these intervals contain zero. This suggests that the data do not provide
convincing evidence that a real process improvement has been accomplished. More data
are needed to establish this.

Using equation (6-57), the appropriate z for 95% confidence is 1.96. The resulting interval is

16 1
— +1.96—— = .13333 -+ .08946135
120 2v120
= [.044,.223].
Using equation (6-59), the resulting interval is
.13333 + 1.95\/33333{12_9'13333) = .13333-+ .06082202
= [.073,.194).

(a)

(b)

Label the rectangular bar data as Sample 1 and the circular bar data as Sample 2. Use
equation (6-47) and Tables B ~ﬁ For 98% confidence, U = Q4 4( 99) = 15.98 and

L =Q44(.01)= m = 7355~ The resulting interval for -i is [.0378,9.6465]. Since 1 is
contained in this interval, there is no evidence that the variabilities are different.

Use equation (6-35). For a 95% two-sided confidence interval, the appropriate ¢ is
Qa(.975) = 2.306 (from Table B-4), and so the interval is

82.6 — 87.4 % 2.306(5.128353)

Lﬂlo—-

= —4.8+ 7.479407
[—12.28, 2.68] psi.

tr!f'-'

There is no evidence of a difference in means because zero is in this interval.

Any conclusions made from this data can only be applied to the particular gripper in the
study. To generalize conclusions to other grippers of this design, you would need to collect
data on other grippers. This would result in more variation, since different grippers of the
same design may have slightly different properties, It is this variation, however, that must
be estimated in order to make generalizations beyond one particular gripper.

231 Chapter 6



e

25.

26.

(a)

(b)

(a)

(b)

Since this is a large sample, you can use equation (6-9), with 2 = 1.96 for 95% confidence.
The two-sided confidence interval is

10.14+1.96 (E)

V85

10.1 £ .6434936

]

[9.46,10.74] x .001 inches above nominal.

Zero is not even close to being in this interval. There is strong evidence that the mean is
not equal to zero, so the p-value for the test will be large.

1. Hp: g = 0 % .001 inches above nominal.
2, Ha: p > 0 x .001 inches above nominal.
3. The test statistic is

and the reference distribution is the standard normal distribution. Observed values of Z
far above zero will be considered as evidence against Hy.
4. The sample gives

z = 30.76.
5. The observed level of significance is

P(a standard normal random variable > 30.76)
= P(a standard normal random variable < —30.76)

which is less than .0002, according to Table B-3, There is overwhelming evidence that the
mean thread length exceeds nominal.

The strengths must be iid and normally distributed. A normal plot is given below.

wy .

o
=]

0.5

Standard Normal Guantiles

15

4.0 4.2 4.4 45
25 cm Length Strength Quantiles (kg)

For such a small data set, this plot is roughly linear (with no outliers), indicating that it
may be reasonable to treat the strengths as normal.
Use equation (6-20). For a 95% two-sided interval, the required ¢ is Q(.975) of the t7

distribution, since (by symmetry) there must be probability .025 in each tail. From
Table B-4, t = Q+(.975) = 2.365, and the confidence interval is

4.43125+ .1834513

443125 + 2.365 (m)
R

[4.238, 4.625] kg.
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(c) To make a one-sided 95% confidence interval, use the lower endpoint of a 90% two-sided
interval. For a 90% two-sided interval, the appropriate t is t = Q7(.95) = 1.895, and the
one-sided 95% confidence interval is

4.43125 — .1550065

4.43125 — 1.895 (M)

V3

4.276 kg.

(d) Use equation (6-78). The t is the same as in part (b). The resulting interval is

4.431256 + 2.365(.2313586)4/1 + %

4.43125 + 580354
[3.851,5.012] kg.

(e) Use equation (6-83). With 99% confidence, n = 8, and p = .95, the appropriate value for
73 is 4.968 (see Table B-7-A). The interval is then -

4.43125 + 4.968(.2313586) = 4.43125 -+ 1.149389 = [3.282, 5.581] kg.

(I) Using equation (6-93), the confidence in this interval as a prediction interval is
n=1_17
n+tl 9

or 77.8%. Using equation (6-95) with p = .95, the confidence in this interval as a t-oltranue
interval for a fraction .95 of all future measured strengths is

=.778

1—p* —n(l —p)p" ' =1-(.95)° — 8(1— .95)(.95)" = .057

or 5.7%. This interval is not very useful as a tolerance interval for a fraction .95 of all
future measured strengths. n needs to be increased substantially to make the confidence
larger. Alternatively, you could be less ambitious and lower p to increase the confidence.

(g) The strengths within each sample must be iid and normally distributed, and the standard
deviation of the two distributions must be the same. One way of checking these
assumptions is to normal plot both sets of data on the same axes.

S i Kh;.‘ ¢+ =25 em
o . % ¥ T 306wm
£ o :
X .
3 X y
-31— x 4
&
73] X .

38 4.0 4.2 44 46 48
Strength Quantiies (kg)

For such small sample sizes, it is difficult to verify the assumptions. The plots are roughly
linear with no outliers, indicating that the normal part of the assumption may be
reasonable, The slopes are similar, indicating that the common variance assumption may
be reasonable.
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(h) Label the 25 cm data Sample 1 and the 30 cm data Sample 2.

L. Ho: pg — g = 0.

2. Ha: p1 —pua > 0.

3. The test statistic is given by equation (6-36) with # = 0, and the reference distribution
is the i;4 distribution. Observed values of T' far above zero will be considered as evidence
against Hg.

4. The sample gives

¢t = 1.008.
5. The observed level of significance is
P(a ty4 random variable > 1.006)

which is greater than .1, according to Table B-4. There is little or no evidence that an
increase in specimen length produces a decrease in measured strength.

(i) Use equation (6-35). For a 98% two-sided confidence interval, the appropriate £ is
Q14(-99) = 2.624 (from Table B-4), and so the interval is

+

4.43125 — 4.2875 + 2.624(.2857868) 14375 + .3749523

[« AN
00|

[-0.231,.519] kg.

Il
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27.

28.

(a)

(b)

(d)

(2)

(b)

(€)

The researchers have essentially measured the same specimen 821 times. They learned a
lot about this particular specimen, bit they could not reasonably generalize their results
to all such specimens. If the researchers want to apply their results more widely, they need
to obtain replications which consist of particle diameter measurements from different
specimens,

Since this is a large sample, you can use equation (6-9), with z = 2.33 for 98% confidence.
The two-sided confidence interval is

.028
0554233 | —=
(\,1821)

I

.055 £ .002276892

(.05272, .067277] pm.

1. Ho: g = .057 um.
2. Ha: p 5 .057 pm.
3. The test statistic is

& — .057
&

Veai

and the reference distribution is the standard normal distribution. Observed values of Z
far above or below zero will be considered as evidence against Hyg.
4, The sample gives

Z=

St e N

z = —2.05.
5. The observed level of significance is

2P(a standard normal random variable < —2.05) ¥

which is equal to 2(.0202) = .0404, according to Table B -3. There is strong evidence that b
this specimen’s mean particle diameter is different from the standard. 3

The test in part (c) showed that there is strong evidence that u # .057, but it did not say
anything about how far away u is from .057. The difference between g and .057 may be so
small that, for all intents and purposes, p = .057. The confidence interval in (b) is more
practical for determining how far u is from .057.

Use equation (6-42) and Table B-5. For a 98% two-sided interval, I/ = Q+(.99) = 18.475
and L = @7(.01) = 1.239. The resulting interval for o is [.02028078, .3024112]; taking the
square root of each endpoint, the interval for o is [.1424, .5499] kg.

Use equation (6-42) and Table B-5. For a 95% upper confidence bound,
L = Q7(.05) = 2.167. The resulting bound for o? is .3547531; taking the square root, the
upper bound for o is .5956.

Label the 25 cm data as Sample 1 and the 30 cm data as Sample 2.

11- Hﬂ: £ - 1-

a
2. Ha: 34 # 1.
3
3. The test statistic is given by equation (6-47) with # = 1, and the reference distribution
is the Fy 7 distribution. Small or large observed values of F (relative to 1) will be

considered as evidence against Hp.
4. The sample gives

td

f=.4874.
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29.

30.

5. The observed level of significance is
2P(an Fy 7 random variable < .4874).

It is necessary to swilch the degrees of freedom, invert the observed f, and change the
inequality to find the probability to the left of this small quantile using Tables B-6.
(Switching the degrees of freedom has no effect here, since the degrees of freedom are the
same.)

1
= 2P(an Fy 7 random variable > T

= 2P(an Fy 7 random variable > 2.052)
= 2(something between .1 and .25),

so the p-value is between .2 and .5, according to Tables B-6. There is no evidence of a

difference in the wire lengths with respect to the variability in their measured tensile
strengths.

(d) Use equation (6-47) and Tahlﬁ B-8. For 88% confidence, U = Q7 7(.99) = 6.99 and

L = Qrq(.01) = 089 = #55- The resulting interval for -—} is [.06972795, 3.406915).
Taking the square root of each endpoint, the interval for 2 " is [-2641, 1.8458].

(a) Q4(.99) = 13.277, from Table B-5.

(b) Q4(.025) = .484, from Table B-5.

(c) Q3,15(.99) = 5.42, from Table B-6-D.

(d) @3,15(-25) = grr7ey = 74 = 4065, from Table B-6-A.

Using equation (6-57), the appropriate z for 95% confidence is 1.96. The resulting interval is

i9

:t 1.96—— .38+ .1385929

w—

[.241,.519)].

Using equation (6-59), the appropriate z for 95% confidence is 1.96. The resulting interval is

38(1— .38)

384 1.96
+1.9 50

.38 + 1345423
= [.245,.515).
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31.

(b)

(c)

(d)

(e)

(f)

(9)

(h)

(i)

()

(@) ¥+z(s/+/n) becomes .02046 +1.96(.00178/~/50) or
.02046 + .00049. [.01997, .02095 ] is the 95% two-sided confidence
interval for the mean diameter of holes drilled by this process.

T—z(s/+/n) = .02046 - (1.645)(.001 78/~/50 ) = .02046 - .00041 = .02004.
Thus, (.02004, + « ) is a 95% lower confidence interval (bound) for the
mean diameter of holes drilled by this process. This lower bound (.02004) is
larger than the lower bound (.01997) from part (a).

¥+ z(s/+/n) becomes .02046 + (1.645)(.00178/+/50) or

.02046 +.00041 ., (.02005, .02087) is the 90% two-sided confidence
interval for the mean diameter of holes drilled by this process. This interval is
not as wide as the one in (a).

X—z(s/\/n) = .02046 - (1.28)(.00178/~/50) = .02046 - .00032 = .02014.
Thus, (.02014, + « ) is a 90% lower confidence interval (bound) for the
mean diameter of holes drilled by this process. This lower bound exceeds
the lower bound found in (b).

The structure of the interval in (a) will produce an interval that includes the
true mean diameter in repeated application 95% of the time. The particular
interval (.01997, .02095) may or may not include the true mean diameter.

Yes, the p-value will be less than .05 because the 95% two-sided interval
does not include p = .0210.

The p-value will be large because the 90% lower one-sided bound is .02014
which is less (not greater) than = .0210. The lower bound for the one-sided
interval would need to exceed p = .0210 to produce a small p-value.

No, this is not correct. We are 95% confident the interval (.01997, .02095)
includes the average diameter of all holes drilled by the process under study.

Ho: pn=.0210,
Ha: u « .0210,

Z=(x-.0210)/s/n,

(.02046 - .0210)/(.00178/~/50 ) = - 2.18,
The observed significance level (p-value) is P(Z <-2.16) + P(Z > 2.16) =
2(.0154) = .0308.

The average diameter could be between the specs (.0210 + .0003 ) but half
of the holes have diameters larger than the upper spec and half of the holes
have diameters less than the lower spec. Thus, the process is poor, even
though the average diameter is within specs. Section 4 in Chapter 6 presents
inference methods to evaluate distribution spread (variance).

e 00 )=
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32. (a) We assume cycles till failure is normally distributed. The normal
probability plot suggests the normal distribution is appropriate (straight-line
plot). The normal probability plot of the data is below:

| T | ] T | |
0 100 200 300 400 500 600

ranked X

(b) ¥+t(s/v/n) becomes 271.8 + 1.833 (163.235/4/10 )or
271.8 £ 94.618. The interval (177.18, 366.42) is a 90% interval estimate of
the average cycles till failure from Heat 1. Units are 100s cycles.

(c) —1(s/+/n) =271.8 - (1.383) (163.2/4/10 ) = 271.8 - 71.374 = 200.43.
(200.43, + =« ) is a lower one-sided 90% confidence interval for the mean
fatigue life of specimens from Heat 1. Units are 100s cycles.

(d) [ J(n—-1)s*/U./(n-1)s>/L ] becomes [ /9(163.2)? /19.023,/9(163.2)* /2.7 ]
or [ 112.25, 297.96 ] is a 95% two-sided confidence interval for o.

(e) FLis:/(1+1/n) becomes 271.8 + (1.833)(1 + 1/10)"2(163.2) or

271.8 £ 313.74. The interval [ -41.94, 585.54 ] or [ 0, 585.54] is a 90% two-
sided prediction interval for a single additional fatigue life for a specimen from
this heat.

() ¥tz becomes 271.8 + (2.856)(163.2) or 271.8 £ 466.09. The interval
[-194.3, 737.9) or [ 0, 737.9] is a 95% two-sided tolerance interval for 90% of
additional fatigue lives for specimens from this heat. This interval is much
wider than the interval in (e).

(g) (n-1)/(n+1) = 9/11 = .82, i.e., 82% confidence associated with (11,548) as a
prediction interval for a single additional fatigue life from this heat. Letp = .9.
1-p"-n(1-p)p" "' =1-.9"-10(1)(.9)° = 1 - .3486 - .3874 = .264 or 26.4%
confidence associated with (11, 548) as a tolerance interval for 90% of
additional fatigue lives.

(h) To make formal inference about 4 - i3, we must assume the fatigue lives
for both heats are approximately normally distributed and have the same
variability. A normal probability plot (a) showed fatigue lives from heat 1 was
approximately normal. The following plot is for heat 3.
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Normal Probability Plot
Solid Circle is Data from Heat 1
Open Circle is Data from Heat 3

27—
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=] o )
O e
o e
N0 — o] :O
o [ ]
oe
1 — s 0
L ] (8]
dmyi
T T T | | | |
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ranked X

This plot suggests data from heat3 is normally distributed but does not have
the same variance (the slope of the line for data from heat 1) as the data
from heat 1.

(i) Assuming o4 = o3 and data from both heats are normally distributed,
sp= 52 =129.6. 8, = 16798.3.

(% — %) £ 15,,/(1/m +1/n;) or

(271.8 - 230.3) + (2.101)(129.6) /(2/10)

41.5 £ 121.779 or [ -80.28, 163.28 ] is a 95% two-sided confidence interval for
M- M3

33 (a) The methods of formulas (6.35), (6.36) and (6.38) are not appropriate
because they assume the two groups of data are independent (among other
things). In this example, the two groups of data (dial and air) are not
independent. The measurement from dial on sleeve 1 is not independent of
the measurement from air on sleeve 1.

(b) The differences (dial bore minus air spindler) for selected sleeves,
respectively, must be approximately normal.
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Normal Probability Plot for Differences (Dial minus Air)

5

1 | |
100 200 300

ranked differences

It seems the differences are not normal. Two of the ten differences are
skewed to the right (too large assuming a normal distribution).

(c) Ho: pg = 0 vs. Ha: pg # 0. Letd = dial minus air. d = 154 and sq = 72.984.
So, to = (d - 0)/( sq/~/n) = (154 - 0)/(72.984/~/10 ) = 6.67 and the p-value is
2(tg > 6.67) <.0005. Thus, conclude there is an important difference (dial
minus air).

(d) d +t(sq//n)becomes 154 + (2.262)(72.984)/+/10 or 154 + 52.2. The
interval (101.8, 206.2) is a 95% interval for the average difference (dial minus
air) for any given sleeve.

(e) The interval in (d) does not include zero. Thus, the conclusion to (¢) and (d)
are consistent.

34. (a) The measured angles need to be approximately normally distributed.
The measured angles need to be independent.
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Normal Probability Plot for EDM Hole Angles

ranked EDM

It seems the assumption of a normal distribution for hole angles using EDM
is acceptable.

(b) ¥+1(s/A/n) becomes 44.61 + 3.055(.8169)/v/13 or44.61 + .692. The
interval [43.92, 45.3] is the 99% two-sided confidence interval for the mean
angle produced by the EDM drilling of this hole.

(c) T+t(s//n)=44.61+ (2.681)(.8169)/413 =44.61 + 6074 = 45.22. Thus, the

interval [ - « , 45.22] is a 99% upper one-sided confidence interval for the
mean angle produced by the EDM drilling.

(d) [\(n=1)s*/U.y/(n—1)s>/ L ] becomes [/12(.6674)/23.337,,/12(.6674)/4.404 ] or
[.5858, 1.3485] is a 95% two-sided confidence interval for the standard
deviation of angles produced by the EDM drilling.

(e) ¥+tsy/(1+1/n) becomes 44.61 + (3.055)(.8169)./(1+1/13) or

44,61+ 2.5898. The interval [ 42.02, 47.19] is a 99% two-sided prediction
interval for the next measured angle produced by EDM drilling.

() x+ t,s becomes 44.61 + (4.051)(.8169) or 44.61 + 3.31. Thus, the interval

[ 41.3, 47.92] is a 95% two-sided tolerance interval for 99% of angles
produced by the EDM drilling.
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(g) Equation 6.93 gives (n-1)/(n+1) = 12/14 = .857 as the confidence that should
be associated with this interval as a prediction interval for a single additional
measured angle. Equation 6.95 gives
1-p"-n(1-p)p™" as the confidence level that should be associated with this
interval when it is used as a tolerance interval for 99% (p = .99) of additional
angles. Thus, 1-(.99)"-13(.01)(.99)"*=1- 8775-.1152 = .01 or 1%
confidence.

(h) Assume Laser (A) holes and EDM holes have angles that are normally
distributed. Further, it is assumed angles from Laser A holes have the same
variance as EDM holes have.

Normal Probability Plot
Solid Circle is EDM Data
Open Circle is Laser A Data

2= ] T | I T I T 1
39 40 41 42 43 44 45 46 47 48 49

Except for one data value (Laser A, x = 48.5), both EDM and Laser A
methods produce angles that are normally distributed (straight line normal
probability plot) and have the same variance (parallel normal probability
plots).

() Ho: puL-peom=0vs. Ha: p - pepm # 0.
sp- = [ (12)(5.0442) + (12)(.6674) J/24 = 2.8558. s, = (2.8558)"? = 1.69.

t= [ ((X, =X ) —01/5,+/(2/n) = (42.2615—44.6077)/1.69,/(2/13) = —3.54
p-value=2 P[tys < -3.54] = .002. Thus, there is an important difference in the
average angle for Laser compared to EDM drilling.
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35.

0

(k)

)
(m)

(n)

(0)

(b)

(c)

(d)

(e)

(%, — Fuope ) 15,72/ 1 = (42.2615 - 44.6077) + (2.064)(1.69)/(2/13) or
-2.3462 + 1.3681. Thus [-3.7143, -.9781] is a 95% confidence interval for
HL = HEDM-

[ s /(Us2,, )ons2 /(Lst,,) ] becomes
[ /5.0442/(2.69)(.6674).+/5.0442/(1/2.69)(.6674) ] or [ 1.6762, 4.509 ] is a 95%
confidence interval for o} /c7},,, .

The two angles (Laser A and B ) on the same part are not independent.

Letd = Xia-Xis d t(sq/+/n)becomes

-2.3384 + (1 .?82)(2.?054)!@ or -2.3384 + 1.3371 gives[-3.68, -1.00]
as the 90% two-sided confidence interval for Laser A minus Laser B
average hole angle.

Letd = Xa-Xwie. Ho: ug=0vs. Ha: pg=0.

S0, t12 = (d - 0)/( sq//n) = (-2.3384 - 0)/(2.7054)/~/13) =-3.116.
p-value = 2P[t;2 <-3.116 ] = .009. There is very strong evidence a
difference exists between Laser A angles and Laser B angles.

Since the 90% interval in (m) did not include 0, it is clear there is strong
evidence the mean difference in hole angle is not 0. Thus, a small p-value
was expected from part (n).

(a) The tilt table ratio must have an approximate normal distribution for
Van1i.
%, +1(s/~/n) becomes 1.093 + (3.182)(.0024495)(1/:/4 ) or

1.093 + .003897. Thus, the interval [ 1.0891, 1.0968] is a 95% two-sided
confidence interval for the mean measured tilt table ratio for Van 1.

X, —t(s/Jn) = 1.093 - (2.353)(.0024495)(1//4 ) = 1.093 - .00288 or

[1.08, + « ] is a lower one-sided 95% confidence interval for the mean
measured tilt table ratio for Van 1.

[\(n=1)s* /U 4 ] becomes [J(B)(.O60006)17.815,+m ]or
[ .00152, += ] is a 95% lower one-sided confidence interval for the
standard deviation of tilt table ratios for Van 1.

X, +1s4/(1+1/n) becomes 1.093 + (3.182)(.0024495)+/1.25 or
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1.093 + .00871. The interval [ 1.084, 1.102 ] is a 95% two-sided prediction
interval for a single additional measured tilt table ratio for Van 1 under
conditions such as those experienced during testing.

(f) x £ 125 becomes 1.093 + (11.118)(.0024495) or 1.093 +.0272. The interval
[ 1.086, 1.120] is a 99% two-sided tolerance interval for 95% of additional
measured tilt table ratios for Van 1.

(g) (n-1)/(n+1) = 3/4 = 75% confidence the interval (1.09, 1.096) will include the
next measured tilt table ratio for Van 1.
1-p"-n(1-p)p™" =1-(.95)* - 4(.05)(.95)° = 1 - .8145 - .1715= .014 or
1.4% confidence the interval (1.09, 1.096) will include 95% of tilt table ratios
for Van 1.

(h) Must assume similar variability of tilt-table ratios and normal distribution of tilt-
table ratios for both vans.

(i) Ho: py-pe=0vs. Ha:: py-p2 #0.
sp° = [ (3)(.0000086) + (3)(.0000109) ]/6 = .00000845. s, = (.00000845)"? =
.0029.

t=[ (5 ~5)-0]/s,4/(2/n) = (1.093-.9663)/.0029,/(2/4) = 61.787

p-value=2 P[ts > 61.787] = 0. Thus, there is an important difference in
the average angle for Laser compared to EDM drilling.

(i) &-x)£ts5,42/n= (1.093 —.9663) + (1.943)(.0029),/(2/4) . The interval
becomes .1267 £ .003984. Thus with 90% confidence [ .1227, .1307]
includes i — .

(K) [ /57 /(Us2).\[s? /(Ls?) ] becomes
[/(.000006)/[(9.28)(.0000109)],/[(.000006)(9.28)]/(.0000109) ] or

[.2436, 5.1083 ] is a 90% confidence interval for o4/c> .
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(b)

3;Cha,pter 7: Inference for Unstructured
Multisample Studies

(a) See equation (7-3). The necessary computations are given in the table below.

Siandard Normal Quantiles
0

Pressure Vi Uiy =% iy
2000 2.486  2.4790 0.0070
2000 2.479  2.4790 0.0000
2000 2.472 2.4790 -0.0070
4000 2.568 2.5693 -0.0113
4000 2,570 2.5693 0.0007
4000 2.580 2.5693 0.0107
6000 2.646  2.6520 -0.0060
6000 2.657  2.6520 0.0050
6000 2.663 2.6520 0.0010
8000 2.724  2.7687 -0.0447
8000 2,774  2.7687  0.0053
BOOO 2.80B 2.768T7  0.0393
10000 2.861 2.8660 -0.0050
10000 2.879 2.8660  0.0130
10000 2.858 2.8660 -0.0080

-0.04 -0.02 0.0 0.02 0.04
Resldual Quantiles

The plot reveals 2 outliers. The assumptions of the one-way normal model appear to be

unreasonable for these data. Both of the outliers come from the 8000 psi condition. This
is an indication that the common ¢ part of the one-way normal model assumptions is not
reasonable. There seems to be a lot more spread in the 8000 psi sample than in the other

samples.

Using equation (7-7), s, = .02057 g/cc, with n — r = 15 — 65 = 10 degrees of freedom
associated with it. This measures the magnitude of baseline variation within any of the
5 conditions, assuming it is the same for all 5 conditions.

For the confidence interval, use equation (7-10) and Table B-5. For a 90% two-sided
interval, U = Q10(.95) = 18.307 and L = Q10(.05) = 3.940. The resulting interval for o'? is
[.000231132,.001073942]; taking the square root of each endpoint, the interval for o is

[.01520,.03277] g/cc.
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2. (a)
2 [ ]
1
L]
L ]
L ]
.I
N 0 — H
]
L]
L ]
]
A =] #
[ ]
D=
| I I |
-0.010 -0.005 0.000 0.005
ordered residuals
The plot reveals one test from Van 3 (y = 1.01) appears to deviate from a normal
distribution assumption (residual = - .0094).
(b) Same as in (a), (standardized residual = -2.9148).
(€)  Spoced = .0036 measures the assumed common standard deviation of tilt
angle for repeated tests on any of the four selected vans.
The interval defined as: [ sp4/(13)/5.009, sp5,/(13) / 24.736 ] becomes
(.0026, .0058) and is a 95% two-sided confidence interval for o based on
Sp.
Section 1. (@) Use equation (7-14). A is the same for all five intervals because all five sample sizes are

2 the same. For 95% confidence, the appropriate ¢ is ¢ = Q10(.975) = 2.228, from Table B-4.
The resulting A is

02057

2.228
V3

= .02646 g/cc.

Using equation (7-26), the minimum overall (simultaneous) confidence is
1— (.05 4 .05 + .05+ .05+ .05) = .75

or 75%.

4
(b) Use equation (7-15). A is the same for all 10 intervals because all five sample sizes are the |
same. t is the same as in part (c). The resulting A is

2.228(.02057) %4 % = .03742 g/cc.
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(¢) The estimate of pego is 2.652 = y ., , the estimate of p 4 is

2.5693 = y 4000 and the estimate of i is 2000 = 2.479. The estimated L
is 2.652 - 2(2.5693) + 2.479 = -.0076. The 95% confidence interval for L is:

-.0076 +1,,(.02057)/(1/3+4/3+1/3) or-.0076 + .0648. The interval

( -.0724, .0572) indicates mean density is a linear function of pressure
from 2000 to 6000 psi because the interval for L includes 0.

(a) The 99% confidence interval for each of the Vans is of the form
X i:,ﬁ.\-p;ﬁ. where the x is the sample average for the selected van.

Van 1: 1.093 + 3.012 (.0036/2) or 1.093 + .00542
becomes (1.0875, 1.0984).

Van 2: 96625 + (3.012)(.0036/2) or .96625 + .00542
becomes (.9608, .9716).

Van 3: 1.0194 + (3.012)(.0036/+/5) or 1.0194 + .004849
becomes (1.0145, 1.0242).

Van 4: 1.00225 + .00542 becomes (.9968, 1.0076).

The Bonferroni Inequality guarantees y = 1-[.01+.01+.01+.01], i.e., at least
96% joint confidence.

(b) Letny=ny=4. A=ty3s,(2/4)"* =3.012(.0036)(1/2)"? = .0076.
Letni=4,n2=5 A=ti3s, (1/4 + 1/5)" = 3.012(.45)"%(.0036) = .0072.

(c) The estimate of 1/2(n 1+ w2)—12(u 3+ ) is
1/2(1.093 + .96625) - 1/2(1.0194 + 1.00225) = .0188. The 99% two-sided
confidence limit for 1/2(p ¢ + o) —1/2(n 3 + 1 4) is:

0188 + t1a8p(1/2)(1/4 + 1/4 + 1/5 + 1/4)' or
0188 + .005284.

Thus, the 99% two-sided confidence limits are [ .013516, .02408 ].

Before the data are collected, the probability is .05 that an individual 95% confidence interval
will be in error—that it will not contain the quantity that it is supposed to contain. If several
of these types of individual intervals are made, then the probability that at least one of the
intervals is in error is greater than .05. (If each interval has a .05 chance of failing, then the
overall chance of at least one failure is greater than .05.) When making several intervals, most
people would like the overall or simultaneous error probability to be small. In order make sure,
for example, that the overall error probability is .05, the error probability associated with the
individual intervals must be made smaller than .05. This is equivalent to increasing the
individual confidences (above 95%), which makes the intervals wider.
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section (1) (8) Use equation 7-28. r=5and v=n-r=10, ko * = 3.10. The resulting

3

(b)

(2)

(b)

Section [1 ]
4

A becomes

3.1(.02057)/+/3 = .03682g/cc.
This A= .03682 is larger than the A =.02646 in Section 2, problem 1(a).

Use equation 7-36. For 95% confidence, with Number of Means to be
Compared=5and v=n-r=10,qg *=4.65. The resulting A is

4.65(1/+/2 )(.02057)/(1/3 +1/3) = .05522 glcc.

This A is larger than the A = .03742 in Section 2 problem 1b.

(a) Use equation 7-28. r=4 and v=n-r= 13, k2* = 2.88. Simultaneous
95% PR confidence limits for each van are:

Van1: 1.093 + (2.88)(.0036)/(4)" or 1.093 + .0052 gives

(1.0878, 1.0982).

Van 2: .96625 + .0052 or (.9610, .9714).

Van 3: 1.0194 + (2.88)(.0036)/(5)"* becomes (1.0147, 1.024)

Van 4: 1.00225 + .0052 or (.9970, 1.0074).

Forniy=n=4,q*=54,df=13,r=4,

A=[(5.4)/2 1(sp)(1/2)" = [(5.4)/+/2](.0036)(1/2)"? = .00972
Forni=4andn;=5q*=54,df =13, r=4,
A=[(5.4)/21(s,)(.45)"? = [(5.4)//2](.0036)(1/2)"? = .0092.

The As here are larger. The confidence level for these As are applied to
the complete set of confidence intervals. The As in Section 7-2, exercise
2(b) are for just a single interval.

(a) A small p-value is expected. The smallest difference among any two
pressure means is 2.5693 - 2.479 = .09. This value of .09 exceeds the A
in both problems 1(b) in sections 2 and 3.

Using the general form given in Table 7-12, the calculations yield the following table.

Source S5 df MS F
Treatments .286135 4 .071284 168.47
Error 004231 10 .000423

Total 289366 14
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(2)

(b)

Standard Normal Quanliles

1.5

Using equation (7-53),

. -285135

T .289366

The p-value for an F' test of the null hypothesis given in part (1) is

F(an F4,19 random variable > 168.47).

Using Tables B -6, this is less than .001.

(a) A small p-value is expected. In part (b) of Section 7-3, the difference
between any two Vans exceeds the As calculated there (.00972 or .0092).

SSTr=.034134, MSTr = .011378, df = 3; SSE = .000175, MSE = .000013,
df = 13; SSTot = .034308, df = 16; f =846.67 on 3,13 df; p-value < .001. : R=.995

(a) To check that the y;’s are normal, make a normal plot of the g;'s. To check that the ¢;’s

are normal, make a normal plot of the residuals. (Normal plotting each sample

individually will not be very helpful because the sample sizes are so small.)

1.5

0.5
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30

40
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70

B0 90

Sample Mean Quantiles

Slandard Normal Quantiles

2

4 -2

Residual Quantiles

0

2

Both plots are roughly linear, giving no evidence that the one-way random effects model
assumptions are unreasonable.

(b) Using the general form given in Table 7-12, the calculations yield the following table.

Source S8 df MS EMS F
Rails 93105 5 18621 o?+30? 115.18
Error 194.0 12 16.2 a?

Total  9504.5 17

An estimate of o® is MSE = s? = 16.2, and so an estimate of ¢ is v/16.2 = 5, =4.025

psec (see equation (7-58)). Using equation (7-62), an estimate of o2 is

1
;{1352.1 — 16.2) = 615.3,
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so an estimate of o, is v/615.3 = 24.805 usec. The estimate of o measures variation in the
response from repeated measurements of the same rail; the estimate of o, measures the
variation in the response from differences among rails. It seems that most of the variation
comes from differences among rails.

(¢) Use equation (7-63). For a two-sided 90% confidence interval, U = Qg 12(.95) = 3.11 and

: L = .2136752

Q12,5(-95) " 4.68

using Table B-6-C. The resulting interval for o2 /o? is

1 1862.1 1 1862.1
[E ({3.11)(15.2) i 1) '3 ((.213&752}(15‘2) il ')]
= [11.98654,178.98).

L = Qs,12(.05) =

T e -5 P,mr'-"?'ﬂ.____r! Asd

Taking the square roots of the endpoints, the interval for o, /o is [3.46,13.38). 0, /o is a
comparison of the size of variation among rails to the size of within-rail variation. The
interval implies that, with 90% confidence, the variation among rails in travel time is
between 3.5 to 13.4 times larger than the within-rail variation in travel time.

L e U e s s B L i L

4. (a) Unstructured multisample data could also be thought of as data from one factor with r
levels. In many situations, the specific levels of the factor included in the study are the
levels of interest. For example, in comparing three drugs, the factor might be called
“Treatment”. It might have 4 levels: Drug 1, Drug 2, Drug 3, and Control. The
experimenter is interested in comparing the spenﬁc drugs used in the study to each other
and to the control.

Sometimes the specific levels of the factor are not of interest in and of themselves, but
only because they may represent (perhaps they are a random sample of) many different
possible levels that could have been used in the study. A random effects analysis is
appropriate in this situation. For an example, see part (b).

(b) If there are many technicians, and 5 of these were randomly chosen to be in the study,
then interest is in the variation among all technicians, not just the 5 chosen for the study.
In this case, a random effects model is appropriate. If these are the only 5 technicians that
will ever use the gage, than a fixed effects model should be used (the one-way normal
model, in which the p;’s are fixed).

{c) The standard deviation associated with repeat diameter measurements for a given
technician is o. The standard deviation of long-run mean mea.surements for various
technicians (the u;'s) is, by definition, o,. An estimate of o is MSE = .0000024 (see
equation (7-58)), and so an estimate of o is 4/.0000024 = .001549193 in. An estimate of o2

is

é(MSTr — MSE) = %(.0000034 —.0000024) = .0000005,

so an estimate of o, is

+/.0000005 = 0007071068 in.
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Section 5 .
17 (a) For the R chart, use the limits given in equation (7- 86 ). In Table B-2, for m =3, D, is
not given, so there is no lower control limit. D; = 4.358 and d; = 1.693, so
Center Lineg = dyo = 1.693(1.0) = 1.693 oz

and

UCLg = 4.358(1.0) = 4.358 oz.

0
-
L]
o
o™
=
] 10 15 20
Sample Number

There is little evidence that the o associated with the process was above 1.0 oz.

For the & chart, use y as a center line, and use the limits given in equation (7-70}.

Center Linez = 21.0 oz,

1.0

LCLs =21.0-3 = 19.26795 oz,
! V3
and
UCLs =21.04 3£'E = 22.73205 oz
g ; ﬁ = I 3
a8
&
8
2 oy
=
a8
O ey
5 10 15 20
Sample Number

There is no evidence that the process mean g was not equal to 21.0 oz.
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(b) Use ¢40 as a center line, and use the limits given in equation (7-90 ). From Table B-2
with m = 3, ¢4 = .8862, Bs is not given (so there will be no lower control limit), and
Bg = 2.276.

Center Line, = .8862(1.0) = .8862 oz,
and

UCL, = 2.276(1.0) = 2.276 oa.

<
o™
n
0w
o
n
(=]
o
<
5 10 15 20
Sample Number

This chart is very similar in appearance to the R chart.

(c) Use equation (7-74) for the estimate based on R.

R 2.3
— = ——— = 1.35B8535 osz.
4 1.693 o

Use equation (7-78) for the estimate based on 5.

i 1.209262

P T T = 1.364548 oz.

Using equation (7-7),
s3 = 1.729167,

50 8p = +/1.729167 = 1.314978 oz. The two estimates above are slightly larger than s;.

(d) For the R chart, use the limits given in equation (7-88 ). In Table B-2, for m = 3, D3 is
not given, so there is no lower control limit. Dy = 2.574, so

Center Lineg = R = 2.3 oz
and

UCLg = 2.574(2.3) = 5.9202 oz.
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(e)

&
|
|
|
|
|
|
|
|
|
|
|
|
|

R
2 3 ‘4 5

0

There is little evidence that the o associated with the process was unstable. The
short-term variability seems to have been in control.

For the £ chart, use £ as a center line, and use the limits given in equation (7-70),
substituting £ for pu and a% for o.

Center Line; = 21.25833 og,

1.358535
LCLy = 21.25833 — 322209 _ 18 00528 oz,
e V3
and
UCLs = 2125833 + 31328535 _ 53 61138 os.
V3
R ————T——
o
8
s = |_ e — ™
= o
8
- JOF e e LR TSRS |
5 10 15 20
Sample Number

There is no evidence that the process mean p was unstable. The process mean seems to
have been in control.

For the s chart, use the limits given in equation (7-92 ). In Table B-2, for m =3, B; is
not given, so there is no lower control limit. By = 2.568, so

Center Line, = § = 1.209262 oz
and

UCL, = 2.5668(1.209262) = 3.105385 oz.
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-] 10 15 20
Sample Number

For the & chart, use & as a center line, and use the limits given in equation (7-70),
substituting & for u and - for 0.

Center Line; = 21.25833 oz,

1.364548
LCLg = 21.25833 — 3————— = 18.894B7 o%
: -] V‘E 1
and
1.364548
UCLs = 21.25833 + 3————— = 23.6218 oz.
: V3
et
a8
8
B |
q v = T .
= e
5]
I e e
5 10 15 20
Sample Number

These charts are very similar to the ones made in part (d).
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(a) Use equation (7-74) for the estimate based on R. From Table B-2, for m = 5, d; = 2.326.

jii 4.052632 :
a—;; = —omm . 1.742318 x .001 in.
Use equation (7-78) for the estimate based on 5. From Table B-2, for m = 5, ¢4 = .9400.

F 1.732632 :
t-:-"- =i 1.843226 x .001 in.

(b) For the R chart, use the limits given in equation (7-86 ), with & substituted for o. The
center line will be at dg%. In Table B-2, for m = 5, D, is not given, so there is no lower
control limit. Dy = 4.918, so

Center Lineg = 2.326(1.843226) = 4.287344 x .001 in,

and

UCLp = 4.918(1.843226) = 9.064985 x .001 in.

e . c— r— — c———— ——— —

5 10 15
Sample Number

For the s chart, use the limits given in equation (7-92 ). The center line will be at 5. In
Table B-2, for m = 5, B; is not given, so there is no lower control limit. By = 2.089, so

Center Line, = 1.732632 x .001 in.

and

UCL, = 2.089(1.732632) = 3.619468 x .001 in.

-
o
w (3]
o
5 10 15
Sample Number
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(<)

(d)

(e)

Neither chart indicates that the short-term variability of the process (as measured by o)
was unstable.

Use & as a center line, and use the limits given in equation (7-70), substituting & for p and
£ for o.
4

Center Lines = 11.17895 % .001 in. above nominal

LCLy = 11.1T895— 3&‘?‘;29 = B.706 x .001 in. above nominal,

and

1.843226

UCLs = 11.17895+ 3
2 =+ v"E

= 13.65189 x .001 in. above nominal.

14

¥-bar
11 12 13

10

9

5 10 15
Sample Number

The £ from sample 16 comes close to the upper control limit, but overall the process mean
seems to have been stable over the time period.

The &'s from samples 9 and 16 seem to have “jumped” from the previous & The coil
change may be causing this jump, but it could also be explained by common cause

variation. It may be something worth investigating.

Assuming that the mean could be adjusted (down), you need to look at one of the
estimates of o to answer this question about individual thread lengths. (You should not
use control limits to answer this question!) If g could be made equal to zero, then
(assuming normally distributed thread lengths), almost all of the thread lengths would fall
in the interval +30. Using the estimate of o based on § from part (a), this can be
approximated by 3(1.843226) = 5.53x .001 in. It does seem that the equipment is capable
of producing thread lengths within .01 in. of nominal.

If the equipment were not capable of meeting the given requirements, the company could
invest in better equipment. This would “permanently” solve the problem, but it might not
be feasible from a financial standpoint. A second oplion is to inspect the bolts and remove
the ones that are not within .01 in. of nominal. This might be cheaper than investing in
new equipment, but it will do nothing to improve the quality of the process in the long
run. A third option is to study the process (through experimentation) to see if there
might be some way of reducing the variability without making a large capital investment.
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Section 1.
6

Control charting is used to monitor a process, and detect changes (lack of stability) in a
process. The focus is on detecting changes in a meaningful parameter such as p, o, p, or A
Points that plot out of control are a signal that the process is not stable at the standard
parameter value (for a standards given chart) or was not stable at any parameter value (for a
retrospective chart). The overall goal is to reduce process variability by identifying assignable
causes and taking action to eliminate them. Reducing variability increases the quality of the
process output.

Shewhart control charts do not physically control a process. They only monitor the process,
trying to detect process instability. There is an entirely different field dedicated to
“engineering control”; this field uses feedback techniques that manipulate process variables to
control some response. Shewhart control charts simply monitor a response, and should not be
used to make “real time” adjustments.

Out-of-control points should be investigated. If the causes of such points can be determined
and eliminated, this will reduce long term variation from the process. There must be an active
effort among those involved with the process to improve the quality; otherwise, control charts
will do nothing to improve the process.

Control limits for an Z chart are set so that, under the assumption that the process is stable, it
would be very unusual for an Z to plot outside the control limits. The chart recognizes that
there will be some variation in the &'s even if the process is in control, and prevents
overadjustment by allowing the #’s to vary “randomly” within the control limits. If the process
mean or standard deviation changes, #'s will be more likely to plot outside of the control
limits, and sooner or later the alarm will sound. This provides an opportunity to investigate
the cause of the change, and hopefully take steps to prevent it from happening again. In the
long run, such troubleshooting may improve the process by making it less variable.

(2) Use equations (7-95 ) and (7-96 ).

Center Lineg, = .02,

LCL;, = .02 - S\HE%}E} = —.003777818,

which is negative, so there is no lower control limit.

.02(1 - .02)

UCL;, = .02+ 3 =

= .04377782.

,E“ S
E ©
=]
g 8

o
3

[=]
g
£ g
E.
B o

5 10 15 20
Sarnple Number

The chart shows evidence (from sample 17) that the process fraction defective was not
stable at p = .02 over the entire period.

257 Chapter 7



(b) Use equations (7-98 ) and (7-99 ). p = A& = .02339744.

Center Line;, = .02339744,

102339744(1 — .0233974d)

LCLy, = 02339744 — 3“

312

which is negative, so there is no lower control limit.

= —0.002276179,

.02339744(1 — .02339744)

= .04807105

UCLs, =.02339744 4 3J

312

g 8
E @
2
£ 8
E =
Z =
gl =
g ©
8 o
i 9
o ©
Eo

L=

5 10
Sample Number

The chart shows evidence (from sample 17) that the process fraction defective was not

stable at any value over the entire period.

Use equations (7-105) and (7-106). & = 31 = .137931.

Center Lineg, = .137931.

The control limits depend on the number of units tested k;. The following table gives upper
control limits for each of the ki’s in the data set. (The lower control limits are all negative, so
there are no lower control limits for any of these k;’s.)

k; UCLg,
32 33488907
33 .3318835
39 .3163413
40 3140971
45 .304022
46 .3022067
48 2087479
50 .2954988
58 .284229
258
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Leaks per Assembly

0.1

04

03

02

0.0

Day

There is some evidence that the underlying leak rate was not stable over the time period
studied. However, only the first @; plotted outside its control limit, and there seems to be a
general downward trend in the leak rate. The process may have stabilized during the period.

(a) Use equations (7-105) and (7-106). & = {3 = .7142857.
Center Lineg, = .7142857.

The control limits depend on the number of units inspected k;. The following table gives
upper control limits for each of the k;i's in the data set. (The lower control limits are all
negative, so there are no lower control limits for any of these k;’s.)

ki UCLq,
1 3.249748
2 2507129
3 2.178136

i =0 =5 o i
g o == =
B o
a
o
g _
&

o

2 4 6 8
Sample

None of the i;'s plot outside the control limits, so there is no evidence that the underlying
defect rate of the process was unstable over the time period studied.
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(b) (i) If k; = 1, then using equations (7-102) and (7-103), the center line will be at A = 1.2

(standard),
1.2
LCLy, = 12— 34/ o ik —2.086335,

-

[1.2
UCLg, = 1243 ii— = 4.486335.

P(a sample produces an out of control signal) = P(i; > 4.486335)
= P(X: >4.486335)
= P(X.' > 5)

so there is no LCL, and

Also, X; = k;it; = 11y, 50

where X; is a Poisson random variable with A = 1.2 (since the actual defect rate is
standard here and k; = 1). Using equation (5-10) with A = 1.2,

P(X;>5)=1-P(Xi<5) = 1—(P(Xi=0)+ -+ P(Xi=4))
= 1-.9922542= .007745788.

If k; = 2, then using equations (7-102) and (7-103), the center line will be at A = 1.2

(standard),
LCLy, =12~ 31f1;22 = —1.12379,

UCLg, = 1.2+ 3”‘%2 = 3.52379.

P(a sample produces an out of control signal) = P(u; > 3.52379)
= P{X; > 7.04758)
= P(X;28)

so there is no LCL, and

Also, X; = kit = 24, s0

where X; is a Poisson random variable with A = 2.4 (since the actual defect rate is
standard here and k; = 2). Using equation (5-10) with A = 2.4,

P(X;>8)=1-P(Xi<8) = 1-(P(X= 0)+---+P(Xi=T))
1— .0966614 = 003338617,

This is slightly smaller than for k; = 1, but both are very small. This is by design. For
any k;, the probability of “false alarm” would be small. As k;, — oo, the probability
converges to

P(Xy< p—30)+ P(X;> jp + 30) = .0026

from the normal distribution. This is because the Poisson distribution converges to the
normal distribution as n — oco.
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(ii) The center line and control limits will be the same as in part (ii), because the
standard hasn’t changed.

If k; = 1, then X = kiti; = ii;, so
P(a sample produces an out of control signal) = P(u; > 4.486335)
= P(X; > 4.486335)
= P(X; > 5)
where X; is a Poisson random variable with A = 2.4 (since the actual defect rate is twice
the standard here and k; = 1). Using equation (5-10) with A = 2.4,

P(X:>5)=1-P(X;<5) = 1—(P(Xi=0)+---+ P(X;=4))
= 1-.9041314 = .09586859.

If k; = 2, then X; = kil = 245, s0

P(a sample produces an out of control signal) = P(i; > 3.52379)
P(X; > 7.04758)
= P(X,>8)

where X; is a Poisson random variable with A = 4.8 (since the actual defect rate is twice

standard here and k; = 2). Using equation (5-10) with A = 4.8,

P(X;>8)=1-P(Xi<8) = 1-(P(X;i=0)+---+P(%=7)

= 1-—.8866662=.1133338.

This is larger than for k; = 1 because more information about the defect rate is obtained
when 2 units are inspected. If the defect rate is actually twice the standard, this will be
easier to detect by inspecting 2 units than by inspecting 1.

Use equations (7-88 ) and (7-99 ). p = 35 = .072.
Center Lineg, = .072,

The control limits depend on the sample size n;. For n; = 20,

LCL;, = 072 — 3 :‘ﬂz':;;_mzl = —.101399,

which is negative, so there is no lower control limit.

[.072(1 —.072
072(1 — .072
LCLs, = 072 — 31,’ ——(30—) = —.06957966,

which is negative, so there is no lower control limit.

UCLg, = 072 + 34/ %ﬂ?_ﬂ = .2135797.

For n; = 30,
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For n; = 40,

o7a(1—.
LCLy, = 0723/ _72I14ﬂ_ﬂ'-"22 — —.05061158,

which is negative, so there is no lower contrel limit.

072(1 —.
UCLs, = 072+ 3-,,‘_(140£?_} = .1946116.

2
E — SRS o e S
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g o
E o
2 4 & a8 10
Sample Number

There is no evidence that the process fraction nonconforming was unstable (changing) over the
time period studied.

If different data collectors have different ideas of exactly what a “nonconformance” is, then the
data collected will not be consistent. A stable process may look unstable (according to the ¢
chart) because of these inconsistencies.

It may indicate that the chart was not applied properly. For example, if hourly samples of size
m = 4 are collected, it may or may not be reasonable to use a retrospective & chart with

m = 4. If each of the 4 items sampled are from 4 different machines, 3 of which are stable at
some mean and the 4th stable at a different mean, then the sample ranges and standard
deviations will be inflated. This will make the control limits on the & chart too wide. Also, the
#'s will show very little variation about a center line somewhere between the two means. This
is all a result of the fact that each sample is really coming from 4 different processes.

4 different control charts should be used.
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End 1.
Chapter
Exercises

Standard Normal Quanliles

(a)

Data within each sample must be iid normal, the samples must be independent, and the
three distributions must have the same standard deviation.

w o
bt + b X £
E - :
3 « b : 2 . :
- b w E o = :
o « b X % i
uy - b X § :
w 54
50 60 VO 80 80 100 110 -5 o 5

o =YH lead  Load Quanties () Residual Quantiles

b= 6 I.mt!

% = H !-'“J'

The three normal plots of the data are roughly linear with no outliers, providing no
evidence against the normal part of the assumption. The slopes are also similar, providing
no evidence against the common standard deviation assumption. The normal plot of the
residuals is roughly linear (considering the number of ties). This also provides no evidence
against the normal part of the assumption.

(b) Using equation (7-7), s7 = 31.57733, and so s, = v/31.57733 = 5.619 g, with
n—r =15 — 3 = 12 degrees of freedom associated with it. This measures the magnitude
of baseline variation within any of the 3 conditions, assuming it is the same for all
3 conditions.

(c) Use equation (7-14). The + part is the same for all three intervals because all three
sample sizes are the same. For 95% confidence, the appropriate ¢ is ¢ = Q12(.975) = 2.179,
from Table B-4. The resulting + part is

21702812 _ 5 475056 .
V5
The resulting confidence intervals for pyy, pyy, and pg are [52,64, 63.60] g,
[93.66, 104.62] g, and [59.74, 70.70] g respectively.
(d) Use equation (7-15). The + part is the same for all 3 intervals because all three sample
sizes are the same, ¢ is the same as in part (c). The resulting + part is
[T
2.179(5.619) /¢ + £ = 7.744171 .
The resulting confidence intervals for pgy — py, #ay — #R, and pg — pg are
[—48.76, —33.28) g, [—14.84, .64] g, and [26.18, 41.66] g respectively.
(e) Label the 4H lead Sample 1, the H lead Sample 2, and the B lead Sample 3. Use

equation (7-17) with

£ = L3 =

B =
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)

and ¢z = —1. t is the same as in part (c). The resulting interval is

g
w ~ 65.2213.414 2.179(5.619)V.3

= 13.4146.T06649
= [6.70,20.12] g.

Use equation (7-28). With r = 3 and v = n — r = 12, Table B-8-A gives kj =~ 2.766. The
resulting - part is

5.619 |
2.766—— = 6.951122 . A
V5 ; |
The resulting confidence intervals for pqy, pgp, and pp are [51.17, 65.07] g,
[92.19, 106.09] g, and [568.27, 72.17] g respectively. These intervals are wider than the ones
in part (c). In order to ensure an overall (simultaneous) confidence of 95%, you need to
make the individual 95% confidence intervals wider. Taken together, the intervals in
part (c¢) have simultaneous confidence less than 95%.

PR L RIS T

Use equation (7-36). For 95% confidence, with Number of Means to be Compared = 3 anl:l
v=mn—r =12, Table B-9 -A gives ¢* = 3.77. The resulting + part is :

-3_'7—7(5.519]

V2
The resulting confidence intervals for uqg — g, B4y — #B, and py — ppg are

[-50.49, —31.55] g, [—16.57, 2.37] g, and [24.45, 43.39] g respectively. These intervals are
wider than the ones in part (d), for the same reasons given in part (f).

= 0.474233 g.

|

=
5

=

A

1. Ho: py = pa = p3.

2. Ha: All 3 means are not the same.

3. The test statistic is given by equation (7-48). The reference distribution is the F; q;
distribution. Large observed values of F' will be considered as evidence against Hg.

4. The samples give

_ 3(4806.0)

=3 —176.10.
(5.619)2 6.2
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5. The observed level of significance is

P(an F; 12 random variable > 76.10)

Using Tables B-6, the observed value of f is greater than Q(.999) = 12.97, and so the
p-value is less than .001. This is overwhelming evidence that all 3 leads do not produce

the same mean strength.

Using the general form given in Table 7- 12, the calculations yield the following table.

SS df MS F
Treatments 4806.0 2 2403.0 76.10
3789 12 31.6
5185.0 14

The following printout was produced using Minitab Version 9.1.

MTB > info

Column Name
c1i Load
c2 Lead

MTB > print ci c2

ROW

QDO =~ b WM

1

Load

56.
63.
E6.
63.
49,
89.
88.
B2.
106.
29,
56.
63.
T0.
63.
70.

D OO NMNO NN~ 0~

Lead

W wwwh N BN PSR

MTB > oneway cl1 c2

Count

15
15
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(a)

ANALYSIS OF VARIANCE ON Load

SOURCE DF 88 MS F P
Lead 2 4806.0 2403.0 76.10 0.000
ERROR 12 378.9 31.6

TOTAL 14 5185.0

IRDIVIDUAL 96 PCT CI'S FOR MEAN
BASED ONF POOLED STDEV

LEVEL N MEAN STDEV +—= —- 4 —— +
1 5 58.12 5.94 (-——%-=)
2 & 99.14 4,92 [ |
3 g 65.22 £.94 (—=#—==)
e e s e i S
POOLED STDEV = 5.62 60 7B 80 105

Use dao as a center line, and use the limits given in equation (7-86 ). From Table B-2
with m = 4, dy = 2.059, D, is not given (so there will be no lower control limit), and
D, = 4.698. (1 am continuing to work in the same units as the given data.)

Center Lineg = 2.[359(2-5] = 5.1475 % 10~* in.,
and

UCLp = 4.698(2.5) = 11.745 x 10~ % in.

This chart shows that there is no evidence that the process short-term variability (as
measured by o) was above 2.5 x 10~* in. during the time period studied.

For the # chart, use 4 = 9 as a center line, and use the limits given in equation (7-70).

Center Line; = 9 x 10~* in. above 1.1800,

2.5
LCLs =9 - 3-—-;- = 5.25 x 10”% in. above 1.1800,

V4

and

UCLs; =9+ SE = 12.75 x 107* in. above 1.1800.

VA4
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15 20

x-bar

10

Sample Number

Several #’s plot outside control limits, indicating that the process mean was not stable at
1.1809 in. during the period studied.

(b) For the R chart, use the limits given in equation (7-88 ). In Table B-2, for m = 4, Dy is
not given, so there is no lower control limit. Dy = 2.282, so

Center Lineg = R =3.35x 10~ in.,
and

UCLg = 2.282(3.35) = 7.6447 x 10™* in.

N
=
o
T o
o
o
o
5 10 15 20
Sample Mumber

Two of the R’s plot above the upper control limit. This indicates that the process
short-term variability was not stable over the time period studied.
For the % chart, use £ as a center line, and use the limits given in equation (7-70),

substituting # for u and % for o.

Center Line; = 9.725 x 10~* in. above 1.1800,

1.62700
LCLs: = 9.725 — g0y 7.284496 x 10™* in. above 1.1800,
V4
and
1.627003
UCLs = 9.725+ 3- e 12.1655 x 10~* in. above 1.1800.

267 Chapter 7



18 20

x-bar
10

Sample Number

Many of the &'s plot outside control limits, indicating that the process mean was not
stable over the time period studied. (Long-term variability was not in control.)

(e) This estimate was used to make the # chart in part (b). See equation (7-74).

R _ 33 1.627003 x 10~
T — e e x 3
da  2.059 o)

(d) (You should not use control limits to answer this question!) Assuming that the individual
diameters are somewhat normally distributed, almost all of the diameters would fall in the |
interval 9 : 3¢. Using the estimate of o from part (¢), this can be approximated by
8+ 3(1.627003) = 9 + 4.88. It does seem that the process is capable of producing most
diameters within the specifications. (The tails of the distribution of the individual
diameters are quite close to the specifications, however. If the process cannot be kept at
target, many diameters would fall outside the specifications.)

el ekt

S e N = S

(a) Data within each sample must be iid normal, the samples must be independent, and the
three distributions must have the same standard deviation.

.\.'I

|

(b) Using equation (7-7), s, = 64.274 g, with n — 7 = 9 — 3 = 6 degrees of freedom associated §!|
with it. :

e

(¢) This measures the magnitude of baseline variation within any of the 3 conditions,
assuming it is the same for all 3 conditions. !

(d) Use equation (7-14). For a 90% one-sided confidence interval, make an 80% two-sided
confidence interval and use the lower endpoint. For an 80% two-sided confidence interval,
the appropriate ¢ is ¢ = Q(.90) = 1.440, from Table B-4. The resulting 90% lower
confidence bound is

64.274

V3

(e) Label the Cotton/Polyester data Sample 1 and the Cotton/Acrylic data Sample 2. Use
equation (7-15). ¢ is the same as in part (e). The resulting interval is

85.0 — 1.440

= 31.56 g.

348.3 — 258.3 + 1.943(64.274) % 4

L | =

90.0 & 101.9677
[-11.97,191.97] g.

Since gero is in this interval, there is not convincing evidence of a difference between the
two mean weight losses.
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(f)

(@

(b)

(<)

Use equation (7-36). For 95% confidence, with Number of Means to be Compared = 3 and
v=n—r =6, Table B-9 -A gives " = 4.34. The resulting A is

4'34(64 2?4)1,'1 2 = 161.05
v@ . 3 + 3= Lbg.

Using the one-way ANOVA identity (Proposition 7-1),
58Tr = §S5Tot — SSE = 132,247 — 24,787 = 107, 460.
Using the general form given in Table 7-12, the degrees of freedom for Treatment are
r — 1 = 2, the degrees of freedom for Error are n — r = 6, and the total degrees of freedom

are 23+ 96 =8=n— 1. MSTr and MSE are obtained by dividing the

sums of squares by the corresponding degrees of freedom, and F is obtained from
MSTr/MSE.

Source 55 df MSs F
Treatment 107,460 2 53,730 13.01
Error 24,787 6 4131.167

Total 132,247 8

The p-value for the test is P(an Fz ¢ random variable > 13.01).

Using Tables B-6, the observed value of f is greater than Q(.99) = 10.92 and less than
2(.998) = 27.00, so the p-value is between .001 and .01, This is strong evidence that all
3 mean weight losses are not the same.

Use formula (6-85). From Table B-7-B, for 95% confidence, with n = 8 and p = .99,
71 = 4.354. The resulting one-sided tolerance interval for glue 1 is
1821 —- 4.353(214]- = 1821 - 931.542
= BRO.46 kN.

The two-sided 95% confidence interval is given by equation (6-20). To make a 95%
one-sided confidence interval, construct a 90% two-sided confidence interval and use the
lower endpoint. The appropriate ¢ for a 30% two-sided confidence interval is

t = Q7(.95) = 1.895, and so the 95% one sided interval is

1821 — 1.885 (2&)

1821 — 143.3765
VB

1677.62 kN.

1 Hu: pl-—m=|].
2. Ha: py — pa #0. 4
3. The test statistic is given by equation (6-36) with # = 0, and the reference distribution
is the ty4 distribution. Observed values of T' far above or below zero will be considered as
evidence against Ho. 1
4. The sample gives

t— —.858 i

5. The observed level of significance is

2P(a ty4 random variable < —.858)
= 2P(a ti4 random variable > .858) 1

which is greater than 2(.1) = .2, according to Table B-4. There is no evidence that the
mean strengths differ for the two glues.

B Pl
£
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(d)

(e)

(f)

(e)

(h)

(i)

For parts (2) and (b), the data must be iid normal because the sample size is small. For i

part (c), the data from each sample must be iid normal, and the standard deviations of
the two distributions must be the same,

Using equation (7-7), s, = 305.17 kN, with n — r = 64 — 8 = 56 degrees of freedom
associated with it.

Assume common variance s = 305,17, avg. = 1821

1821 - 4.353(305.17) = 482.59kN

For part (b), use equation (7-14). To make a 95% one-sided confidence interval, construct
2 90% two-sided confidence interval and use the lower endpoint. The appropriate ¢ for a
80% two-sided confidence interval is t = Q55(.95) ~ 1.6725, and so the 95% one sided
interval is

= 1821 — 180.4522

1821 — 1.6725 (305‘1?)

V8
1640.55 kN.

The extra model assumptions are that the data within each of the 8 samples are iid
normal, and that the standard deviations of all 8 distributions are the same.

The statistic is given in equation (7-48).
1
~ 1(8)(1200503)
F="nsimmar ~ 17

The reference distribution is the Fy sq distribution.

Use equation (7-28). With r = 8 and v = n— r = 56, Table B-8-A gives kj = 2.83. The
resulting A is

305.169

V8

Use equation (7-36). For 95% confidence, with Number of Means to be Compared = 8 and
v =1 —r =56, Table B-9 -A gives ¢* =~ 4.456, The resulting A is

2.83 = 305.34 kN.

4.45 1
4458 (305.189) g+

= 480.77 kN.
V2

1
8
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5.

(2)

(b)

(<)

(d)

(€)

The two-sided 95% confidence interval is given by equation (6-20). The required ¢ is
Q(.975) of the {; distribution, since (by symmetry) there must be probability .025 in each
tail. From Table B-4, t = @,(.975) = 12.706. From the data, n = 2, § = 712.5, and

s = 164.8, so the confidence interval is

712.5 4 12.706 (m) = 712.54 1480.645

2

[—768.15, 2193.15] psi.

Since pressures cannol be negative, set the lower endpoint equal to zero. The resulting
interval is [0, 2193.15] psi.

Label the Pine/Lap data as Sample 1 and the Oak/Lap data as Sample 2.

1. Ho: pq — pa =00

2. Ha: pg — pa # 0.

3. The test statistic is given by equation (6-36) with # = 0, and the reference distribution
is the ¢5 distribution. Observed values of T far above or below zero will be considered as
evidence against Ho.

4. The sample gives

t=-3.31
5. The observed level of significance is

2P(a t; random variable < —3.31)
= P(a i3 random variable > 3.31)
which is between 2(.025) = .05 and 2(.05) = .1, according to Table B-4. There is some

evidence that the mean joint strength for lap joints is larger for oak wood than it is for
pine.

Use equation (6-47) and Tables B-6. For 90% confidence, U = @, ;(.95) = 161.44 and
Fl
L = Q1,1(.05) = z(wsy = 1eras- The resulling interval for 2} is (00174021, 45.35486).

i

Taking the square root of each endpoint, the interval for s [.04, 6.73].

Using equation (7-7), s, = 155.44 psi, with n — r = 7 — 4 = 3 degrees of freedom
associated with it.

Use equation (7-30). With r =4 and ¥ = n— r = 3, Table B-8-B gives k] = 3.85. The
resulting interval for the Pine/Butt condition is

155.44
712.5 — 3,850 _ 089,35 psi.

V2

The resulting interval for the Oak/Butt condition is

155.44
1169 — 3.85 = 570.57 psi.
Vi =
The resulting interval for the Pine/Lap condition is
155.44
929.5 — 3.85——— = 506.35 psi.
Vi G
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(f)

(a)

(b)

(2)

The resulting interval for the Oak/Lap condition is

155.44
1428.0 — 3.85——— = 1004.85 psi.
V2 =
Use equation (7-20) with
»
1=t = =g
and
1
Ca=0C4= §

For a 95% two-sided interval, the appropriate ¢ is t = Q3(.975) = 3.182. The resulting

interval is

T12.6 4+ 1169  929.5 4 1428.0
2 2

—238.0 4 391.0127

= [~629.01,153.01] psi.

+ 3.182(155.44).625

For the R chart, use the limits given in equation (7-88 ). In Table B-2, for m = 2, Ds is
not given, so there is no lower control limit. Dy = 3.267, so

Center Lineg = R = .00019 in.,

and

|

UCLg = 3.267(.00019) = .00062073 in.

For the # chart, use ¥ as a center line, and use the limits given in equation (7-70),
substituting £ for g and % for o. From Table B-2, for m = 2, dy = 1.128.

Center Lines = .35080 in.,

LCLs = 35080 — 3-2001684397 _ 04407 in.,
V2
and ]
0001684397 A
UCLs = 35080 + 3% = 3511573 in. ;

Specifications apply to individual measurements; control limits apply to &'s. &’s have less
variability than individual measurements, so contrel limits are generally much narrowet

than specifications for individuals.

Specifications are ezternal standards used to judge quality; retrospective control limits are
based on process history and are used to monitor process stability.

Use equations (7-74), (7-78), and (7-7) respectively. From Table B-2, for m = 4,
dz = 2.059 and ¢4 = .9213.
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R 2.2
e P GORAR 00T .
4 2.059 PR
5 .948

— = —— = 1.028981 x .001 in.
— = o313 = 1028981 x 001 in

s, = 1.087529 x .001 in.

(b) For E‘E- and the R chart, use the limits given in equation (7-88 ). In Table B-2, for m = 4
4 is not given, so there is no lower control limit. Dy = 2.282, so

Center Lineg = R = 2.2 x .001 in.

and
UCLg = 2.282(2.2) = 5.0204 in.

For L and the R chart, use the limits given in equation (7-86 ), with £ substituted for o
The center line will be at dg— In Table B-2, for m = 4, D, is not gwen so there is no

lower control limit. Dy = 4. 598 50
Center Liner = 2.059(1.028981) = 2.118672 x .001 in

and
UCLg = 4.698(1.028981) = 4.834153 x .001 in.
For s, and the R chart, use the limits given in equation (7-86 ), with s, substituted for o

The center line will be at d;s;.
Center Liner = 2.059(1.087529) = 2.239222 x .001 in

and
UCLRr = 4.698(1.087529) = 5.109211 x .001 in.

For 3= and the & chart, use Z as a center line, and use the limits given in equation (7-70)

substituting Z for p and % for o.
Center Liney = 31.35 x .001 in.

LCLs = 31.35 — 3228848 _ o0 74728 x 001 in.
V4

and
1.06848
UCLy = 313543 = 32.956272 x .001 in.
V4

For - and the E chart, use Z as a center line, and use the limits given in equation (7-70),

substlt.utmg Z for p and - for 0.

Center Linez = 31.35 x .001 in.

1.028981
LCLy = 31.35 ~ 3———"" — 29.80653 x .001 in.
* V4

273 Chapter 7




and

UCLs = 31.35 4 3028981 _ o) 00347 x 001 in.

Vi

For s, and the & chart, use Z as a center line, and use the limits given in equation (7-70),
substituting 2 for p and s, for o,

Center Lines = 31.35x .001 in.

1.087529
LOL, — 31.35 ~ 30— €% _ 29 71871 x .001 in.
4 v
and
1.087529
UCLs = 31.35+ 3———— = 32.98129 x .001 in.
V4
()
h $—— . —————— e — — <
o
- o "
o 3
& g g ]
. * !
g 4
) @
(=]

2 4 51 8 10 2 4 5] 8 i0
Sample Number Sample Number

There are points that plot outside control limits on the # chart.

(d) The process is not stable. Short-term variability is reasonably stable, but the process
mean is not constant over time. This is causing long-term variability that could possibly
be avoided. To reduce variation, the company should first focus on stabilizing the process
mean.

:

(a) Using equation (7-7), s, = .1430 sec, with n — r = 40 — 4 = 36 degtees of freedom
associated with it.

(b) Use equation (7-28). With » = 4 and v = n — r = 36, Table B-9-A gives k3 ~ 2.62. The
resulting A is

2.62'—1-@ = ,11849 sec.

V10

(c) Use equation (7-36). For 95% confidence, with Number of Means to be Compared = 4 and
v=mn—r =236, Table B-9 -A gives ¢* ~ 3.814. The resulting A is

3.814 T
=5 (:1430)y /1o 7o = 17248 sec.

/2 10
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10.

(d) 1. Ho: p1 = pa = p3 = pug.

2. Ha: All 4 means are not the same.

3. The test statistic is given by equation (7-48). The reference distribution is the Fy 35
distribution. Large observed values of F will be considered as evidence against Hg.

4. The samples give

_ 3(65.01539)

(.1430)2 = 1060.

5. The observed level of significance is
P(an F3 3¢ random variable > 1060)

Using Tables B-6, the observed value of f is greater than @(.999) ~ 6.774, and so the
p-value is less than .001. This is overwhelming evidence that all 4 mean viscosities are not
the same.

(a) Use equations (7-95 ) and (7-96 ).

Center Lines, = 1074,

16=1(1— 10~¢
LCLy =107V -3 % = —0,00289985,

which is negative, so there is no lower contrel limit.

10-%(1 — 10-%)

UCLs, =107%+3 =

= .00309985.

(b) Using equation(5-3), with X = 1005,

P(p: > .00309985) = P(X > .309985) = P(X > 1) = 1 — P(X = 0) = 1 —.9802 = .0198.

(c) Even with large sample sizes, attributes data will not provide enough information to
detect even large changes in small p. It would be better to collect quantitative
measurement data, if this is possible.

(a) Use equations (7-102) and (7- 103). For a piece of .5 ft x .5 ft material (.25 sq ft),

UCLg, = .04+ 3 % =1.24.

For a piece of 5 ft x 5 ft material (25 sq ft),

UCLg, = .04 +3 % = .16

(b) A 1ft x 1 ft specimen does not provide as much information about the underlying
imperfection rate as a 10 It x 10 ft specimen. Multiplying by 100 the number of
imperfections on a 1 ft x 1 fi specimen provides a much less precise (more variable)
estimate of the number of imperfections per 100 sq ft than counting the total number of
imperfections on a 10 f§ x 10 ft specimen. g
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11.  (a) For an s chart, use the limits given in equation (7-92 ). The center line will be at 5. In
Table B-2, for m = 5, By is not given, so there is no lower contrel limit. By = 2.089, so

Center Line, = 3.4535 x .001 in.
and

UCL, = 2.089(3.4535) = 7.214361 x .001 in, |

5 10 15 20
Sample Number

This chart shows no evidence that the process short-term variation was unstable over the
time period studied.

Use Z as a center line, and use the limits given in equation (7-70), substituting & for u and
& for o. In Table B-2, for m = 5, eq = .9400.

Center Lineg = —1.17 x .001 in. above target

LCLy; = -1.17— Em = —6.099103 x .001 in. above target,

V5

and
3.673936

V'3

UCLy =-1.17+3 = 3.7569103 x .001 in. above target.

x-bar

Sample Number

The & from sample 17 plots below the lower control limit, so there is evidence that the
process mean was not constant over the time period. There seems to be a downward trend
over the period.
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(b) This estimate was used to make the & chart in part (a). See equation (7-74).

3.4535 .
T 3.673936 x .001 in.

(C) Ifthe grinder is perfectly adjusted (u = 0), and stays that way, the best possible fraction
of skives in specifications is roughly
P(- 6<X<68)

5
[

P(X <6) — P(X < —6)
P(Z < 1.63)— P(Z < —1.63)
9484 — 0516 = .8968.

l

(Z is a standard normal random variable.)

(d) These are standards given control limits. The standard for p is 0 x .001 in. above target,
and using the answer to part (b) to approximate o, 3.673936 x .001 in. is the standard for
g.

For the R chart, use the limits given in equation (7-86 ). In Table B-2, for m =3, D, is
not given, so there is no lower control limit. D; = 4.358 and d; = 1.693, so

Center Lineg = dyo = 1.693(3.673936) = 6.219974 x .001 in.
and
UCLr = 4.358(3.673936) = 16.01101 x .001 in.
For the & chart, use p as a center line, and use the limits given in equation (7- 70).

Center Linez = 0 % .001 in. above target,

LOLa= U=t 0a0 __ aesen v 001 fn. sbove tasget,
V3
and
UCL: =0+ Eﬁ‘j’;ss = 6.363444 x .001 in. above target. '

(e) The answer to part (b) is an estimate of the short-term standard deviation of skive
lengths from that particular grinder. Different grinders may have different process means.
The standard deviation mentioned in this part of the problem is measuring the sum of
short-term variability for each grinder plus the variation from any differences in the
means. [t is bound to be at least as large as an estimate like the one in part (b).

(f) (i) The first method will allow you to get a good estimate of short-term variability for
each grinder. This would be needed to estimate the ¢ used in control charts, and to
statistically monitor each grinder over the long term. The disadvantage of the first
method is that it only checks each grinder once an hour, and so is less likely to detect
major problems quickly. The second method would be. better for detecting major
problems as quickly as possible.

o

L PO SRR [ L

[

(ii) From the description of the problem, it seems that hoses are being ground at a fast
rate. If this is true, then sampling & hoses over the course of an hour would not give you
good information about “short-term” variability, But this is the kind of information that ;,
is needed to see if the mean is in statistical control! The mean may change between s
12 minute periods, and this would cause the estimate of short-term variation to be
inflated. The resulting control limits on the # chart would then be widened, allowing the
process to look more stable than it really is. 2

a - -I".i Eagli

A compromise plan that incorporates the advantages of each of the two sampling methad;'
would be ideal (but it may be too expensive).
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12. (a) Use equations (7-105) and (7-106) with all k;’s equal to 1. 4= 32 = 4.5.

=]

Center Lineg, = 4.5.

... E.’ i
ICLy, = 45— :m‘% = —1.863961,

which is negative, so there is no LCL.

B
UCLy, = 4.5+ 34/ 4T = 10.86396.

CR e Ol

i
g
=
g
| :
3 2
: =
o
i 2 4 ] 8 10
%" Widgel
=

There is no evidence of process instability, because none of the i;’s plotied outside the
control limit.

(b) You might expect the number of type A defects to be positively correlated with the
number of type B defects.

Mumber of Type B Defecls
4

] 1 2 3 4
MNumber of Type A Delects

This does not seem to be the case here.

(¢) (i) See equations (5-11), (5-12), (5-53), and (5-54). EX = 2); + )3, and
VarX = 4A; + 3. The center line would be at 2A; 4 Az, and the control limits would be

LCLy =2A1 4+ Az — 34X + Ag
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and

UCLy = 2A; + Ag 4 3v/dA;1 + Az

(ii) Estimate ) with 4 = 2 = 1.6 and Az with & = :—g = 2.9. The resulting center line is
at 2(1.6) + 2.9 = 6.1, and

LCLy = 6.1 — 3,/4(1.6) + 2.9 = —3.04877,

which is negative, so there should be no LCL.

UCLx = 6.1 + 34/4(1.6) + 2.9 = 15.24877.
None of the 10 X's plotted above the UCL.

13. (a) With p = 1.000 and o = .005,

(b)

(c)

P(X < 9902 or X > 1.0098) = 1— P(.9902 < X < 1.0098)

1 - (P(X < 1.0098) — P(X < .9902))
1 - (P(Z < 1.96) — P(Z < —1.96))
= 1— (9750 — .0250) = .0500.

I

(Z is a standard normal random variable.) It is not possible for the fraction
nonconforming to ever be less than this, unless o can be made smaller.

With p = .05 and n; = m = 10, use equations (7-95 ) and (7-96 ).

Center Linez, = .05,

.0 — .05
LCL;, =.06—-3 i(l'lﬂ—j = —.1567607,

which is negative, so there is no lower control limit.
UCLs, = .05+ 3 Eﬂ%ﬂﬂ = .2567607.

For the p chart, define Y as the number of nonconforming items in the particular sample
of 10. Then ¥ = 10p, and

P(p > .2567607)
P(Y > 2.567607)
P(Y > 3)

=S (2 PI:? < 3).

P(out of control signal)

Il

Y is a binomial random variable with n = 10. If 4 = 1.000, then p = .05 (from the
calculation in part (a). Using equation (5-3),

1- P(Y <3)=1-— 9884964 = .01150356.
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For the z-bar chart, the control limits are given by equation (7.70).

Center Linez = 1.000,

005

LCLz = 1.000 — 3‘ﬁ = .99525686,
and
UCLy = 1.00D+3j.% = 1.004743.
Based on samples of size . = 10, the mean of X is 1.000 and the standard deviation of X is
008,
P(out of control signal) = P(X< .9952566 or X > 1.004743))

= 1- P(.9952566 < X < 1.004743)

= 1— (P(X < 1.004743) — P(¥ < .9952566))
= 1-(P(2<3)-P(Z<-3)

= 1- (.9987 — .0013) = .0026.

(Z is a standard normal random variable.) The p chart is more than 4 times as likely to
produce an out of control point as the z<bar chart, assuming that u = 1.000 (which
implies that p = .05). However, this probability is still quite small for both charts.

(d) The control limits for both charts will be the same because the standards have not
changed. For the p chart,

P(out of control signal) = P(p > .2567607)
= P(Y > 2.567607)
= P(Y>3)

1= P(Y < 3).

Y is a binomial random variable with n = 10. If u = 1.005, then the appropriate p is

P(X <.99020r X > 1.0098) = 1 - P(.9902< X < 1.0098)

1 — (P(X < 1.0098) — P(X < .9902))
1—(P(Z < .96) — P(Z < —2.96))

= 1-—(.8315—.0015) = .1700.

(Z is a standard normal random variable.) Using equation (5-3),
1 — P(Y < 3) =1 .7658605 = .2341305.
For the z-bar chart, the mean of ¥ is now 1.005.

P(out of control signal)

i

P(X < .9952566 or ¥, > 1.004743))

= 1— P(.9952566 < X < 1.004743)

= 1— (P(X < 1.004743) — P(}{ < .9952566))
= 1-(P(Z < -.18)— P(Z < —6.16))

= 1—(.4364 — .0000) = .5636.

(Z is a standard normal random variable.) The & chart is much more likely to produce an
out of control point than the p chart, assuming that p = 1.005 (which implies that
p=.17). The story here is that the z-bar chart is much more sensitive to changes in p
than the p chart is to corresponding changes in p. In other words, the z-bar chart will
generally detect changes in i faster (on average) than the corresponding p chart.
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14.

(a)

(b)

(d)

(e)

Using the one-way ANOVA identity (Proposition 7-1),
S5SE = 55Tot — S5T'r = 1405.59 — 1052.39 = 353.20.

Using the general form given in Table 7-12, the degrees of freedom for Order(setup) are
r — 1 = 23, the degrees of freedom for Error are n — r = 120 — 24 = 96, and the total
degrees of freedom are 23 +96 = 119 = n — 1. M SOrder and M SE are obtained by
dividing the oppropriate sums of squares by the corresponding degrees of freedom, and
F is obtained from M SOrder/MSE.

Source 55 df MS F
Order (setup) 1052.39 23 45.75609 12.43654
Error 3563.20 96 3.679167

Total 1405.59 119

The focus is on variability among the many orders that are run over time, not just the

24 orders used in the study. The 24 orders used in the study can be thought of as a
random sample of the many different orders that are run over time, and so the g;’'s can be
thought of as random as well.

An estimate of ¢? is MSE = s; = 3.670167, and so an estimate of o is
v/3.679187 = s, = 1.918115 x 3; in. (see equation (7-58)). Using equation (7-62), an
estimate of o2 is

1
3(45.75609 — 3.679167) = 8.415385,

so an estimate of o, is +/8.415385 = 2.900928 x 3% in. The estimate of & measures
variability in skewness of boxes which all come from the same order (assuming this is the
same for any order). The estimate of ¢, measures the variation in the response from
differences among orders. It seems that most of the variation comes from differences

among orders.

Use equation (7-63). For a two-sided 90% confidence interval, U = Qg3,96(.95) & 1.64 and

1 1

- = .5464481
Qgﬁlzg(.95} 1.83

L= an}g-sl:.ﬂﬁ) =
using Table B-6-C. The resulting interval for o2 /o? is

[i( 45.75609 1) 1( 45.75609 4
5 \ (1.64)(3.679167) '5 \ (.5464481)(3.679167)

= [1.316651,4.351772).

Taking the square roots of the endpoints, the interval for o, /o is [1.147, 2.086). 0, /o is a
comparison of the size of variation from different setups to the size of within-setup
variation in skewness. The interval implies that, with 90% confidence, the variation in
skewness from different setups is between 1.3 to 4.4 times larger than the within-setup
variation.

Most of the variability seems to be coming from differences among orders (setups). The
manufacturer should try to reduce variability from changing setups before buying new
high-precision equipment. The new equipment would possibly only reduce within-setup
variability.
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15.

Nenconlormances per Tank

Neonconformances per Tank

(a) Use equations (7-105) and (7-106) with all k:'s equal to 1. & = 424 = 183.8286.

Center Lineg;, = 183.8286,

LCLs, = 183.8286 — 31!E—f23—ﬁ = 143.1536,
UCLs, = 183.8286 + 3,/ 353—;’393 — 924.5036.

and

100 200 300 400 500

Tank

Many 1i;’s plot outside control limits. The rate of nonconformances could not have
possibly been constant for all 35 tanks; there is strong evidence of a decrease in the rate
over the time period studied.

(b) &= 2382 = 122.5294.

Center Line;, = 122.5294,

Jl22.5294

LCL;, = 1225294 -3 i 89.32151,
H .5294

UCLg, = 12252844+ 3 -——-—:22 1 = 155.7373.

and

&
2
g
a
20 25 30 35
Tank
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16.

Sample Fraction Nonconfarming

This chart also has many i;'s outside control limits. It seems that quality (in terms of rate
of nonconformances per tank) was not stable over the period represented by these tanks.

(¢) No. Many i;’s were more than 15 nonconformances outside the control limits, so this
measurement error cannot explain the lack of stability in the charts.

(a) Use equations (7-98 ) and (7-99 ). f = 333 = .604.

Center Liney, = .604,

LCL;, = .604 — wﬂ%ﬁm = .3361284,

604(1 — .604)
30

and

UCL;, = .604 4 3 = .8718716.

0.7

0s

5 10 15 20 25
Sample Number

There is no evidence from the chart that the process fraction nonconforming was unstable
during Day 1, since none of the p;’s plot outside the control limits.

(b) Using equation (6-57), the appropriate z for 90% confidence is 1.645. The resulting
interval is

.604 + 1.645—}—- .604 + 03003345

24/750

[.5740, .6340).

Using equation (6-57), the appropriate z for 0% confidence is 1.645. The resulting
interval is

.604(1 — .604)

750 .604 £+ .02937659

= [.5746,.6334].

604 £ 1.645

(c) A process can be stable at an unacceptably large p, and therefore can consistently produce
too much nonconforming preduct. '

(d) Use equations (7-98 ) and (7-99 ). s = 31 — .48933.
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Sample Fraclion Nonconforming

(e)

(f)

Center Line;, = 48933,

.48933(1 — .48933
LOL;, = .48933 - 3\/ ( 30 ) = .2155344,

and

UCLy, = .48933 + 3J.48933{1 = 48635 = .7631323.

30

There is no evidence from the chart that the process fraction nonconforming was unstable
during Day 2, since none of the p;'s plot outside the control limits.

Using equation (6-57), the appropriate z for 90% confidence is 1.645. The resulting
interval is

48933 + 1.645-—1— 48933 + .03003345

2+/750

= [.45930,.51937).

Using equation (6-59), the appropriate z for 90% confidence is 1.645. The resulting
interval is

.48933(1 — .48933)
750

.48933 4 .03002662
[-459831,.51936).

48933 + 1545“

Use equations (7-98 ) and (7-99 ). p = 22 = 54667.

Center Line;, = .54667,

.b4667(1 — .54667
and
.54667(1 — 54667
UCLy, = .54557+3\/ ( 3 A867) _ 8193325,
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Sample Fraction Nonconforming

0.8

0.6

04

0.2

(g)

Sample Number

There is evidence from the chart that the process fraction nonconforming was unstable
over the two days, since the p;’s for the 12th sample from Day 1 and the 20th sample from
Day 2 were outside the control limits. This does not contradict previous results, because it
is quite possible that a change in the underlying p happened between the two days. 1t is
possible that, within each day, the process was stable. From the chart, it seems like p
decreased slightly between Days 1 and 2.

Using equation (6-65), the appropriate z for 98% confidence is 2.33. The resulting interval
is

1 1

750 " TE0 .1146667 +.06016034

.604 — 48933+ 2.33 (zl’)

[-0545, .1748].

Using equation (6-67), the resulting interval is

= .1146667 + .05949917
= [.0552,.1742].

.604(1 — .604) o .48933(1 — .48933)

.B04 — 48933 + 2.33“ 7ED 750

Since this interval does not contain zero, there is evidence of a difference in fraction
nonconforming pellets between the two days.

Use equations (7-98 ) and (7-99 ). § = 35 = -093867.

and

Center Line;, = 093867,

.093867(1 — .093867)

LCLg, = .093867 — 3\/ = = .03853127,
1093867(1 — 093867
UCLg, = 093867 + 3\/ ( = ) - 1492021
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18.

0.6

0.4

0.2

0.0

Sample Fraclion Nonconforming

2 “ 6 8
Sample Number

10 12

14

The chart shows strong evidence that the fraction nonconforming was not stable at some value

over the entire period. There must be a startup problem.

(a) Label brands C, H, W, Q, and P as 1, 2, 3, 4, and 5 respectively. See equation (7-3). The

necessary computations are given in the table below.

Brand m; % =% eij
1 378 384.00 -6.00
1 386 384.00 2.00
1 388 384.00 4.00
2 357 361.00 -4.00
2 365 361.00 4.00
2 361 361.00 0.00
3 321 310.00 1l1.00
3 303 310,00 -7.00
3 306 310.00 -4.00
4 353 351.67 1.33
4 349 351.67 -2.67
4 353 351.67 1.33
5 390  383.00 T7.00
5 378 383.00 -5.00
5 381 383.00 -2.00
L -
£
8 i .
a8 o
E o g
g /. -
= 2 e
5 0 5 10

Residual Quantiles

The plot is fairly linear, giving no evidence against the normal part of the one-way normal
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model assumptions.

(b) Using equation (7-7T), s, = 6.022°F, with n — r = 15 — 5 = 10 degrees of freedom
associated with it. This measures the magnitude of baseline variation within any of the
5 brands, assuming it is the same for all 5 brands.

For the confidence interval, use equation (7-10) and Table B-5. For a 90% two-sided
interval, U = Q10(.95) = 18.307 and I = Q,0(.05) = 3.940. The resulting interval for o2 is
[19.81027, 92.04738]; taking the square root of each endpoint, the interval for o is

[4.45, 9.59]°F.

(c) Use equation (7-14). A is the same [or all five intervals because all five sample sizes are
the same. For 80% confidence, the appropriate ¢ is ¢ = Q0(.95) = 1.812, from Table B-4.
The resulting A is

6.022
1.812—— = 6.30°F.
V3

(d) Use equation (7-15). A is the same for all 10 intervals because all five sample sizes are the
same. t is the same as in part (¢). The resulting A is

1.812(6.022) % + % = 8.91°F.

(e) Use equation (7-28). With r =5 and v = n — r = 10, Table B-9-A gives k3 = 3.10. The
resulting A is

3.[!151?3% = 10.47°F.

V3

(f) Use equation (7-36). For 99% confidence, with Number of Means to be Compared = 5 and
v=n—r =10, Table B-9 -B gives ¢* = 6.14. The resulting A is

—_(6.022)y/= +

(g) Using the general form given in Table 7-12, the calculations yield the following table.

Source S5 df MS F
Treatments 10962.3 4 2740.6 75.57
Error 82.7 10 36.3

Total 11324.9 14

Using equation (7-53),

2 10962.3

= Tigoeg o

The p-value for an F test of the null hypothesis given in part (i) is

P(an Fy 0 random variable > 75.57).

Using Tables B-6, this is less than .001. The conclusion is the same as in part (1),
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(h) If only one can of each brand is represented in the study, then (with respect to
generalizing to all oil made by each brand), there is only one true replication for each
brand. There is no guarantee that the 5 cans used are representative of all cans of oil
made by the 5 companies. For the second scenario, there is true replication for each
brand. Variability from differences in shipping lots is then represented in the data, and
conclusions based on the experiment might safely be applied to the brands in general.

(a) Use the limits given in equation (7-88 ). In Table B -2, for m = 4, Dj is not given, so
there is no lower control limit. Dy = 2.282, so

Center Lineg = R = .0072 in
and

UCLp = 2.282(.0072) = .0164304 in.

0.020

0.010

0.0

There are two R’s that plot above the upper control limit. This indicates that the process
short-term variability was not stable over the two days. It looks like there was more
short-term variability on the first day than on the second day.

(b) Using the limits given in equation (7-92 ), the center line will be at & In Table B-2, for
7 =4, B3 is not given, so there is no lower control limit. By = 2.2686, so

Center Line, = .00339 in

and

UCL, = 2.266(.00339) = .00768174 in.
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0.008

0.0

2 4 ] 8 10 12 14
Sample Number

The plot, and conclusions from it, are similar to part (a).

(c) Use 2 as a center line, and use the limits given in equation (7-70), substituting Z for u and
é (or %} for o. From Table B-2, for m = 4, dz = 2.059 and ¢4 = .9213. For the estimate
of o based on R,

Center Lines; = —.00159 in. above 33.69,

00
LCLg = —.00150 — 3202112678 _ _ 004759014 in. above 33.69,
Vi
and
UCL; = —.00159 + 3%?6—” = 001579014 in. above 33.69.
[+
=
(=]
5
(=]
[ =]
23
8
P4
6 ] 10 12 14
Sample Number

The &'s from samples 6 through 11 are outside control limits, indicating that the process
mean is changing between samples. (Long-term variation is not stable.) For the estimate
of ¢ based on §,

Center Line; = —.00159 in. above 33.69,

00213177
LCLg = —.00159 — 3——:,_—4- = —0.004787655 in. above 33.69,
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(d)

()

and

00213177
V4

This chart is virtually the same as the one based on A.

UCLs = —.00159+ 3 = 001607655 in. above 33.69.

This procedure caused the within-bundle variability to be much smaller than the
between-bundle variability. The within-sample variability is bound to be small, since all
rods within a sample come from the same bundle and are all cut at once. The estimates of
o used above were “too small” because they only measured within-bundle variability. This
caused the control limits for the # charl to be too narrow, resulting in many #'s outside
the limits.

For an £ chart, o is supposed to measure short-term variability from different units. There
is really no way to accurately measure this, because not many bundles are cut in a short
period of time.

Based on R, using equation (7-74),

R .00435 .
& o 002112676 in.

Based on 3, using equation (7-92),

§ .001964 i
L 00213177 in.

Both of these are measuring within-bundle variability in rod lengths (assuming this is the
same for each of the last 10 bundles). They do not measure short-term process variability
from different “units”, because all rods in each sample come from the same unit (bundle).

Using -ER; to estimate o,

P(33.66 < X <33.72) = P(X <33.66)— P(X < 33.66)
= P(Z<142)-P(Z<-142)=1-0=1

|
e
i
-
.

(Z is a standard normal random variable.)

Due to bundling, the within-sample variability (as measured in (e)) is much smaller than
the overall variability within and among bundles (as measured by s).

Using the general form given in Table 7-12, the calculations yield the following table.

Source 58 df MS EMS F
Bundles 0030053 9 0003339 o2 +402 TLT71
Error 0001397 30 .00000D4T o?

Total 0031449 39

Dl et

An estimate of 0? is MSE = s: = .0000047, and so an estimate of & is

+/.0000047 = s, = .00216 in. (see equation (7-58)). Using equation (7-62), an estimate of g

a? is

(.0003339 — .0000047) = .0000823,

|
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Rl b b

21.

(b)

(<)

(b)

so an estimate of o, is +/.0000823 = .00907 in. [t seems that most of the variation comes
from differences among bundles.

Use equation (7-83). For a two-sided 90% confidence interval, U = Qg 30(.95) = 2.21 and

1

Gao.9( 95) = 286 .3496503

L = Qg,30(.05) =

using Table B-6-C. The resulting interval for a? /o? is

1 .0003339 1) 1( 0003339 .
4 \ (2.21)(.0000047) "4\ (.3496503)(.0000047)

= [7.786488,50.54543].

Taking the square roots of the endpoints, the interval for o, /o is [2.79,7.11]. o, /o is a
comparison of the size of variation in rod lengths among bundles to the size of
within-bundle variation. The interval implies that, with 90% confidence, the variation in
rod lengths among bundles is between 2.8 to 7.1 times larger than the within-bundle
variation.

Based on part (b), the principal origin of variability is from differences among bundles.
Use equation (7- 104). i = 555 = 33.51955.

Use equations (7-105) and (7-106).
Center Line;, = 33.51955.

The control limits depend on the number of man hours k;. The following table gives upper
control limits for each of the k;’s in the data set. (The lower control limits are all
negative, so there are no lower control limits for any of these k;’s.)

ki UCLg,
176 T5.03898
T8 T4.68761
180 T4.45826
183 74.12131
195  72.85219
198 72.55308
200 72.35742
.210 71.42143
211 71.33151
212 71.24222
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60

20

Injuries per Million Man Hours
40

None of the i;’s plotted outside its control limit, so there is no evidence that the
underlying accidenl rate was changing during the 12 months.

Data within each sample must be iid normal, the samples must be independent, and the
five distributions must have the same slandard deviation.

Label the No Paper, Newsprint, Construction, Computer, and Magazine conditions
Samples 1, 2, 3, 4, and 5 respectively. See equation (7-3). The necessary computations are
given in the table below.

Condition y; 4y = €;j
24 26.67 -2.67
25 26.67 -1.867
3 26.67 4.33
61 54.67 6.33
51 54.67  -3.67
52 54,67 -2.67
72 73.00 -1.00
70 73.00 -3.00
7 73.00 4.00
59 62.67 -3.67
59 62.67 -3.67
T0 62.67 7.33
54 58.00 -4.00
59 58.00 1.00
61 58.00 3.00

G ownoon e i i G0 G0 G B 0D DI e e
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(b)

(d)

(e)

(f)

Standard Normal Quantiles
(+]

-2 o] 2 B &
Residual Quantiles

The plot is somewhat non-linear, giving some evidence that the normal part of the
one-way normal model assumptions may not be true.

Using equation (7-7), s, = 4.712 0z, with n — 7 = 15 — 5 = 10 degrees of freedom
associated with it. This measures the magnitude of baseline variation within any of the
5 conditions, assuming it is the same for all 5 conditions.

Use equation (7-14). The & is the same for all five intervals because all five sample sizes
are the same. For 95% confidence, the appropriate t is ¢ = Q15(.975) = 2.228, from
Table B -4. The resulting =+ part is

90984712 _ & 061 08,

V3

For p; the interval is [20.61, 32.73] oz. For 3 the interval is [48.61,60.73] oz. For ua the
interval is [66.94, 79.06] oz. For p4 the interval is [56.61, 68.73] oz. For pg the interval is
[51.94, 64.06] oz.

Use equation (7-15). A is the same for all 10 intervals because all five sample sizes are the
same. t is the same as in part (c). The resulting A is

2323(4.?12]‘(% + % —8.57 o8

81:—1

Use equation (7-20) with

and
L3 =C3=0C4=0C5= —--1—.
4
t is the same as in part (c). The resulting interval is
54.667 + 73.0 + 62.667 + 58.0
i

26.667 —

—35.41667 + 6.776197
[—42.19, —28.64] oz.

— 35.41667 + 2.228(4.712)/.4166667

1l

Use equation (7-28). With r =5 and v = n - r = 10, Table B-8-A gives k} = 3.10. The
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23.

(h)

(a)

(b)

resulting + part is

3.102"-E = 8.433 oz.

V3

For py the interval is [18.23, 35.10] oz. For p3 the interval is [46.23,63.10] oz. For ug the
interval is [64.57, 81.43] oz. For gy the interval is [54.23,71.10] 0z. For us the interval is
[49.57, 66.43] oz, These intervals are wider than the ones in part (c). In order to ensure an
overall (simultaneous) confidence of 95%, you need to make the individual 95% confidence

intervals wider. Taken together, the intervals in part (¢) have simultaneous confidence less
than 95%.

Use equation (7-36). For 95% confidence, with Number of Means to be Compared = 5 and
v =n —r = 10, Table B-10-A gives q* = 4.65. The resulting A is

= 10.33 oz.

Ca ] =

3 +
This value is larger than the one in part (d}, for the same reasons given in part (f).

1. Hot p1 = p2 = pi3 = pha = pis.

2. Ha: All 5 means are not the same.

3. The test statistic is given by equation (7-48). The reference distribution is the Fy 10
distribution. Large ohserved values of F will be considered as evidence against Hg.

4. The samples give

1(3584)
i = 40.36.
(4.712)2

f=

5. The observed level of significance is
P(an Fj 10 random variable > 40.36)

Using Tables B-6, the observed value of F is greater than Q(.999) = 11.28, and so the
p-value is less than .001. This is overwhelming evidence that all 5 conditions do not
produce the same mean cutting force.

Using the general form given in Table 7-12, the calculations yield the following table.

Source 55 df M5 F
Treatments 35840 4 896.0 40.36
Error 2220 10 222

Total 3806.0 14

Using equation (7-7), s, =.1917 x 10° psi, with n — r = 12 — 3 = 9 degrees of freedom
associated with it. This measures the magnitude of baseline variation within any of the
3 conditions, assurning it is the same for all 3 conditions.

Use equation (7-14). For a 99% one-sided confidence interval, first construct a 98%
two-sided confidence interval and use the lower endpoint. For a 98% two-sided confidence

interval, the appropriate ¢ is £ = Qg(.99) = 2.821 from Table B-4. The resulting 99%
one-sided confidence interval is

5.3675 — 2.821°1" — 5.09709 x 10° psi.

Vi
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(d)

Use equation (7-15). For a 99% two-sided confidence interval, the appropriate ¢ is
t = Q9(.995) = 3.250 from Table B -4. The resulting interval is

|

5.3675 — 4.9900 + 3.250(.1917)4 /- +

i |

4
= 3775+ .4405744

= [-.06307,.81807] x 10® psi.

Since zero is in this interval, there is not convincing evidence of a difference between the
two mean strengths. But sero is near the edge of the interval, so there is some evidence
that the 3% air specimens have a larger mean strength than the 6% air specimens.

Use equation (7-36). For 85% confidence, with Number of Means to be Compared = 3 and
v=n—71=0, Table B-9 -A gives g" = 3.95. The resulting A is

395 1017)

1
5 + = .378633 x 10° psi.

1
4
Using proposition (7-1) and the definitions following it,

SSE = (n - r)si = (9)(.1917) = .33078,

and SSTr = §5Tot — SSE = 13.83002. Using the general form given in Table 7-12, the
degrees of freedom for Treatment are r — 1 = 2, the degrees of freedom for Error are
n—r =09, and the total degrees of freedomare 24+ 9=11=n— 1. MSTr and M5F are
obtained by dividing the appropriate sums of squares by the corresponding degrees of
freedom, and F is obtained from M STr/MSE.

Source S5 df MS F
Treatment 13.83002 2 6.91501 188.15
Error .33078 9 .03675333

Total 14,1608 11

The p-value for the test is
P(an F3 0 random variable > 188.14).

Using Tables B-6, the observed value of F is greater than Q(.999) = 16.39, so the p-valueis
less than .001. This is overwhelming evidence that all 3 mean strengths are not the same.
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(24)

(b)

(c)

(d)
(e)

(a) To analyze the data in this problem with methods of chapter 7 it is
necessary that the depth data for each Pulse level has a common
variability and the depth data is normally distributed for each Pulse level.
It seems the data does deviate somewhat from a normal distribution as
seen by the non-linear normal probability plot below.

Normal Probability Plot of Residuals Prob 7-24a

5 =

T | | T | |
-2 -1 0 1 2 3 4

ordered residuals

1

Spoocled = 1.962. This quantity estimates the common standard deviation of
"depth" levels at a given level of Pulse.

The form of each interval is: X, + t(sp/+/n)

For 100 pulse: 7.4 +15(1.962/2) or 7.4 £ 2.21902. The 95% confidence
interval for the mean depth at 100 Pulse is ( 5.181, 9.619 ).

For 500 pulse: 26 + 2.21902. The 95% confidence interval for the mean
depth of 500 Pulse level is ( 23.781, 28.219).

For 1000 pulse: 35.4 + 2.21902. The 95% confidence interval for the
mean depth of 1000 Pulse level is ( 33.18, 37.62).

A =tg s, (1/4 + 1/4)'2 = 2.262(1.962)(1/2)'"% = 3.138.

(1/400)( 26 - 7.4) - (1/500) (35.4 - 26) = .0465 - .0188 = .0277 estimates
Hso0 (‘”400 + 1."500) - K100 (1!'400) = 1000 (:1 f50':|)
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A = tg [sp/2] ([.0045] + [.0025] + [.002]? )2 = 2.262(1.962/2)(.0055227)
A =.012255. Thus, the 95% confidence interval for

wsoo (1/400 + 1/500) - 11100 (1/400) - prggo (1/500) is

0277 + .012255 or (.015445, .03995). No, it does not seem reasonable
that there is a linear increase in depth as the number of pulses increases.
This interval does not include zero which implies with high confidence the
"slope" is not the same from 100 pulses to 500 pulses as it is from 500
pulses to 1000 pulses.

(f) The PR "lengths" are longer. It is sensible because the PR confidence
intervals have a level of confidence that applies to the "correctness" of the
whole set. The intervals in (c) have a level of confidence that applies to a
single interval, not the whole set. Thus, these intervals (in (c)) are shorter.

For the PR method, using equation 7-28, D = k,* sp!JE. From Table B-8-
A, r=3and v=9. Thus, k;* =2.885. Hence,

A= (2.885)(1.962)(1/2) = 2.83

Pulse level 100;: 7.4 + 2.83 or (4.57, 10.23) is a PR 95% confidence
interval for the mean depth at Pulse level of 100.

Pulse level 500: 26 + 2.83 or (23.17, 28.83) is a PR 95% confidence
interval for the mean depth at Pulse level of 500.

Pulse level 1000: 354 + 2.83 or (32.57, 38.23) is a PR 95% confidence
interval for the mean depth at Pulse level of 1000.

(g) Using equation 7-36 and Table B-9-A, v =9, # of means = 3, g* = 3.95,

A= [g*/V2 Isp(1/4 + 1/4)'"2 = (3.95/+/2 )(1.962)(1/2)"? = 3.875. The
A= 3.138 in (d) is smaller than the A = 3.875 here.

(h)  1.Ho:u=p2=ps, 2. Ha: at least one inequality ,
3. F = MStreatment/Mserror, 4. F = 812.21/3.85 = 211.03 based on 2,9
df.
5. p-value = P(F > 211.03) = 0. Thus, conclude Ha: at least one
difference exists amongst the three means.

(i) Source df SS MS I p
Pulse 2 1624.43 812.21 211.03 0
Error 9 34 .64 3.85
Total 11 1659.07

(25)(a)
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(b)

(c)

(d)

(e)

(f)
(9)

(h)

sp2 = 3[(.096)* + (.426)% + (.174)? + (.168)%)/12 = .0623. The quantity
sp° = .0623 estimates the common variance of flight times for helicopters
from a given design.

3, + tia(sp//n) becomes 1.64 + (2.179)(.24959/2) or 1.64 + .27193.

The interval (1.368, 1.912) is a 95% two-sided confidence interval for the
mean flight time of helicopters of Design #1.

Using equation 7-28, r=4, v= 12, k,* = 2.892.

A = ko* s,/(4)'"? = (2.892)(.24959)/2 = .3609.

¥, =¥, £1,5,4/(1/4+1/4) becomes

(1.64 - 2.545) + (2.179)(.24959)(1/+/2) or-.905 + .38456. The interval

(-1.2896, - .5204) is a 95% two-sided confidence interval for the difference
(Design#1 - Design#2) in average time.

Using equation 7-36, A = (q* sp)(1/+/2 )(1/4 + 1/4)"?
A = (4.2)(.24959)(.7071)(.7071) = .524.

Yes, some differences in average flight times exceed .524.

1. Ho: wq = ua = ps = ug, 2. Ha: At least 1 inequality,

3. F = Mstreatment/ Mserror with 3,12 df. 4. F = .33498/.0623 =5.376.

5. P(F > 5.376) = p-value and thus, .01 < p <.05. Conclude Ha: at least 1
inequality.

12(y, +3,) - 1/2(y, + y,) = 1/2(1.64 + 1.51) - 1/2 (2.545 + 2.6) = -.9975.
A = ti28p(1/2)(1/4 + 1/4 + 1/4 + 1/4)"% = 2.179(.24959)(1/2)(1) = .271928.

-.9975 + 271928 or (-1.26943, -.72557) is a 95% interval estimate of
12( 1 + pa ) -(1/2) (p2 + pa).
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,L.hapter 8: Inference for Multisample Studies
ith Full Factorial Structure

‘Section 1

1. (a) Using equation (7-7), s, = 13.113 lb., with n — r = 18 — 6 = 12 degrees of freedom

- associated with it. For the error bars, use equafion (7-28). With r = 6 and

3 v=n—r=18—6=12, Table B-8-A gives k3 ~ 3.11. The six intervals will all be the
same size, because the six sample sizes are all the same. The resulting + part is

13.113
3.11——— = 23.54 lb.
V3
g = KQ\' i e = Pine
% &
g X = Fir
@ 2
ﬁ -
s 8
2
E— -
@
: White Carpanter's Cascamite
,_ Glue
(b) The averages needed are given in the table below.
_ GLUE (Factor B)
White Carpenter’s Cascamite
wWooD Pine | §31 = 131.667 | i3 = 191.278 | 413 = 201.333 | §;. = 175.222
(Factor A) Fir | a1 = 92.000 | §a3 = 146.333 | fjzs = 156.667 | §z. = 131.667
F.p = 111.833 | §., = 169.500 | 7.3 = 179.000 | §.. = 153.444
The fitted main effects are
ay = fi. —§. = 21778
ag = ¥z — §.. = —21.778
by =44, — 3. = —41.611
bz = §.2 — §.. = 16.056
by = §.3 — §.. = 25.556
The fitted interactions are
aby; = i1 — l:ﬂ +a; + b],] = —1.944
abyz = §13 — (§. + a1 + b3) = .556
abay = 721 — [ﬂ + az + b;) = 1.944
ﬂb‘:g = ﬂ:: —_— {ﬂ + ag - bg) = —}389
abas = §23 — (7. + a2 + b3) = —.556
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(2)

(b)

Use equation (8- 6 ) and Table 8.3 to construct the confidence intervals for the
interactions. For 85% two-sided intervals, the appropriate ¢ is t = @Q;3(.975) = 2.179 from
Table B-4. The confidence intervals are

ab;; + 2.179(13.113) %ﬂ

= aby +9.524 1b.

Looking at the ab;;’s computed above, all of the confidence intervals for the underlying
interactions contain zero. This means that the interactions are not detectable.

For the Wood main effects, use equation (8-6 ) and Table 8.3. The confidence
intervals are
2-1
a; £ 2.179(13.113); [=rrmres
(3)(2)(3)

= @+ 6.7351b.

Both of these confidence intervals do not contain zero, indicating that the main effects for
Wood are detectable.

For the Glue main effects, use equation (8-16) and equation (8-11). The confidence
intervals are

b; + 2.179(13.113) %

= b; 9.524 Ib.

All of these confidence intervals do not contain zero, indicating that the main effects for
Glue are detectable.

Use equation (8-10). For 95% confidence, with ¥ = n — IJ = 12 and J = 3 means to be
compared, Table B-9-A gives ¢* = 3.77. The resulting <+ part is

(3.77)(13.113)
V(2)(3)

The resulting interval for the mean difference between white and carpenter’s glue is
[~77.85, —37.48] Ib. The resulting interval for the mean difference between white and
cascamite glue is [-87.35, —46.98] Ib. The resulting interval for the mean difference
between carpenter’s and cascamite glue is [—29.68, 10.68] Ib.

= 20.1818 lb.

Using equation (7-7), s, = 33.252 cm, with n — r = 54 — 9 = 45 degrees of freedom
associated with it. This measures the magnitude of baseline variation within any of the
9 conditions, assuming it is the same for all 9 conditions.

Use equation (7-14) for the error bars. The + partl is the same for all nine intervals
because all nine sample sizes are the same. For 95% confidence, the appropriate ¢ is
t = Q45(.975) ~ 2.016, from Table B-4. The resulting + part is

2.016£‘25—2 = 27.368 cm.

V86
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Sample Mean Skid Length

440

360 400

320

D
Concrele

Wet
Concrete

Pavemen! Condilion

Dirt

(c) Considering the interactions first, the non-parallelism in the plot does not seem to be large
relative to the size of the error bars. The error bars seem large enough that one could
imagine that the true, underlying p;;’s might be parallel. The slopes of the lines seem
small relative to the size of the error bars, suggesting that the main effects for Pavement
Condition may not be distinguishable from background noise. The distance between the
lines for treaded and smooth (or treaded and reverse) tires seen to be large enough to be
distinguishable from background noise. These distances represent the main effects for Tire

(d)

Type.

The averages needed are given in the table below.

PAVEMENT CONDITION (Factor B)

Dry Concrete | Wet Concrete Dirt
TIRE  Smooth | i1 = 350.8 | §12 = 3665 | i3 =3930 | §1. = 373.100
TYPE Reverse | §21 = 343.0 | #22 = 356.7 | §las = 375.7 | 2. = 358.467
(Factor A) Treaded | g3 = 384.8 faz = 400.8 Hazg = 402.5 | 3. = 396.033
.1 = 362.533 | .z — 374.667 | §.> — 390.400 | §.. = 375.867
The fitted main effects are

ay =fh. —§. = =2.767
ag = §r. — §.. = —17.400
az = f. — §. = 20187
by =g, — 7. =-13.333
by = o — 7. = —1.200
ba = fia— §. = 14533

The fitted interactions are

abiy = §u1 — (@
abiz = f1z2 — (7.
abia = %13 — (&
abz; = ¥21 — (..
abaz = 22 — (¥.
abys = a3 — (.
ab3; = §a1 — (§.
absz = faz — (7.
abaz = faa — (§.-

+ay + b)) = .033
+a; + bz} = —5.400
+ aq + b3) = 5.367
+az+ b)) = —2.133
+az+ b:] = —.567
+ a; + b3) = 2.700
+ aa + 5:) = 2.100
+ a3 + ba) = 5.967
+ az + b3) = —8.067

(e) Use equation (8-6 ) and Table 8.3 to construct the confidence intervals. For 95%
two-sided intervals, the appropriate t is the same as for part (b). The confidence intervals ;I
for the interactions are i
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Section

1.

(e)

(2)

(b)

ab;;j + 2.016(33.252) %

= aby + 18.245 cm.

Looking at the abi;’s computed above, all of the confidence intervals for the underlying
interactions contain zero. This means that the interactions are not detectable. This
confirms the tentative conclusions made in part (c).

Use equation (8- 6) and Table 8.3. For 95% two-sided intervals, the appropriate ¢ is

the same as for part (b). The resulting intervals are

2
a; —ay =+ 2.016(33.2562), [ ——

(6)(3)

= a; —ay =+ 22.346 cm.

The resulting interval for the mean difference between smooth and reverse tread tires is
[-7.71, 36.88] cm. The resulting interval for the mean difference between smooth and
treaded tires is [—45.28, —.59] cm. The resulting interval for the mean difference between
reverse tread and treaded tires is [—58.91, —15.22] cm. There is not a detectable difference
between smooth and reverse tread main effects, because the first of these confidence
intervals contains zero. The last two intervals do not contain zero, indicating that there is
a detectable difference between the main effects of both smooth and treaded and reverse
and treaded tires. This agrees with the tentative conclusion reached in part (c).

Use equation (8-8 ). For 95% confidence, with ¥ = n — IJ = 45 and I = 3 means to be
compared, Table B-9 -A gives ¢* =~ 3.43. The resulting + part is

(343)(33.262) _ 0 oo
BI0) ay

The resulting interval for the mean difference between smooth and reverse tread tires is
[~12.25,41.52] em. The resulting interval for the mean difference between smooth and
treaded tires is [—49.82, 3.95] cm. The resulting interval for the mean difference between
reverse tread and treaded tires is [—64.45, —10.68] crn. The only detectable difference
using 95% simultaneous confidence is the difference between the reverse tread main effect
and the treaded tire main effect.

Using equation (7-7), s, = .03290416, with n — r = 24 — 8 = 16 degrees of freedom
associated with it. Use equation (8-13) for the confidence intervals. For 95% two-sided
confidence intervals, the appropriate t is t = Q,¢(.975) = 2.120 from Table B-4. The
resulting & part is

2. 120M = .01423505.

(3)(8)

The BC interaction is detectable, as well as the B and C main effects, since their
corresponding confidence intervals do not contain zero.

This was done in Exercige 2, Saciion 3, Chapterd for a “B and C main effects only” model.
However, the BC interaction seems to be important, so I will include it here. Using the
reverse Yates algorithm:
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Fitted Effect Value Cyclel Cycle2 Cycle 3 (§)

abeazs 0 -.12081 14113  2.07480 = g,
beas -12081 27095 1.93366  2.07480 =gy
acyz 0 -.76554 .14113 3.86550 = fiac
ca 27095 2.69920 1.93366  3.86550 = gc
aby 0 -.12081  .40076 1.79253 = gy,
b -76554 27095 3.46474 1.79253 = f,
az 0 -.76654 40076 3.06398 =1,
. 2.69920 2.69920 3.46474 3.06398 :!:"{l]

There will be a total of 24 residuals, one for each observation. To compute the residuals,
take each (transformed) observation and subtract the ¢ that corresponds to the factor-level
combination from which the observation came. For example, ﬂ( 1) = 3.06398 should be

subtracted from the natural logs of each of the 3 observations from combination (1), 21.12,
21.11, and 20.80, producing the 3 residuals —.01375954 —.01423314 —.02902701.
Using equation (8-16),

1
’%‘E = —————(.01975849) = 0009879243,

(3)(8) -4

$0 spg = Vv.0009879243 = 03143126, with 20 degrees of freedom associated with it. This
is relatively close to s, = .03280416.

Using equation (8-18) for a 95% two-sided interval, the appropriate ¢ is
t = Q20(.975) = 2.086. The resulting interval is

4
3.06398 + 2.086(.03143126), | ——

(3)(8)
3.06398 + .02676705

[3.037213, 3.090747).

Using equation (7-14), for 95% confidence, the appropriate ¢ is the same as the one used in
part (a). The resulting interval is

03290416

V3
3.044973 + .04027412

= [3.004699, 3.085248).

3.044973 1 2.120

The interval made using the few-effects model is shorter. This is expected, since the
few-effects model is more specialized.
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Only the point a; plots “off the line”, suggesting that the main effect for factor A may be ;
detectably larger than the other effects. It does not plot far away from the other points, so
it is difficult to be very confident about this conclusion. d; is almoest as big as a3 in

absolute value, so if the A main effect is judged detectable, so should the D main effect.

(b) One possibility is to include only the A and D main effects. Using the reverse Yates

Standard Normal Quantiles

i O

-5

Fitted Effecls Quantiles

0

5

10

e TR TR

algorithm:
Fitted Effect Value Cyclel Cycle2 Cycle3 Cycle 4 ()
abedzzaa 0 0 0 -10.250 18.878 = ﬁabcd
bedzaz 0 0 -10.250 29.125 4125 = fd
acdzaz 0 0 0 -10.250 18875 = .4
cdaz 0 -10.250 29,125 6.125 -4.125 = '«':'cd
abdasa 0 0 0 -10.250 18875 = g.p4
bdzz 0 0 -10.250 29.125 -4.125 = gy
ads; 0 0 0 -10.250 18.876 = ﬁad
d; -10.250  29.125 6.125 6.125 -4.125 =34
abegag 0 1} 0 -10.250 39375 = Pahe
beaa 0 0 -10.250 29.125 16.375 = gy,
acy 0 0 0 -10.250 39.375 = Yac
c, 0 -10.250 29.125  6.125 16.375 = gc
abyg 0 0 0 -10.250 39.375 = g,y
by 0 0 -10.250 29,125 16.3716 =73
ag 11.500 0 0 -10.250 30375 =qga
¥... 17.625 6.125 6.1256 6.125 16.376 = ﬁ(l]

As you may notice, some of the §’s for this model are negative! It would probably be
better to analyze the natural logarithms of these data, but for rest of this problem,
imagine that there can be a negative number of pull-outs.

There will be a total of 16 residuals, one for each observation. To compute the residuals,
take each observation and subtract the §j that corresponds to the factor-level combination
from which the observation came. For example, §{1} = 16.375 should be subtracted from

the observation from combination (1), 9, producing the residual 7.375.
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Standard Normal Quantiles

Residuals

Residuals
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The plot of residuals versus levels of B shows a fairly strong pattern, indicating that there ;
is some effect due to factor B that the present model is not accounting for. The plot of i
Residuals versus A indicates that there is more variation in the response for glazed b

surfaces than for unglazed surfaces, and the plot of Residuals versus Fitted Values

suggests that variation tends to increase for larger values of the response. The normal plot
is roughly linear, and so provides no evidence that the current model is inappropriate. The
patternless plot of residuals versus C indicates that C does not seem to affect the response.
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(c) According to the smallest fitted values from part (b), Factor D (Prebond Clean) should be
set at its high level (no clean), and Factor A (Ceramic Surface) should be set at its low
level (unglazed).

3. (a) Using the Yates algorithm:

(b)

Using equation (8-16),

a2 1
°FE = (1)(16) - 3

(2594.75) = 199.5962,

so Spg = V/199.5962 = 14,12785, with 13 degrees of freedom associated with it.

Using equation (8-18) for a 95% two-sided interval, the appropriate ¢ is
L = Q3(.975) = 2.160. The resulting interval is

~4.125 + 2.160(14.12785)

—4.125 + 13.21388

[~17.34,9.09].

3

(1)(18)

Since there cannot be a negative number of pull-outs, set the lower endpoint equal to zero:

[0,9.09].

Comb 7§ Cyclel Cycle2 Cycled Cycled Cycled + 16
(1) 4.2 7.3 14.7 29.2 57.5 3.59375 =g..
a 3.1 74 14.5 28.3 -12.9 -0.80625 = a3
b 4.5 6.7 14.5 5.2 2.5 0.15625 = by
ab 2.9 7.8 13.8 -T.7 -3.5 -0.21875 = abay
c 3.9 7.0 -2.7 12 -0.9 -0.05625 = ¢3
ac 2.8 1.5 -2.5 1.3 -0.5 -0.03125 = aca
be 4.6 6.5 -3.5 -0.8 b 0.08125 = beas
abc 3.2 Tid -4.2 -2.7 0.5 0.03125 = abeaaa
d 4.0 1.1 0.1 -0.2 -0.9 -0,05625 =d3
ad 3.0 -1.6 1.1 -0.7 -2.5 -0.15625 = adqy:
bd 5.0 11 0.5 0.2 0.1 0.00625 = bda,
abd 2.5 -14 0.8 -0.7 -1.9 -0.11875 = abdizz
cd 4.0 -1.0 -0.56 1.0 -0.5 -0.03125 = edsz
acd 2.5 -2.5 -0.3 0.3 -0.9 -0.056625 = Mdz:g
bed 5.0 -1.5 -1.5 0.2 -0.7 -0.04375 = bedaa;
abed 2.3 =27 =L.2 0.3 0.1 0.00625 = abediza;

g -

3

[ =

" -

3

4

T

3

5 | -

= @

-0.8 0.6 0.4 02 0o

Fitted Eflects Quaniiles
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It appears that only the main effect for A is detectably larger than the rest of the effects,
since the point for a; is far away from the rest of the fitted effects.

(c) Because a; is large and negative, using monk’s cloth results in less inches burned for
either treatment. However (because aby; is negative), the difference between monk’s cloth
and sateen is greater for treatment Y than for treatment X. To minimize the number of
inches burned, use monk’s cloth and treatment Y.

Section 3
1. Multiplying the defining relation through by A, A—BCDE. This means that only the sum of
the A main effect and the BCDE interaction can be estimated. If these effects are large but
opposite in sign, their sum will be small. Since only their sum can be estimated, each of these
effects could be large and still go undetected.

2 ; ; Anin
2. (a) Using the Yates algorithm: i &‘%‘:{d\' ‘5"

Comb # C1 C2 C3 C4 C4 + 18 Sum Estimated

e 8.5 16.4 32.8 69.1000 131.7 8.23125 p...+ afFvbezaan

a 7.8 16.4 36.3 62.6000 5.9 0.36875 co; + Oybezaaa

b 7.7 18.2 303  1.5000 4.1 0.25625 [ + aybeann

abe 8T 181 323 4.4000 -0.9 -0.05625 «affay+ ydeazs

¢ 9.0 138 04 -0.1000 55 0.34375 y; + af€an2

ace 9.2 16.5 1.1  4.2000 -1.1 -0.06875 oyaz+ Bbezaz
bee 8.6 154 3.1 23000 -1.3 -0.08125 [Bya3 + abeazs
abe 9.5 16.9 1.3 -3.2000 -1.5 -0.09375 ofy222 + bea2
d 58 0.6 0.0 3.5000 -6.5 -0.40825 &3+ afvezaze
ade 8.0 1.0 -0.1 20000 29 0.18125 afiz + Breanz
bde 7.8 0.2 2.7 0.7000 4.3 0.26875 (23 + avezns
abd 8.7 0.9 1.5 -1.8000 -5.5 -0.34375 86223+ €3z
cde 69 22 16 -0.1000 -1.5 -0.09375 722 + afeans
acd 85 0.9 0.7 -1.2000 -2.5 -0.15625 oybz22 + Beaz
bed B.6 1.6 -1.3 -0.9000 -1.1  -0.06875 [Fybaaz + cezg
abede 8.3 -0.3 -1.9 -0.6000 0.3 0.01875 ofvfaz20 + €2

(b) The appropriate t is ¢t = Q3(.975) = 4.303. The + part is

(4.303)—-‘33— =312

v/(1)(18)

The sums ag + Bydeaana, T2 + afifeazan, b2 + aByezaza, and aBbaz2 + veq2 are detectable.
The simplest explanation is that the A, C, and D main effects and the CE interaction are
responsible for these large sums. If you “knew” that the BCDE 4-factor interaction, the
ABCE 4-factor interaction, and the ABD 3-factor interaction were small, then the above
interpretation could be made confidently. If there is no reason to believe that these
interactions are small, then the above interpretation must be tentative (because of the
aliasing).

(c) Based on the signs of the estimates, to maximize bond strength, set A at its high level
(1.2 in./sec), C at its high level (120 g), and D at its low level (120 mW). The estimate of
a2z + Y€22 is negative, so if C is set at its high level, E should be set at its low level (10
ms) to maximize bond strength. The abc combination actually had these levels of A, C,
D, and E. This combination did have the largest observed bond strength.
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3. (a) See Exercise 3, Section 2, Chapter 8.
(b) Use the generator and multiply the appropriate columns.

B € D+~ABC Combination
= = = (1)
ad
bd
ab
cd
ac
be
abed

|
I+ 1 ++

+ 1414+ |+ I]|F
L1+ 4+ |
4+ 41

+ +
=

Using the Yates algorithm,

Combination § Cyclel Cycle2 Cycle3 Cycle3 = 8 Sum Estimated

(1} 4.2 7.2 15.1 28.8 3.600 ...+ aByéygan
ad 3.0 7.9 13.7 -6.8 -850 g+ Bybaag
bd 5.0 6.8 -3.3 B 100 Bz + aybgas
ab 2.9 6.9 =35 -2.0 -250 affag + véaz
cd 4.0 1.2 T 1.4 175 vz + affa
ac 2.8 -2.1 ol =2 -.025 Yaz +‘3622
be 4.6 1.2 -9 -6 075 Py + abyg
abed 2.3 -2.3 -i.1 -2 -.025 ﬂﬁngz +5;

The following table shows that these are sums of the appropriate estimates from
Exercise 3, Section 2, Chapter 8.

—.850 = @z + bodgay = —.B0625 4 (- .94375}
00 = by + aedyyg = 15625 + (-—.ﬂ5525)

—.250 abaz + cday = —.21875 4 (—.03125)
~175 = ¢+ abdypy = —.05628 + (~.11875)
—.025 = aecgy + bdzz = —.03125 4 .00625
—.075 = bezs + adgg = 08125 + (~.15625)
—.0256 = abeyay +dy = .03125 + (—.05625)

I

()
g '
% 0 : /
s :
o G
g 3 [Vt !

-0.8 -0.6 0.4 -0.2 0.0
Estimated Effect Quantiles

The estimate of a3 + 78222 plots off the line. You still might conclude that this is due to
the main effect for A, but the conclusion here would be a little more tentative.
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Section
4

1

The advantage of fractional factorial experiments is that the same number of factors can be
studied using less experimental runs. This is important when there are a large number of
factors, and/or experimental runs are expensive. The disadvantage is that there will be
ambiguity in the results; only sums of effects can be estimated. The advantage of using a
complete factorial experiment is that all means can be estimated, so all effects can be
estimated,

It will be impossible to separate main effects from 2-factor interactions. You would hope that
any interactions are small compared to main effects; the results of the experiment can then be
(tentatively) summarized in terms of main effects. (If all interactions are really zero, then it is
possible to estimate all of the main effects.) Looking at Table 8-35 | the best possible
resolution is 3 (at most).

Those effects (or sums of effects) which are nearly zero will have corresponding estimates
which are “randomly” scattered about zero. If all of the effects are nearly zero, then one might
expect the estimates from the Yates algorithm (excluding the one that includes the grand
mean) to be bell-shaped around zero. A normal plot of these estimates would then be roughly
linear. However, if there are effects (or sums of effects) which are relatively far from zero, the
corresponding estimates will plot away from the rest (off the line), and may be considered
more than just random noise. The principle of “sparsity of effects” says that in most
situations, only a few of the many effects in a factorial experiment are dominant, and their
estimates will then plot off the line on a normal plot.

There are a total of 27 = 128 possible factor-level combinations. Since only 32 of these are to
be included, this is a 27-? fractional factorial plan (a guarter fraction).

(a) Start with the generators. Multiply through by F on the first generator to get I«+ABCDF.
Multiply through by G on the second generator to get [«+ABCEG. Now multiply these
two “I” relationships to get a third:

I ++ (ABCDF)(ABCEG)
I «» DEFG

So the entire defining relationship is
l+ABCDF~—ABCEG~DEFG.

(b) To answer this question, multiply through by C on the defining relation:
C+ABDF~ABEG—CDEFG.

This means that the C main effect is aliased with the ABDF 4-facior interaction, the
ABEG 4-factor interaction, and the CDEFG 5-factor interaction. This means that none of

these effects can be estimated alone; only the sum of these 4 effects can be estimated
based on this plan.

(¢} Use the generators and multiply the appropriate columns.

A B C D E F—ABCD GwABCE Combination
- - - - = + T fg
+ + + - - ~ = abc
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(d) Using the defining relation,
A~BCDF—~BCEG—ADEFG,

ABCD—F—DEG+ABCEFG,

and
BCD—AF—ADEG+—BCEFG.

The simplest interpretation is that the effects that are making these estimates large are the
A and F main effects and the AF 2-factor interaction. This may not be correct, because
other effects in the alias structure could be large; there is no way of knowing based on the
information from this fractional factorial. If there is any reason to believe that 3- and
higher-factor interactions are unimportant, then this would be the correct interpretation.

Use equation (8-12) with p =15 — 2 = 3 in that formula. The appropriate ¢ is
t = Q4(.85) = 2.132 from Table B-4. The resulting + part is

{2.132)(5)-;- 4+ g = 3.264.

(a) Start with the generators. Multiply through by E on the first generator to get 1~+ABCE.
Multiply through by F on the second generator to get 1+=BCDF. Now multiply these tweo
“I" relationships to get a third:

1 «+ (ABCE)(BCDF)
I ~+ ADEF

So the entire defining relationship is
I++ABCE~BCDF«—ADEF.
(b) Use the generators and multiply the appropriate columns.
A B C D E~ABC F«~BCD Combination

=S = s e = ef
£ = = = =h - ae

c) Use equation (8-13) with p=6 — 2 = 4 in that formula. The appropriate { is
q
t = Q32(.95) = 1.6939 from Table B-4. The resulting + part is

2.00
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End 1. See Ex 4, Chap. 4 for the computation of the fitted factorial effects.

Chapter
Exercises a1 })
§ .
& 3 . %
£ .
£ |.r|I -
é 2
(7] 88 [F
' 0 1 2 3 4

Fitted Etects Quaniiles

The point for ay plots far away from the rest of the points, indicating that the main effect for
factor A is detectably larger than the other effects.

2 See Ex 5, Chap. 4.for the fitted effects.

(a) Using equation (7-7), sp = .05603373, with n — + = 16 — 8 = 8 degrees of freedom
associated with it. Use equation (8- 13) for the confidence intervals. For 95% two-sided
confidence intervals, the appropriate ¢ is t = Qg(.975) = 2.306 from Table B-4. The
resulting A is

.056
E.EUGM = .03230344.

V(2)(8)

(b) The AB interaction is detectable, as well as the A, B, and C main effects, since their
corresponding confidence intervals do not contain zero. However, the fitted main effects of
A and B are each at least twice as large as any other fitted effect. It seems that the main
effects for A and B are the only effects large enough to have an important impact on the
breaking strength.

&3 — oy = 207 represents the average increase in log(clips) going from .2 mm lead to

.7 mm lead. A confidence interval for @; can be made using the above A and a,.
Multiplying each endpoint by 2, the resulting confidence interval for az — o is

[1.585153, 1.714367). This means that the average number of clips needed to break .7 mm
lead is between 1585153 — 4 88 and e!-714357 — 5,55 times larger than the number of clips
needed to break .3 mm lead (with 95% confidence).

By — B2 = —20; represents the average increase in log(clips) going from 4.5 ¢cm to 3 em
length protruding. A confidence interval for 3 can be made using the above A and b;.
Multiplying each endpoint by —2, the resulting confidence interval for 6, — 5; is
[.3639931, .4932068]. This means that the average number of clips needed to break lead
protruding 3 cm is between 3839931 — 1 44 and 4932059 — | 64 times larger than the
number of clips needed to break lead protruding 4.5 cm (with 95% confidence).

These confidence intervals provide some measure of the precision of the experiment.
Reporting only single numbers may be misleading because they do not reflect the amount
of data collected or the amount of variation in the data,
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(c¢) 1 used a model with only A and B main effects.

Standard Normal Quantiies

Residuals

Using the reverse Yates algorithm:

Fitted Effect Value Cyclel Cycle2 Cycle 3 (§)

ﬂflﬂzgg ] 0 0 3.92269 = ﬁﬂ-hl:
bega 0 0 3.92269 2.27293 = iy,
acas 0 -0.21430 0 4.35130 = gac
ea 0 4.13700 2.27293 2.70153 = §ic
absz 0 0 0 3.92269 = i,
ba -0.21430 0 4.35130 227293 =1y,
ajz 0.82488 -0.21430 0 4.35130 = {a
... 3.31211  2.48723 2.70153 270163 = "{1]

There will be a total of 16 residuals, one for each observation. To compute the residuals,

take each (transformed) observation and subtract the jj that corresponds to the

factor-level combination from which the observation came. For example, § 1) = 2.70153

should be subtracted from the natural logs of both observations from combination (1), 13
and 13, producing the 2 residuals —.136582 and —.136582.

™

-0.2

0.2

0.1

0.0

02 -01

: A
Fitted Values 3 \J
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The normal plot is fairly linear, and so does not indicate any problems with the few-effects
model, The plots of Residuals versus Diameter and Length Protruding are patternless,
revealing no problems with the model. The plot of Residuals versus Hardness shows
mostly negative residuals for B hardness and mostly positive residuals for 2H hardness.
This is a sign that Hardness is having some effect on the response, and the model is not
accounting for it. Finally the plot of Residuals versus Fitted Values is fairly random,
revealing no major problems. Overall, if the effect of C is judged to be small and
unimportant, the model fits fairly well.

(d) Using equation (8-186),

g = m(.zn‘u) = 0157,

so spg = V.0157 = .1252996, with 13 degrees of freedom associated with it.

Using equation (8-18) for a 95% two-sided interval, the appropriate { is
t = Q13(.975) = 2.160. The resulting interval is

3
3.92269 + 2.160(.1252996 14 ——
( W' @E

3.92269 4+ 11719
[3.8055 , 4.03088]

Exponentiating each endpoint, the prediction interval for the median no. of clips is
[44.947 , 56.8195] clips.
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(a)

(b)

(€)

sp = .02483 g has n — r = 12 — 6 = 6 degrees of freedom associated with it. Use
equation (7-14) for the error bars. The + part is the same for all six intervals because all
six sample sizes are the same. For 95% confidence, the appropriate t is

t = Qe(.975) = 2.447, from Table B-4. The resulting + part is

2.447-02483 _ 04007 g

V2

5.10

Sample Mean Weight
5.05

5.00

The error bars seem to be too large for the interactions to be distinguishable from .
background noise. Given the size of the error bars, one could imagine that the u.nderl)'mg
pi;’s could be parallel. The lack of parallelism in the plot could be due to random y
variation.

Use equation (8-6 ) and Table 8.3 to construct the confidence intervals. For 95%
two-sided intervals, the appropriate t is the same as for part (a). The confidence intervals

aby; + 2.447(.02483) %

= ab;; +.024808 g.

for the interactions are

Looking at the ab;;'s, all of the confidence intervals for the underlying interactions contain
zero. This means that the interactions are not detectable. This confirms the tentative
conclusions made in part (a).

Use equation (8-6 ) and Table 8.3 . For 95% two-sided intervals, the appropriate ¢ is
the same as for part (b). The resulting intervals are

a; — apr + 2.447(.02483) (g%

= a; —ay £ .042968 g.

The resulting interval for the mean difference between student 1 and student 2 is
[—.022968, .062968] g. The resulting interval for the mean difference between student 1
and student 3 is [—0.050468 ,.035458] g. The resulting interval for the mean difference
between student 2 and student 3 is [—0.07096€, .015988] g. Since all of these intervals
contain gero, the Student main effects are not detectable.
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(d)

(a)

(b)

(d)

Use equation (8-8 ). For 95% confidence, with ¥ =n— IJ = 6 and I = 3 means to be
compared, Table B-9 -A gives ¢* = 4.34. The resulting -+ part is

(4.34)(.02483)
V(2)(2)

The three resulting intervals are wider, as expected. All still contain zero, so Student main
effects are not detectable with 95% simultaneous confidence.

= .053887 g.

Using equation (7-7), s, = .12235 sec, with n — r = 120 — 12 = 108 degrees of freedom
associated with it.

Use equation (7-14) for the error bars. The + part is the same for all 12 intervals because
all 12 sample sizes are the same. For 99% confidence, the appropriate ¢ is
t = Qq08(.995) ~~ 2.6256, from Table B-4. The resulting + part is

2.6256@ = .1016 sec.

V10

Sample Mean Drop Time (sec)
3

10 15 20 25 30 35 40
Weight , B

The error bars are very small. It seems that the main effects for Weight dominates any
interactions, even if they are detectable. The main effects for Weight also dominate any
main effects for Brand, even if they are detectable.

Use equation (8-8 ). For 95% confidence, with ¥ = n — IJ = 108 and I = 3 means to be
compared, Table B-9 -A gives ¢* = 3.368. The resulting A is

(3.368)(.12235)

V[

Use equation (8-10). For 95% confidence, with ¥ = n — IJ = 108 and J = 4 means to be
compared, Table B-9 -A gives ¢* #: 3.692, The resulting + part is

0652 sec.

(3.692)(.12235)

3)(10) = .0825 sec.
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(¢) The averages needed are given in the table below.

OIL WEIGHT (Factor B)

10W30 SAE 30 10W40 20WED
BRAND M| @11 =1.385 i12 = 2.066 fia = 1.414 F14 = 4.498 | §;. = 2.34075
(Factor A) fa1 = 1.319 sz = 2.002 fiza = 1.415 f2s = 4.662 | 3. = 2.34950
H fa1 = 1.344 iiag = 2.049 faz = 1.544 f34 = 4.549 | §3. = 2.37150
.= 1.34933 | §2 = 2.03900 | §.3 = 1.46767 | 7.4 = 4.56967 | §. = 2.35392

(f)

(2)

(b)

Attaching the A from part (c) to each of the 3 differences $;. — @i, all of these confidence
intervals contain zero, so the Brand main effects are not detectable. Attaching the A from
part (d) to each of the 6 differences §.; — .+, all of these confidence intervals do not
contain zero, so the Weight main effects are detectable.

If only one can of each Brand/Weight combination is represented in the study, then (with
respect to generalizing to all oil made by each brand, or all oil of a certain weight), there
is only one true replication for each combination. There is no guarantee that the 12 cans

used are representative of all cans of oil for each of these factor-level combinations. If the
students used different quarts of oil for each replication (for a total of 120 quarts of oil),
then s, would capture quart-to-quart variability, and conclusions based on the experiment
might safely be applied to the brands and/or weights in general.

Using equation (7-7), s, = 1.6196 MPa, with n — r = 40 — 8 = 32 degrees of freedom
associated with it.

For the error bars, use equation (7-28). With r = 8 and v = n— r = 32, Table B-8-A gives
k3 ~ 2.90. The 8 intervals will all be the same size, because the 8 sample sizes are all the
same. The resulting - part is

1.6196

V5

2.80 = 2.100 MPa.

45

40

35

Sample Mean Sirength (MPa)

15 20 25 30

Temparalura (deg C) > B

0 5 10

Relative to the size of the error bars, the lack of parallelism for the 0°C temperature may
be large enough to be distinguishable from background noise. Tentatively, this interaction
seems to be detectable. A cold climate engineer would need to know if the effect of
changing the water/cement ratio is different at lower temperatures than it is at higher
temperatures.
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(c) The averages needed are given in the table below.

TEMPERATURE (Factor B)
0°C 10°C 20°C 30°C

W/C RATIO .56 | f;, =28.99 f12 = 30.24 tha = 33.99 14 = 36.02 | §;. = 32.310

(Factor A) .35 | oy = 38.70 | G2z = 36.16 | §as = 40.18 | fas = 42.36 | §2. = 30.350
§.; = 33.845 | §. — 33.200 | §.3 = 37.085 | 7.2 — 39.190 | §.. = 35.830
The fitted main effects are
ay = §1. — §. = —3.520
ag = fz. — §.. = 3.520
by =§1—3.=—1.985
by = iz — .. = —2.630
ba = f3—7.=1.255
bs = 4.4 — 3. = 3.360
The fitted interactions are
abyy = Gy — (§.. + a1+ by) = —1.335
abiz = 12 — (§.. + a1 + b3) = .560
abjz = f1a — (§. + a1+ b3) = .425
abyy = fha — (§.. + a1+ by) = 360
abyy = §a1 — (9. + @2+ by) = 1.335
abzy = a2 — (J.. + a2+ by) = —.56
abyz = a3 — (.. + a2z + b3) = —.425
abag = §aq — (.. + az + ba) = —.350
(d) Use equation (8-6 ) and Table 8.3 to construct the confidence intervals. For 95%

(a)

(b)

two-sided intervals, the appropriate ¢ is £ = Q32(.975) ~ 2.0378 using Table B-4. The
confidence intervals for the interactions are

aby; + 2.0378(1.6196) %g(;-ﬁjﬂ

— ﬁb;j + .9039 MPa.

Looking at the ab;;’s, the confidence intervals for &8y and afs; do not contain zero, so
these interactions are statistically detectable. These correspond to the 0°C temperature,
which agrees with the tentative conclusions made in part (b).

Using equation (7-7), s, = 2.6060 MPa, with n — r = 40 — 8 = 32 degrees of freedom
associated with it.

For the errer bars, use equation (7-28). With r = 8 and v = n —r = 32, Table B-8-A gives
k3 = 2.90. The 8 intervals will all be the same size, because the 8 sample sizes are all the
same. The resulting + part is

Z.BEM = 3.380 MPa.

VB
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Sample Mean Strength (MPa)
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15
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Temperature (deg C) | ]

30

Relative to the size of the error bars, any lack of parallelism in the plot does not seem to
be distinguishable from background noise. Tentatively, the interactions do not seem to be

detectable. A cold climate engineer would need to know if the effect of changing the

1G]

water /cement ratio is the same at lower temperatures as it is at higher temperatures.

(¢) The averages needed are given in the table below.

TEMPERATURE (Factor B)

[ P

0°*C 10°C 20°C 30°C
W/C RATIO .55 | 1y =47.82 | §12 =42.75 | §1a =42.38 | 14 =43.45 | 1. =44.100
(Factor A) 35 | 23 = 42.14 | $22=36.72 | fa3 = 36.72 | #34 = 37.70 | 7. = 38.320
G = 44.980 | G = 39.735 | §ia = 39.550 | .4 = 40.575 | 7. = 41.210
The fitted main effects are
a; = . —F. = 2.890
a3 = . — 7. = —2.890
by=F1—9.=3.T70
ba =92 —19.=-1.475
ba= g3 — 3. = —1.660
by =4.4—1.=—.635
The fitted interactions are
abiy = Gy — (f.'t_.-i- ay + 51) = —.050
abya = fha — (§.. + a3 + by) = .125
abya = §13 — (§. + ay + bz) = —.060
Gb14 = 14 — (ﬁ.. + a; + b;:l = —.015
abz1 = Y21 — (¥.. + @z + by) = .050
abyg = fas — (f-'. +az + b::] = —.125
abz3 = Y2z — (§. + a2 + b3) = .060
abys = §24 — (§.. + az + by) = 0156

(d)

Use equation (8-6 ) and Table 8.3

to construct the confidence intervals. For 95%

two-sided intervals, the appropriate ¢ is ¢t = Q32(.975) & 2.0378 using Table B-4. The
confidence intervals for the interactions are

abyj + 2.0378(2.6060) (
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abij + 1.4543 MPa.

2-1)(4—1)
(5)(2)(4)
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Looking at the ab;;'s, all of the confidence intervals for the underlying interactions contain
gero. This means that the interactions are not detectable. This confirms the tentative
conclusions made in part (b).

()

Use equation (8-6 ) and Table 8.3 . For a 95% two-sided interval, the appropriate ¢
is the same as for part (d). The resulting interval is

= —h.T8+ 1.679325
= [-7.46, —4.10] MPa.

This would give an engineer in any climate an idea of the average difference between the
two water/cement ratios, because the difference does not seem to depend on the
temperature (interactions seern negligible).

Yes, since the nature of the Ratio x Temperature interaction depends on the type of concrete.
(One way to describe a 3-factor interaction is to describe how a 2-factor interaction depends
on the third factor.)

(a) Using the Yates algorithm for y:

Combination 7 Cyclel Cycle2 Cycle3d Cycle3 + 8

(1) 2.7 36 1 92.2 11525 = ..

a 0.9 4.1 84.5 69.6 B.700 =a;

b 3.0 21.7 -3.7 41.6 5200 =b;

ab L1 62.8 73.3 42.2 65.276 = abya

& 31 -1.8 b T6.8 9600 =e3

ac 18.6 -1.8 41.1 T77.0 9.625 = acy;

be 2.5 15.5 -0.1 40.6 5075 = beyg

abe 60.3 57.8 42.3 42.4 5.300 = abeyzz
Using the Yates algorithm for y,:

Combination 7 Cyclel Cycle2 Cycled Cycle3d <8

l:l:l 5.6 7.0 15.7 151.9 18.9875 = §..

a 1.4 8.7 136.2 108.1 13.5125 = a3

b o4 30.5 -9.7 76.9 9.6125 = by

ab 1.6 106.7 117.8 68.3 8.5376 = abyy

c 3.2 -4.2 1.7 120.5 15.0625 =g

ac 27.3 5.5 75.2 1275 15.9375 = acyz

be 6.0 24.1 1.3 73.5 9.1875 = beag

abe 80.7 93.7 69.6 70.9 B.8625 = abeyas
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In both plots, as, ¢2, and acsz plot away from the rest of the effects. There is no obvious
simple description of the effects of the factors on either response. It seems that any
description would need to include at least the A main effect, the C main effect, and the

AC interaction.

The gap occurs because of the fact that the data for combinations ac and abe are much

larger than the rest of the data, for each response. The response for combination ahc is
positive in the formulas for all of the fitted effects. The response for combination ac is
positive in the formulas for ..., az, ¢z, and cw-;z, and is negative in the formulas for b,

abag, begg, and abeags:

15

-0.5

-1.5

0 10 20 0 40 50 BD
y1 Quantiles

Standard Normal Quantiles

-0.5 05 1.5

-1.6

20 40 60 80

y2 Quantiles

100

Unless the distributions of these responses are prone to extreme outliers, it is very unlikely
that the data are just random variation (especially if the responses have a normal
distribution}). The factors are in some way having an effect here.

(a) The plot coordinates are given below.
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The absolute values of the fitted main effects for A and D plot slightly off the line; in
ex 2,50c.2 ch 8. 5 it appeared that only A was off the line. Neither of these absolute fitted
effects plots far away from the rest, so it is hard to say if they are really detectable.

(b) The plot coordinates are given below.

i p=52 HE Q) Qunlp) = Qz(42)
1 0714 5357 1125 10
2 2143 6071 2375 28
3 3571 .6786 4625 A7
4 5000 7500 5875 67
5  .6420 .8214 6625 92
6  .7857 8920  1.0125 1.23
7 9286 .9643  3.9625 1.75
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10. (a)

(b)

(<)

(d)
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Here, the conclusions are the same as Ex. 1, Chapter 8. Only the absolute fitted main effect
for A plots off the line, so the A main effect is detectably larger than the rest.

Using the Yates algorithm:

Combination g Cyclel Cycle2 Cycle3d Cycle3 =8

(1) 1.00 2.10 2.80 5.45 68125 = 4.

a 1.10 .70 2.65 .95 11875 = az

b .20 1.90 .40 -2.55 -.31875 = b;

ab .50 .75 .55 15 01875 = abys

c .80 10 -1.40 -.15 -.01875 = ¢q

ac 1.10 30 -1.15 .15 01875 = acya
be .25 .30 .20 .25 03125 = begp
abc 50 25 -.05 =25 -.03125 = abcaaa

Using equation (7-7), s, = .1225 %, with n— r = 11— 8 = 3 degrees of freedom associated
with it.

Use equation (8-12). For 90% two-sided confidence intervals, the appropriate ¢ is
t = Q3(.95) = 2.353 from Table B-4. The resulting + part is

1
2.353(.1225) E‘v’ 6.5=.09184 %.

The only effects whose confidence intervals do not contain zero are the main effect for
A () and the main effect for B (3,).

It seems that Polymer Concentration has the biggest impact on impurity, followed by
Polymer Type. The fact that by is negative reflects that the higher polymer concentration
results in lower impurity. The fact that a; is positive reflects that the standard polymer
type results in lower impurity. To minimize impurity, this study suggests using the
standard polymer at high concentration. Since Factor C (amount of an additive) does not
seem to have a noticeable effect, it should be set at its least expensive level (probably i
2 lbs.).

-i
]
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1.

(a) Using equation (7-7), s, = 7.443957, with n — r = 64 — 16 = 48 degrees of freedom

associated with it. This measures the baseline variability in hour-to-hour missed lead

counts for any of the 16 conditions, assuming this variability is the same for all
16 conditions.

(b) Using the Yates algorithm:

(<)

(e)

Comb 7 OCyclel Cycle2 Cycled Cycled Cycled + 16

(1) 28.4 50.3 84.8 191.3 381.2 23.8250 =4...

a 21.9 34.5 106.5 189.9 -61.6 -3.8500 = a3

b 20.2 55.5 98.4 -43.1 -36.4 -2.2750 = by

ab 14.3 51.0 91.5 -18.5 5.2 0.3250 = aby;

c 30.4 56.0 -12.4 -20.3 14.8 0.9250 = ¢q

ac 25.1 42.4 -30.7 -16.1 -6.8 -0.4250 = acy;
be 38.2 47.0 -15.0 -19.5 22.4 1.4000 = begy
abc 12.8 44.5 =3.5 24.7 -36.4 -2.2750 = abcgag
d 36.8 -6.5 -15.8 21.7 1.4 -0.0875 = 4dj

ad 19.2 -5.9 -4.5 -6.9 24,86 1.5375 = adas
bd 19.9 -5.3 -13.6 -18.3 4.2 0.2625 = bday
abd 22.5 -25.4 -2.5 11.5 44.2 27625 = abdzg,
cd 25.5 -17.6 0.6 11.3 -28.6 -1.7876 = edys
acd 21.5 2.6 -20.1 11.1 29.8 1.8625 = acdyz2
bed 22.0 -4.0 20.2 -20.7 -0.2 -0.0125 = bedysy
abed 22.5 0.5 4.5 =15.7 50 0.3125 = abedzzez

Use equation (8-13). For 98% two-sided confidence intervals, the appropriate ¢ is
t = Q48(.99) & 2.4098 from Table B -4. The resulting + part is

7.443957
2.4008——— = 2242306
V/(4)(16)

The ABD and ABC interactions are detectable, as well as the A and B main effects.
There is really no simple interpretation of this set of effects. You could say that, overall,

factors A and B have the greatest effect, but their effects seem to depend on how factors C
and D are set.

Yes, if you average over all the conditions. The negative sign of a; indicates that,

averaging over levels of all the other factors, the new lead type results in a smaller number
of missed leads than the standard.

No, because the detectable interactions are large relative to the main effect for A. For
example, the signs of abcasg and abdzay indicate that for plant 2, standard machine type,

and shift 2, switching to the new lead type tends to increase the number of missed
leads.
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12

(a) s, = 57.501b. has n — 7 = 27 — 9 = 18 degrees of freedom associated with it. Use

(b)

equation (7-14) for the error bars. The -+ part is the same for all nine intervals because all
nine sample sizes are the same. For 98% confidence, the appropriate ¢ is

t = Q18(.99) = 2.552, from Table B -4. The resulting + part is

87.50

2.552—— = 84.72287 |b.

V3

T

t

400 600
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peec

v T
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= T
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o%c

2
Temperalure , 6

2007

The error bars seem to be too large for the interactions to be distinguishable from

background noise. Given the size of the error bars, one could imagine that the underlying

t:;'s could be parallel. The lack of parallelism in the plet could be due to random

variation.

The averages needed are given in the table below.

TEMPERATURE (Factor B)

0°C 22°C 200°C
Cola | §1, = 224.00 | §12 = 154.33 | J1a = 200.67 | g1, = 193.00
CE}N LTY:;E Beer | §i2; = 260.00 | §23 = 265.67 | §z3 = 300.00 | §z. = 275.22
R Soup | #ay = 635.33 | f§ag = 635.67 | {jag = 605.33 | §s. = 625.44
§.1 = 373.11 | .2 = 351.89 | 7.3 = 368.67 | §.. = 364.56

The fitted main effects are

a; = f. — .. = —171.56
az = ip. — 4. = —89.33
a3z = 5. — §.. = 260.89
by =31 —3.=8.56

by =F2—4F.=-12.67
by =33—1.=4.11
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The fitted interactions are

(ﬂ + a1 + bl) = 22.44

(7. + ay + by) = —26.00

abys = fy3 — (§.. + @1 + ba) = 3.56 -
(@
(7

e T S

abzy = f21 — (§.. + a2 + by) = —28.78
abgg = fag — (¥.. +az+ by) = 3.11
abas = Ta3 — l: .+ a2+ 63} = 20.67
aba; = Pa1 — [y.. + az |+ b;} = 1.38
abaz = faz — (§.- + a3 + ba) = 22.88
abaz = §a3 — (§.. +aa + b)) = —24.22

Iy

Use equation (8-6 ) and Table 8.3 to construct the confidence intervals for the
interactions. For 98% two-sided intervals, the appropriate ¢ is the same as the one used i in

part (a). The confidence intervals are

(TEH L SR O PSS S S

(3 1)( 3—1}

— a'b|_' 4+ 58-482 lbs.

Looking at the ab;;'s computed above, all of the confidence intervals for the underlying
interactions contain zero. This means that the interactions are not detectable.

For the Can Type main effects, use equation (8-6 ) and Table 8.3 . The confidence
intervals are

a; + 2.552{5?.50)\/%{;)%5

= @; + 39.939 |bs.

All 3 of these confidence intervals do not contain zero, indicating that the main effects for
Can Type are detectable.

For the Temperature main effects, use equation (8-6 ) and Table 8.3 . The
confidence intervals are

3-1
b + 2.552(57.50 A .
i (5750 | By
= b; + 39.939 Ib,

All of these confidence intervals contain zero, indicating that the main effects for
Temperature are not detectable,

For the Can Type main effects, Use equation (8- 8 ). For 99% confidence, with
v=n-—IJ =18 and I = 3 means to be compared, Table B-9-B gives ¢* = 4.70. The
resulting + part is

(4.70)(57.50)
3)(3)

The resulting interval for the difference between cola and beer can main effects is
[-172.3,7.9] Ibs. The resulting interval for the difference between cola and soup can main
effects is [—522.5, —342.4] Ibs. The resulting interval for the difference between beer and
soup can main effects is [—440.3, —260.1] lbs. The first interval contains zero, so there is
not a detectable difference between cola and beer can main effects. The other two
intervals do not contain zero, indicating that there is a detectable difference between both
cola and soup and beer and soup cans.

= 90.086 lbs.

325 Chapter 8



13

14.

(a)

(b)

For the Temperature main effects, Use equation (8-10). For 99% confidence, with
v=mn—IJ =18 and J =3 means to be compared, Table B-9-A gives ¢* = 4.70. The
resulting + part is

(4.70)(57.50)
V(3)(3)

The resulting interval for the difference between 0°C and 22°C temperature main effects is
[—68.9,111.3] lbs. The resulting interval for the difference between 0°C and 200°C
temperature main effects is [—85.6, 94.5] lbs. The resulting interval for the difference
between 22°C and 200°C temperature main effects is [—106.9, 73.3] Ibs. All of these
intervals contain zero, so none of the main effects for Temperature are not detectable.

= 90.086 lbs.

g ©
2 ; o
[} —
=
a AT
g :
E o .
o -
b4 e
E = olu
r% Cz ©
w 1@
3 2 1 0 1 2
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The points that plot away from the rest are c3, a3, and possibly aeys. This means that the

main effects for A and C, and possibly the AC interaction, are detectably larger than the rest.
It seems that on average, tee wing planes fly farther than straight wing and notebook paper '
planes fly farther than construction paper planes. Also, the average increase in distance due tﬂ

changing from straight wing to tee wing may be larger for notebook paper than for
construction paper.

Using equation (7-7), s, = .42118 kg, with n — r = 30 — 6 = 24 degrees of freedom
associated with it. This measures the magnitude of baseline variation within any of the
6 conditions, assuming it is the same for all 6 conditions.

Use equation (7-14) for the error bars. The 4 part is the same for all six intervals because
all six sample sizes are the same. For 5% confidence, the appropriate ¢ is
t = Q34(.975) = 2.064, from Table B-4. The resulting =+ part is

20642118 _ 38877 kg,

Ve

g i

ﬁ V‘J

g \

% @

£,
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326 Chapter 8

Es bl deraf &




(c) The error bars seem to be small enough so that the lack of parallelism in the plot is

(d)

(e)

(f)

distinguishable from background noise. Main effects alone should not be used to

summarize the situation. Overall, however, Width has a bigger effect on strength than

Brand. The effect of Brand is only distinguishable for the wide width.

The averages needed are given in the table below.

WIDTH (Factor B)

Narrow Medium Wide
BRAND 1| g1 =2.811 | §12 =4.164 | §13 = 8.001 | §;. = 4.8920
(Factor A) 2 | o1 = 2.459 | §az = 4.111 | a3 = 6.346 | §2 = 4.3053
., = 2.6350 | §.o = 4.1375 | §.a = 7.1735 | §.. = 4.6487

The fitted main effects are

a; = fh. — §.. = .34333
az = J2. — .. = —.34333
by = %1~ 4. = —2.01367
by =F2—7.= —.51117
by = f§a—14.= 2.52483

The fitted interactions are

abhii =1 — (§. + a1+ 5) = —.16733
abyp = 412 — [ﬁ +ay + b:) = —. 31683
abia = f1a — (.. + a1 + b3) = 48417
abyy = ¥y — (ﬁ +az + bl:l = .16733
abyzz = fz2 — {:f 4+ ag + bg) = .31683
abya = fiza — (G + az + ba) = —.48417

Use equation (8-6 ) and Table 8.3 to construct the confidence intervals for the
interactions. For 95% two-sided intervals, the appropriate ¢ is the same as the one from
part (b). The confidence intervals are

ab;; + 2.064(.42118) EE;;(%_—%

= ab;; +.22446 kg,

L T A

Looking at the ab;;’s computed above, four of the six confidence intervals for the
underlying interactions do not contain zero. This means that the interactions are
detectable. This agrees with the tentative conclusion made in part (c).

Use equation (8-6 ) and Table 8.3 . For 95% two-sided intervals, the appropriate  is
the same as in part (b). The resulting intervals are

i - s A S

2 :
b; — bji +2.064(.42118) 5@ 3

= b — by + 38877 kg. 4

The resulting interval for the mean difference between narrow and medium widths is 3
[~1.89, —1.11] kg. The resulting interval for the mean difference between narrow and wide
widths is [~4.93, —4.15] kg. The resulting interval for the mean difference between
medium and wide widths is [—3.42, —2.65| kg. None of these intervals contain zero, so all
of the differences between Width main effects are detectable. This agrees with the
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15.

()

(b)

()

(d)

tentative conclusion made in part (c). It should be noted that the difference between
medium and wide widths seems to depend on the brand (there is an interaction}, and the
above intervals do not include this information.

Use equation (8-10). For 95% confidence, with ¥ = n — IJ = 24 and J = 3 means to be
compared, Table B-9 -A gives ¢* = 3.53. The resulting 4 part is

BESA118) _ roraks
(2)(5)

None of the resulting intervals contain zero, so this does not change the conclusion made
in part (f).

Use the generator and multiply the appropriate columns.

o)

C D+«AB Combination
- + d
- a
b

abd

cd

ac

be
abed

| 4 41 1
(|
[ =g ]

+ 1+ 1+ 1+ 0=
4 4 |

+ 4+ + 4|

=L

Multiply the generator through by D to get the defining relation: I~ ABD. Now multiply
the defining relation through by various effects to get the alias structure:

I—ABD
A—BD
B+ AD
AB«D
C+—ABCD
AC—BCD
BC—ACD
ABC«CD

This means that the following sums can be estimated: wu.... + a88332, az + 8822, B2 + ada,

a2 + 62, 12 + afyba222, avaz + Brbaza, Braz + aybaaz, and aBrazz + ¥baz. None of the
effects can be isolated individually.

The first 4 lines of the Yates algorithm are estimating p.... + afB8222, oz + 8622, B2 + abaa,
and af3;; + 6, respectively. For each line, either of the effects (or both) may be causing
the estimate to be large. It is very likely that pu.... is the primary cause of large estimate
on the first line, and not e36332. The other 3 lines are harder to interpret. Using the alias
structure, 4 possible interpretations are:

1.The A, B, and D main effects are dominant;

2. The A and B main effects and the AB interaction are dominant;

3. The A and D main effects and the AD interaction are dominant;

4. The B and D main effects and the BD interaction are dominant.

For D«~+ABC, main effects are aliased with 3-factor interactions, which are usually smaller
than 2-factor interactions. This allows the main effects to be detected less ambiguously
(the ambiguity encountered in part (c) would not be as severe). For D« AB, the main
effects for A, B, and D are aliased with 2-factor interactions, which usually cannot be
assumed small.
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16. (a) Use the generators and multiply the appropriate columns.

A B C D~AB E«AC Combination
- = = + + de

4+ - - - - a

=, ¥ = A + be

+ + - + = abd
| + - cd

ST SR = + ace

- 4+ <+ - - be

+ + + + + abed

(b) First find the defining relation. Start with the generators. Multiply through by D on the
first generator to get I+—+ABD. Multiply through by E on the second generator to get
I+ ACE. Now multiply these two “I” relationships to get a third:

I+ (ABD)(ACE)
[ ++ BCDE

So the entire defining relationship is
I+ ABD+—ACE«~BCDE.

Now multiply through by A on the defining relation:
A + BD + CE ~ ABCDE.

This means that the A main effect is aliased with the BD 2-factor interaction, the CE
2-factor interaction, and the ABCDE 5-factor interaction.

17. (a) Using the Yates algorithm:

Combination § Cyclel Cycle2 Cycle3d Cycle3d =8 FEffect Estimated

(1) 70 131 262 532 66.50 ...

a 61 131 270 -26 -3.25 o

b 72 132 -22 6 0.75 pBs

ab 59 138 -4 0 0.00 ofy

c 68 -9 0 B 1.00 v

ac 64 -13 6 18 2.25 oo
be 69 -4 -4 ] 0.75 a2
abec 69 1] q 8 .00 afByzaa
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(b) Take the last 7 estimates from the Yates algorithm and normal plot them.

()
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Fitted Eftect Quantiles

The point that plots far from the others is the estimate of the main effect for A. Based on
this plot, only the estimate of the A main effect is representing something more than
background noise.

Use equation (8-13). The appropriate t is ¢t = Qg(.975) = 2.306 from Table B-4. The
resulting A is

(2)(8)

The confidence intervals for @2, B2, 2, 0722, 722, and aFvy9y; all do not contain gzero, so
all of these effects are detectable (their corresponding estimates are representing more
than just background noise).

(2.306) = .bl18,

First find the defining relation. Multiply through the generator by D to get I+—ABCD.
Now multiply through the defining relation by various effects to get the alias structure:

I—+ABCD
A+~BCD
B+—ACD
AB+—CD
C+ABD
AC—BD
BC«—AD
ABC+D

The “new” table of estimates can then be written using this alias structure,

Combination § Cyclel Cycle2 Cycled Cycle3d +8 Sum Estimated

(1) 70 131 262 532 66.50 ... +aB7rdaaaz
ad fil 131 270 -26 -3.25 (e} +}3‘T|5;3:
bd 72 132 -22 6 0.75 [y + aybaa
ab 59 138 -4 0 0.00 af;; + b2
cd 68 -9 0 8 1.00 72 +ofb
ac 64 -13 B 18 2.25 ava -+ Bbaa
be 69 -4 -4 6 0.75 fyaa + aba
abed 69 ] 1 8 1.00  offyaa: + 62

Based on the estimated sums, it is very likely that the first estimate is large primarily
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18.

because of f..... It is probably the A main effect that is making the second estimate large,
unless there is some reason to believe that an ACD interaction may exist. For the 6th line;
it could be either the AC interaction or the BD interaction (or both). But since the A
main effect is important, it is more likely that it will be involved in an interaction. This
conclusion is very tentative, though.

First find the defining relation. Multiply through the first generator by D to get
I—ABCD. Multiply through the second generator by E to get [+ ACE. Now multiply
these two “I” relationships to get a third:

I <+ (ABCD)(ACE)
I+ BDE

So the entire defining relationship is
I—+ABCD—ACE—BDE.

Now multiply through the defining relation by various effects to get the alias structure.
Focusing on the main effects,

I—ABCD+—ACE—BDE
A~BCD—CE—~ABDE
B—=+ACD—ABCE~DE
C+—ABD—AE—~BCDE
D= ABC—ACDE«BE
E«—ABCDE+—AC«BD

The “new” table of estimates can then be written using this alias structure.

Combination % Cyclel Cycle2 Cycled Cycle 3 + 8 Sum Estimated

[ T0 131 262 532 66.50 ... + aliases

ad 61 131 270 -26 3.25  ag+ yexs + aliases
bde 72 132 -22 [} 0.75 fz + dezz + aliases
ab 59 138 -4 0 0.00 effg + aliases

cd 68 -8 0 8 1.00 3 + eezz - aliases
ace 64 -13 fi 18 2.25 ayag + €3 + aliases
be 69 -4 -4 ] 0.76 vy + aliases

abede 69 0 4 8 1.00 afyay + b3 + aliases

Based on the estimated sums, it is very likely that the first estimate is large primarily
because of p...... It is probably the A main effect that is making the second estimate large,
unless there is some reason to believe that a DE interaction may exist. For the 6th line,
probably the E main effect is the cause of this estimate being large, unless there is some
reason to believe that an AC interaction may exist. It seems that the A and E main
effects are dominant. This conclusion is tentative though, because the DE or AC
interactions may really be causing these estimates to be large. There is no way of knowing
for sure based on this fractional factorial data set.

(a) Use the generators and multiply the appropriate columns.
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19.

o

C D«wAB E—AC FwBC  Combination
4 def

— + af

be

- abd

- cd
ace

+ bef

+ abedef

i
o

+ 1+ 1+ + 1}
+ 4+ 0+ 4+
+4+++ 111
+ I+ 4+ |
= ¢ I I I S |

! |

(b) First find the defining relation. Start with the generators. Multiply through by D on the
first generator to get I++ABD. Multiply through by E on the second generator to get
I++ACE. Multiply through by F on the third generator to get I—BCF. Now multiply
these three “I" relationships in pairs and all together to get 4 more:

I « (ABD)(ACE)
1« BCDE

I «+ (ABD)(BCF)
1 <+ ACDF

1 <+ (ACE)(BCF)
I «» ABEF

I — (ABD)(ACE)(BCF)
I «+ DEF

So the entire defining relationship is
I++ABD+ACE«+BCF «++BCDE«ACDF+ABEF «DEF.

Now, multiply through the defining relationship by A to get all the effects aliased with the
A main effect:

A~BD—CE~ABCF «+ABCDE~CDF—BEF —ADEF.

(a) Use the generator and multiply the appropriate columns.
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v}
(@)
o

E+ —CD

Combination

|
T |
(I

|+ + | I |
I 1 1 ++4+4+11
| I

o Sl IR S Ml o= (e (A s, -3 e 1 N, 1 A ] -
I

b

++
S S S L

| +4+++++++ 1 |

(1)
a
b
ab
ce
ace
bece
abce
de
ade
bde
abde
cd
acd
bed
abed

(b) Multiply through the generator by E to get I« —CDE. This design has resolution 3. The
standard choice of the half fraction has defining relation I«++ABCDE, so it is resolution 5.
The authors’ choice seems to be unwise because the C, D, and E main effects are all

(<)

.aliased with 2-factor interactions. The standard choice has main effects aliased only with

4- and 5-factor interactions. It may be hard to clearly see main effects using the authors’
design, especially if there are any 2-factor interactions involving C, D, and E. The
standard design only requires that 4- and 5-factor interactions be small in order to be able

to estimate any of the main effects.

Multiply through the defining relation by the various efiects to get the alias structure.

I++ —CDE

A++ —ACDE
B+~ —BCDE
AB+~ —ABCDE
C+ —DE

AC+ —ADE
BC+~ —BDE
ABC+~ —ABDE
D+~ —CE

AD+ —ACE
BD+s —BCE
ABD++ —ABCE
CD+ —E
ACD+ —AE
BCD+ —BE
ABCD+~ —ABE

Using this structure, the following differences of effects can be estimated:

H.... — Y0€222

ag — aybezrn

Bz — Bybeaaza
afizs — afybegaan
Y2 — bexg

aYaz — abeggn
Bryaa — Bbegae
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afiv222 — offbezan
b2 — yea2

abz; — ayean
Bbaz — Bryeazn
af3f222 — aByeaa
7622 — €2

aybaap — ez
Byb222 — Peas

afy8az22 — offean

(d) Using the Yates algorithm:

Comb i C1 C2 C3 C4 C4 =16 Diff. Estimated
(1) 037 077 .133 389 2,447 152938 p... —ydesns

a 040 056 266 2,058 -.335 -.020938 oz — ayleazn

b 014 163 1.213 027 567 -.035438 [, — Bybesan

ah 0432 093 B45  -362 -.057 -.003563 afz; —afybeazzaz
ce 063 .T11 031 -.091 -.245 -.015313 7y —bepg

ace 0o 502 -.004  -476  -.103 -.006438 o7 —adezan

bce 067 .566 -.147 -.053 -.107 -.006687 [Byu9 — Fleqa
abce 026 289 -.215 -.004 223 013938 ofy22 — afferza2
de 351 003  -.021 123 1.669 .104313 &3 — yenz

ade 360 028 -.0T0D -.368 -.389 -.024313 odby; — ayesnn

bde 2329 037 -.209 -.035 -.385 -.024063 by — Preaxs
abde 173 -.041 -.267 -.068 .049 003062 offiz — afvesnn:
ed 372 009 025 -.049 -.491 -.030688 b, — ez

acd .184 -.156 -.078 -.058 -.033 -.002063 avdazy — cezn

bed .158 -,188 -.165 -.103 -.009 -.000562 [y8322 — Gez2
abed 131 027 .161 .326 429 (026813 offvéa222 — affeans

The normal plot excludes the first estimate (.152938).

']

Standard Normal Quantiles
0

-0.04

The only point that plots far away from the others is the estimate of 3 — yez3. This
means that this difference is statistically detectable. There is no way of knowing if this is
due to the D main effect or the CE 2-factor interaction{sr bsth),

20. (a) Start with the generators. Multiply through by E on the first generator to get 1++BCDE.
Multiply through by F on the second generator to get I+ ACDF. Multiply through by G
on the third generator to get [++ABDG. Multiply through by H on the fourth generator to
get T+ ABCH. Now multiply these four “1” relationships in pairs, triplets, and all together |

0.0 002 0.04 006 008 0.10

Effect Estimate Quaniiles
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to get 11 more:

I «+ (BCDE)(ACDF)
I+ ABEF

I+ (BCDE)(ABDG)
I — ACEG

[ «+ (BCDE)(ABCH)
I« ADEH

[ ++ (ACDF)(ABDG)
1+ BCFG

[ «+ (ACDF)(ABCH)
I — BDFH

1+ (ABDG)(ABCH)
I ++ CDGH

I «+ (BCDE)(ACDF)(ABDG)
1 < DEFG

I « (BCDE)(ACDF)(ABCH)
1~ CEFH

I« (BCDE)(ABDG)(ABCH)
1+ BEGH

I «+ (ACDF)(ABDG)(ABCH)
1+ AFGH

I —+ (BCDE)(ACDF)(ABDG)(ABCH)
I« ABCDEFGH

So the entire defining relationship is

I—+BCDE~ACDF+—ABDG «—ABCH—ABEF«+—ACEG —+ADEH~BCFG
+~BDFH «+CDGH~DEFG~CEFH ++BEGH—AFGH«—ABCDEFGH.

(b) Using the Yates algorithm:
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Comb 7] C1 c2 C3 C4 C4+ 16 Sum BEstimated

{1) -.4425 -1.6414 -3.7226 -6.5962 -10.3753 -.64B456 ... 4 aliases

afgh -1,1989 -2.0812 -2.8736 -3.7791 -.0935 -.005844 «; + aliases

begh -1.4307 -1.9199 -1.8530 6496 8425  .052656 [3; + aliases

abef -.6505  -.9537 -1.8261 -.7431 -.1861 -.011631 afy; + aliases

cefh -1.4230 -1.2030 0238 5264 .8759  .060894 -, + aliases

aceg -4969  -.7500 .6258 3161 6305  .039406 a7aa + aliases

befg -.3267 -.8446 -.3858 .3102 8161  .051006 Brypp + aliases

abch -.6270  -.9815 -3573 -.4963  -4.5261 -.282881 ofy222 + 02 + aliases
defg -.3467  -.ThB4  -.4398 .8490 2.8171  .176069 &, + aliases

adeh -.B563 7802 9662 .1269 -1.3927 -.087044 @by, + aliases

bdfh -.4369 .9261 4530 6020 -.2103 -.013144 [B62; + aliases

abdg -.3131 -.3003 -.1369 .0285 -.8065 -.060406 afffza; + nz + aliases
cdgh -.6154 -.5006 1.56366 1.4060 -.7221 -.045131 62z + aliases

acdfl -, 2292 .1238  -1.2264 -.5899 -.5735 -.035844 aydazz + (3 + aliases
bede -.1190 .3862 6334 -2.7630  -1.9959 -.124744 [yda2z + €9 -+ aliases
abedefgh -.8625 -.7435 -1.1287 -1.7631 9999 062494 63327 + aliases

Note: €; represents the main effect of factor E, {; represents the main effect of factor F, ns
represents the main effect of factor G, and 8, represents the main effect of factor H. The
normal plot excludes the first estimate (-.648456).

None of the points are obviously larger than the others, but the two that stand out most
are the estimale of aFvz2; + 0; + aliases and the estimate of §; -+ aliases. This means
that these sums are marginally detectable. A simple tentative conclusion is that the main
effects of factors D and H are causing these estimates to be large. In the context of the
experiment, it seems that Susceptor Rotation and Nozzle Position are the primary factors
that determine uniformity. Based on the signs of these estimates, to minimize yq, set D at
its low level (continuous) and H at its high level (6). It is not easy to tell from the
description whether “6"” is more expensive than “2" for the Nozzle Position. It may be
more expensive to have continuous rotation than escillating rotation, but this is also

Standard Normal Quantiles

(4]

-0.3

0.2

-0.1

0.0

oA

Effect Estimate Quantiles

unclear from the problem description.

(¢) Using the Yates algorithm:
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21.

Comb i C1 C2 Cc3 C4 C4+ 16 Sum Estimated

(1) 14.821 29,709 ©57.626 115329 230.222 14.3889 ... + aliases

afgh 14.888 27.917 b57.703 114.883 -.538 -.0336 a3 + aliases

begh 14.037 28.025 57.262 -.231 -.874 -.0546 f3; + aliases

abef 13.880 29.678 b57.631 -.307 -.290 -.0181 afly; + aliases

cefh 14.165 28.004  -.090 -.139 .446 0279 7, + aliases

aceg 13.860 29.258 -.141 -. 735 378 .0236 aryp + aliases

befg 14.757 29.810 -.368 .245 .202 0126 [ryzz + aliases

abch 14.921 27.821 061 -.535 1.134 0709 afiyszs + 63 + aliases
defg 13.972 L0687 -1.792 077 -.436 -.0272 &; + aliases

adeh 14.032  -.157  1.653 .369 -.076 -.0048 ady; + aliases

bdfh 14.843  -.305 1254  -.051 506  -.0373 bz + aliases

abdg 14.415 164 -1.989 .429 -.780 -.0488 afidy; + n2 + aliases
cdgh 14.878 060  -.224 3.445 .292 0182  ~éy; + aliases

acdf 14,932  -.428 469 -3.243 480 0300  avybaz + (; + aliases
bede 13.907 .054  -.488 693  -6.688 -4180 Byb222 + €2 + aliases
abedefgh 13.914 007 -.047 441 -.252 -.0157 afyba222 + aliases

Note: €; represents the main effect of factor E, {; represents the main effect of factor F, n;
represents the main effect of factor G, and #; represents the main effect of factor H. The
normal plot excludes the first estimate (14.3889).

Standard Normal Quanliles

L]

-04

-03

0.2

-0.1

0.0

(a)

‘Effect Estimate Quantiles

The only point that plots far away from the others is the estimate of Gydz2z + €3 + aliases.
This means that this sum is statistically detectable. A simple tentative conclusion is that
the main effect of factor E is causing this estimate Lo be large. In the context of the
experiment, it seems that Deposition Time is the primary factor that determines average
thickness. Based on the raw data, it seems the high Deposition Time (E (—)) results in
thicknesses above target, and the low Deposition Time (E (+)) results in thicknesses
below target. There may be some intermediate time that will result in a mean thickness
close to target.

According to the table, the best possible resolution is 4. To figure out the resolution of
the students’ design, first determine the defining relation. Multiply through the first
generator by E to get [~+ABE. Multiply through the second generator by F to get
I++ACF. Now multiply these two “I” relationships to get a third:

1 <+ (ABE)(ACF)
I «+ BCEF

So the entire defining relationship is

l++ABE—ACF«BCEF.
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(b)

Since the shortest product in the defining relation has 3 letters, the students’ plan has
resolution 3, with some main effects aliased with 2-factor interactions. A resolution 4
design would have all main effects aliased with 3- or higher-factor interactions. In this
case, all main effects could be estimated if all 3-factor interactions were small. In the
students’ plan, several 2-factor interactions would need to be small (as well as all 3-factor

interactions) in order to estimate all of the main effects.

One possibility is E«+BCD and F++ABC (there are others). The defining relationship for
these generators is

[+-BCDE«ABCF« ADEF.

Since the shortest product in this defining relation has 4 letters, this plan has resolution 4.

(¢} Using the Yates algorithm: st M‘f‘m%
Jr (._\\ajﬂﬂ“

Comb g C1 C2 C3 C4 C4+ 16 Sum Estimated
ef 13.890 20.750 52.580 131.370 342.655 21.4159 ... + aliases
a 6.760 31.830 78.790 211.285 -22.835 -1.4272 a3 + aliases
bf 20.710 35.340 98.730 -24.150 32.585 2.0366 Gz + aliases
abe 11.120 43.450 112.555 1.315 1.555 0972 afaz + € + aliases
ce 19.610 49.470 -16.820 19.190  40.035 2.5022 -y, + aliases
acf 15.730 49.260 -7.330 13.395 12.985 8116 a2z + (2 + aliases
be 23.450 49.475  -1.090  -1.930 10.845 6778 B2z + aliases
abeef 20,000 63.080 2.405 3.486 6.815 4259  oBy222 + aliases
def 24.940 -7.230 11.080 26.210 79.915 4.9947 63 + aliases
ad 24530 -9.590  8.110 13.825  25.465 1.5916 adjz + aliases
bdf 24.970 -3.880 -.210 9.490  -5.795 -.3622 (3833 + aliases
abde  24.200 -3.450 13.605 3.495 5.415 3384 offbag; + aliases
cde 25.076  -.410  -2.360  -2.970 -12.385 -.7741 622 + aliases
acdf 24.400  -.680 430 13815  -5.995 -.3747 aybzyg + aliases
bed 30.000  -.675 -.270 2.790 16.785 1.0491  Bvy8a22 + aliases
abcdef  33.080  3.080 3.755 4,025 1.235 0772  affybaaza + aliases

(d)

Note: €3 represents the main effect of factor E, and ¢ represents the main effect of

factor F.

Healistically, you should try to catch the variability that might be caused by changing the
setups. One way to see this is to imagine that none of the factors have any effect on the
response. If this is the case, then the variability between conditions should be the same as
the variability within a condition. This is probably not the case here, since “replications”
consisted of consecutive runs, with no change in setup. It is likely that any estimate of
variability based on these replications will underestimate the true amount of variability
that would be experienced over time. Basically, since the setup was changed between
conditions, the estimate of baseline variation should be based on replications that have
had a setup change between them. This type of estimate would be appropriate for use in
confidence intervals. Using the given data, s, will be too small, and many effects will
(misleadingly) appear to be detectable.

Using equation (7-T), s, = .3706. The appropriate 1 is t = Q4(.95) = 2.132 from

Table B-4. The resulting 4+ part is

(2.132)(.3706) —

16
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(f)

(8)

Based on this standard, all but two of the sums of effects are detectable. Since s, is
underestimating the true baseline variability, these intervals should not be used to judge
detectability of effects; it gives “too many” detectable sums of effects.

The normal plot excludes the first estimate (21.4159).

o

-1

Slandard Normal Quantiles

| 0 1 2 3 Ll 5
Effect Estimale Quantiles

The only point that plots far away from the others is the estimate of 6; + aliases. This
means that this sum is statistically detectable. A simple tentative conclusion is that the
main effect of factor D is causing this estimate to be large. In the context of the
experiment, it seems that Extruder Screw Speed is the primary factor that determines the
amount of useful output. Based on the sign of this estimate, it seems that the “high” level
of Extruder Screw Speed should be used to maximize amount of useful output.

Any further data collection should focus closely on the effect of factor D, since the data
from this fractional factorial experiment suggest that factor D seems to be the most
important overall. Extruder Screw Speed seems to be a continuous variable, so line or
curve fitting methods might be applied to data collected from several levels of Extruder
Screw Speed. These methods could be used to predict an optimum Extruder Screw Speed.
“True” replications should be conducted to avoid the same problem as in part (d) of this
exercise. These replications would allow for the appropriate use of confidence, prediction,
and tolerance intervals.

(a) Use the generators and multiply the appropriate columns.
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tw
(9]
o
=

Fe+ —CD G+ —-AD H~ —ABCD

Combination

[
[
|
I

L4+ 4+ 11+ +1
| 44+ +
(I |
1%l |
|

L+ 4+ |
I
o i
Pl ++++++++1

b+t + 1+ 4+ 1+ +1+1

|44+ + 44+ +
I

L4+ L ++ 11 ++1 1 ++1
Pl l+4+++1 001 ++++1
I
| +4+++++++1 11|

FAH+ 1T FIF I FIHFVFEFELELELDHELFLED+0 0+ L
L Lok L4 40+ 0+

e ok o o o o
+4++++++F

+ + 1
+ 44+

L4+ t+ 1 ++1 0 ++1+11++1 1+ ++

I+ 0+ 1

(1)
agh
bh
abg
cfh
acfg
bef
abefgh
dfgh
adf
bdfg
abdfh
cdg
acdh
bedgh
abed
¢
aegh
beh
abeg
cefh
acefg
beef
abcefgh
defgh
adef
bdefg
abdefh
cdeg
acdeh
bedegh
abcde

(b) Start with the generators. Multiply through by F on the first generator to get I++ —CDF.
Multiply through by G on the second generator to get I+ —ADG. Multiply through by H
on the third generator to get I+ —ABCDH. Now multiply these three “I” relationships in

pairs and all together to get 4 more:
I —+ (—~CDF)(—~ADG)
1+ ACFG

I <+ (—~CDF)(~ABCDH)
1+ ABFH

I+ (~ADG)(—~ABCDH)
1+ BCGH

I <+ (~CDF)(—ADG)(—ABCDH)
[ «» —BDFGH

So the entire defining relationship is
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23.

(<)

(d)

()

(2)

lss —CDF++ —ADG+ —ABCDH ++ACFG+~+ABFH+~BCGH ~ —BDFGH.

Since the number of letters in the shortest product is 3, the resolution of this design is 3.
The best possible resolution is 4. If the engineers had used a resolution 4 design, they
would have done better at minimising the ambiguity. The resolution 3 design has some
main effects aliased with 2-factor interactions; a resolution 4 design would have no main
effects aliased with 2-factor interactions.

The linear combinations of effects that appear to be detectable are the ones whose
estimates are on lines 13, 17, and 29 of the Yates algorithm. Using the defining relation,
the estimate on line 13 is for

CD interaction—F main effect 4+ other aliases.
The estimate on line 17 is for

E main effect + other aliases.

The estimate on line 29 is for

CDE interaction -~ EF interaction + other aliases.

A tentative simple interpretation is that the dominant effects are the E and F main effects
and the EF 2-factor interaction.

The linear combinations of effects that appear to be detectable are the ones whose
estimates are on lines 17 and 25 of the Yates algorithm. Using the defining relation, the
estimate on line 17 is for

E main effect + other =liases.
The estimate on line 25 is for
DE interaction + other aliases.

A tentative simple interpretation is that the dominant effects are the E main  :ct and
the DE 2-factor interaction.

Based on the signs of the estimates, set E al its low level (Flux Type A857), F at its high
level (90 Direction), and D at its high level (6.1 Conveyor Angle). Note: the sign of the
estimate on line 29 of the Yates algorithm for y; suggests setting E and F both at their
high or both at their low levels. However, the main effects for E and F are much larger, so
they should be used primarily in trying to minimize the response.

The combinations dfgh, adf, dbfg, and abdfh all have the above combination of factor
levels. These 4 conditions do seem to produce smaller y; and y; values than the rest. A
follow-up study of these conditions should be done to validate the results of the
experiment, before any permanent changes are made.

The effect of shift is confounded with the effect of factor E. All runs with E low were
made on the first shift, while all runs with E high were made on the second shift.
Differences between the first 16 runs and the last 16 runs may be due to changing the level
of E, or changing shifta (or both), so the engineers did run the risk of clouding their
information about factor E's effect.
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24.

(b)

(c)

(b)

Label Shift as factor J, with the “low” level corresponding to the firsi shift and the “high”
level corresponding to the second shift. One possible generator for J is J—~ABE. The
resulting assignment of combinations is given below.

__shift 1 | shift 2
(1), abg, cfh, abefgh agh, bh, acfg, bef
dfgh, abdfh, cdg, abed adf, bdfg, acdh, bedgh
aegh, beh, acefg, beef e, abeg, cefh, abcefgh

adef, bdefg, acdeh, acdegh | defgh, abdefh, cdeg, abede

For example, the (1) combination has all of A, B, and E at their low levels, so J will also
be at its low level (1st shift).

Treat this as a 2°~* fractional factorial. Find the defining relation, and use the resulting
alias structure to interpret the estimates from the Yates algorithm. It may be possible to
assumne that there are no interactions involving J (Shift). If this is the case, all
interactions in the defining relation involving J can be dropped. Hopefully, Shift will not
have a large effect on the responses; if it does, the main effect of shift at least will not be
confounded with any, main effects or 2-factor interactions.

other
s, = 5.477 with 3 degrees of freedom associated with it. Using the Yates algorithm:

Combination § Cyclel Cycle2 Cycle3 Cycle3 + 8 Effect Estimated

6] 99 158 348 624 780 L.

a 59 180 276 -112 -14.0 a3

b 98 94 -46 120 15.0 &

ab 92 182 -66 84 10.5 afn

c 76 -40 32 72 90 7

ac 18 -6 88 -20 2.5 avYiz
be 95 -58 34 56 7.0 By
abe 87 -8 50 16 2.0 n!ﬁ"{zzz

Using equation (8-13), the appropriate ¢ is t = Q3(.975) = 3.182 from Table B-4. Here,
m = 1 and p = 3, so the =+ part of the confidence intervals is

(3.182)—317_ _ g.162.

V(1)(8)

Based on this & part, the intervals for a3, f2, @822, 72, and Bv2; do not contain zero, so
all of these effects are detectable. With two detectable interactions, no simple
interpretation of the results is obvious.

% Conversion of Butane
78 80 B2 84 B6 B8 B0

1.0 1.5 2.0 25 a0 35 4.0
Day
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The plot shows that y generally increased over the 4 days. It is difficult to tell if this is
really a trend, or just random variation, because there is only one observation per day for
only 4 days. If o = 5% is expected, then the increase over the 4 days is relatively large for
random variation. It is still possible that the plot represents random variation, though.
(All of these points could have been reasonably generated from a stable mean at 84%.) If
o 7= 1% is expected, then the increase over the 4 days is extremely large for random
variation. It would be unlikely that the plot represents random variation. In this case, the
increase might reasonably be considered a real trend.

(¢) Use the generators and multiply the appropriate columns.

A B C D~AB E~BC Combination Day
- =l = + + de 1
o= = = 1 ac 3
- 4+ = - - b 2
L + - abd 4
= geu=: L - cd 4
+ - + - = ac 2
- 4+ + = + bee 3
+. 4 & -+ + abede 1

(d) Multiply through the defining relation by the various effects.

I++ABD+BCE~—ACDE
A—~BD+«+ABCE«—CDE
B~ AD«CE~ABCDE
AB+~ D+« ACE—BCDE
C—ABCD+—BE—ADE
AC—BCD«ABE—DE
BC+—ACD«E+—ABDE
ABC—CD—AE~BDE

If there are no interactions with days, then the effects of the factors A, B, and C (main
effects and 2- and 3-factor interactions) are the same for each day. None of these effecis
change from day to day (although the mean may change due to a Day main effect). If
there are no interactions with days, then any interaction in the above alias structure that
involves D or E and another factor can be dropped. The simplified alias structure is then

I

A

B
AB+~D
C
AC—DE

BC+—E
ABC

(e) The normal plot excludes the first estimate (78.0).
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None of the estimates stand out on this plot. There is no indication that any of the sums
of effects are detectable.

(f) Using the Yates algorithm:

Combination §3 Cyclel Cycle2 Cycle3 Cycle3 + 8 Effect Estimated
(1) 21 =10 4 -64 -8 .
a -31 14 -68 -112 -14 &g
b 111 -82 -60 120 15 f;
ab 3 14 -52 104 13 af;
¢ -18 .52 24 .72 9
ac -69 -8 96 8 1 ey
be 5 -56 44 72 9 P
abc 9 4 60 16 2 afvzaz
The normal plot excludes the first estimate (—8).
n

5 L o

g

¢ 2

.E L]

Z wun .

B 9

il

-18 -10 -5 0 5 10 15
Estimated Effect Quantiles

None of these estimates stand out either. There is no indication that any of the
effects are detectable. The result of this analysis is not substantially different from the
analysis in part (e).
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(25) (a) S$*pocied = [ 0%+ (7.8)% + (4.9)° + (4.9)> + (B.4)* + (7.1)* + (B.4)% + (.7)*]/8

(b)
(c)

(d)
(e)

()

(9)

(h)

(26)(a)

= 30.21. S0, Spacled = 5.496. Spo0a estimates the standard
deviation (variability) of surface roughness for parts made at any one of
the 8 combinations of Speed, Feed and Tool Condition.

A = tgSpooied/ V2 = [(2.306)/(1.4142)]5.49636 = 8.96
¥,— ¥ =45.5-33=12.5, A = tgSpociea V1 = (2.306)(5.49636)(1) = 12.6746
for a 95% confidence interval estimate of p, - ny. Since

¥, — ¥ =12.5<12.675, we do not have strong evidence to conclude i, is
different from p;.

A = tsSpooied/ 1 2(2)° = (2.306)(5.49636)/4 = 3.16865.

4=131.875, a;=5, by = 92.375, c; =-3.75, abyp = -.25, acy=-2.875,
beze = -4, abeyy; = -1.875.

A, B, C and BC interactions are judged to be statistically detectable. The
absolute values of a;, bz, ¢; and bca, each exceed A = 3.168 from (d).
Initially, it seems the setting should be lo A (2500 rpm), lo B (.003 in/rev.),
and hi C (Used). If only main effects are considered, this setting will
minimize y and minimize cost. However, when considering the A, B and
C main effects with the BC interaction, lo A (2500 rpm), lo B (.003 in/rev)
and lo C (New) setting minimizes surface roughness but cost is higher
than for lo A, lo B, hi C and lo B/hi C interaction.

i +b;=131.875+ 92.375 =224 25.

1=80.125, a;= -.75, b, = 4.125, c; = -.875, d;= 2.375, aby; =-1.75,
acCzs= 1.5 aﬁzz e ?5, ngz = -2875, bdzz = -4125, Cd22= '3625*
abcgas = -3.5, abdaze= -.75, acdaze= 3, bedase= -2.625, abedazss= 4.

Normal Probability Plot Y1 Fitted Effects, Prob26a

e

| T | T ] T T | |
4 -3 2 -1 0 1 2 3 4

Ordered Y1 Fitted Effects
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It seems the B main effect, far most right point (b, = 4.125), is perhaps
somewhat "different" and the BD interaction, far most left point (bdy; = -
4.125), is somewhat "different". At high H; Flow (1000) (B main effect),
there seems to be a smaller "percent step coverage" than would be
expected if there was no B effect.

(b) [t=495.688, a;=-17.188, b, = 12.687, ¢, = -162.813, d»= -4.063,
aby = -6.188, acz:= 10.313, ads» =-3.188, bsz =-12.812, bdss = 9.9371
cdoo= "6.063, ab(:zzg = -1.888, abdng 1.813, acdag,= .813, dezgzz 6.438

L)

Normal Probability Plot Y2 Fitted Effects, Prob26b

g) ==
"
1 — ®
w
[
.
N 0 — -'
.
e
[
.
-1 — L[]
.
ol [0
| I | T
-150 =100 -50 0
Ordered Y2 Effects

abcdzzzz= -5.687. It seems there is one effect that is clearly different. This
one effect is the C main effect c; = -162.813. At the high level of C (25),
there is a significantly smaller "average" sheet resistance.

(c) The 8 treatment combinations that would have been run using the
generator D«> ABC or [ «> ABCD are:
1, ad, bd, ab, cd, ac, bc, abed.

a+ abedaaze= 490, a; + bedass= -10.75, by + acdzz= 13.5,

abgs + cdap= -12.25, ¢; + abdgs= -161, acy; + bdy, = 20.25,

becaz + adyp = -16, da + abey, = -5.75. Yes, these estimates equal the sum
of the estimates from (b) above for y; data.

(d) It seems the same conclusion would result with this analysis as was
determined in part (b) above based on the full 2* factorial. . At the high
level of C (25), there is a significantly smaller "average" sheet resistance.
Assuming no 3-factor interaction.
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Normal Probability Plot of Fitted Effects Prob 26d
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Ordered Y2 Effects

(27)(a) The following 16 combinations of levels of the 7 factors will be run:
e, af, bfg, abeg, cfg, aceg, bce, abcf, dg, adefg, bdef, abd, cdef, acd, bedg,
abcdefg.

(b) | =ABCDE=ABCF=BCDG=DEF=AEG=ADFG=BCEFG.

(c) The defining relation given in this part (c) is better because each main
effect is aliased with the sum of 7 three-factor interactions. The defining
relation in (b) has main effects aliased with the sum of 7 effects, some of
which are two-factor interactions. Thus, using the defining relation in (b)
makes it difficult to estimate the main effects whereas using the defining
relation in (c) permits one to estimate the main effects assuming the three

factor interactions are negligible (assuming two factor interactions are
negligible is very risky).

(28)(a) Using the defining relation / <> ABCDE , each main effect is aliased with
a four-factor interaction. Thus, it is not unreasonable to think of the
estimated sum of a main effect and four-factor interaction as just
estimating the main effect (assuming the four-factor interaction is zero).
Using the experimental plan (defining relation [ «> ABCE), each main
effect is aliased with only a three-factor interaction. It is not so obvious to
assume every three-factor interaction is negligible. Thus, estimating main
effects with this defining relation is less attractive (assuming three-factor
interactions to be zero is less appealing than assuming four-factor
interactions are zero).
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(b)

Normal Probability Plot of 15 Fitted Sums, Prob 28b

2 —

]
-8 -4 0

Ordered Effects

(c) From largest to smallest, left to right: D, B, C, A, E. This order is based
on the absolute value of the main effect plus an alias.

(d) Based on the normal probability plot above, it seems there is really only
one clear significantly different "sum of effects". In this problem, it is
d> + abedzops = -7.437.

(e) Setthe Aerosol (D) at the high level (.6%), the Method of Preparation(A)
at the low level (Usual), the Sugar Content at the low level (50%), the

antiobiotic level (C) at the high level (16%). Since it seems only D plus
alias is significantly different, the predicted value is [mean plus alias + D
plus alias] which equals 37.563 - 7.437 = 30.126.

() No, it doesn't seem there is a "C effect"”, so either antibiotic level would
have about the same effect.

(29)(a) df = 8(3)=24, s, = .118, A =t s, //4 = (2.064)(.118)/2 = .12154.

(b) mean + aliases = 1.42375
a, + aliases = - .02125
b, + aliases = .20125
c; + aliases = .06625
abs; + aliases = - .00875
acy; + aliases = - .32375
bes; + aliases = .12375
abcgg; + aliases = -.01125
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(c)  Using equation 8-13, A = tos sp/+/(4)2" = (2.064)(.118)/(5.65685) = .04305.

(d) b, + aliases = .20125, ¢, + aliases = .06625, ac;; + aliases = - .32375,
acy; + aliases = .12375 all exceed (in absolute value) .04305.

(e) de, aef, bdf, ab, cf, acd, bce, abcdef are the combinations of the
experimental factors A,B,C,D,E and F that were included in the
experiment.

(f) I <> ACD < BCE <> ABCF «> ABDE <> BDF <> AEF <> CDEF

(g) It seems the simplest explanation would be that there are important B,C, D
and E main effects (if we assume the all 2-factor and above aliases with
these main effects). The D and E main effects come from the fact that
acy; + aliases and acy; + aliases are significant and the alias structure
produces D and E main effects aliased with other 2-factor and above
interactions that are important.
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C'ha ter 9: Inference for Curve- and
Surface-Fitting Analysis of Multisample Studies

1. (a) See Exercise 3, Section 1, Chap. 4 for computations. Using equation (9-10),
1
P o = ——(26940.69) = 4490.116
JLF = 2(2 8940.6 } 4 11

50 spp = V4490.116 = 67.01, with 6 degrees of freedom associated with it. This measures
the baseline variation in molecular weight that would be observed for any fixed pot
temperature, assuming that model (9-4) is appropriate.

(b) The residuals were computed inEx 3, Sec 1, Ch 4. Use equation (9-12) to compute the
standardized residuals. 3 = 212.375, and ¥ (z — 2)* = 8469.875. The rest of the
calculations are summarized below,

S ¢ e
165 .78103 105.35535 2.01306
176 84781 -21.12558  -.37186
188 .89714 -60.10477  -.99982
205 83198 -97.57529 -1,56245
220 83174 16.95072 27150
235 .90253 14.47673 .23938
250 841356 42.00275 74503
260 77924 .02009 .00038
8 { ~

-50

-100

- -

180 200 220 240 260 180 200 220 240 260
Pal Temperature (deg C) V¥ Pol Temperature (deg C) x

The plots look almost exactly the same.

(c) This is §). Use equation (9-17). For 90% confidence, the appropriate t is
t = Qs(.95) = 1.943 from Table B-4. The resulting interval is

67.01

* +/8469.875
i = 23.49827+ 1.414696

, = [22.08,24.91).

23.49827 + 1.943

(d) Use equation (9-24). The appropriate { is the same as the one in part (c). The resulting
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interval for the mean at = = 212 is

1807.063 + 1.943(67.01) % + ﬁ_.éi;:?fs

1807.063 + 46.03471
[1761.03, 1853.10).

The resulting interval for the mean at = = 250 is

2699.997 + 1.943(67.01) % + _;:;3-:;;

2699.997 + 70.37134
= [2629.63,2770.37).

(e) Use equation (9-25). The appropriate f is f = Q¢(.90) = 3.46 from Table B -6-B. The

resulting interval for the mean at z = 212 is

1807.063 + /2(3.46)(67.01) % + é;::ﬁsvss

= 1807.063 + 62.32548
[1744.74, 1869.39)].

The resulting interval for the mean at z = 250 is

1415.641

2699.997 + /2(3.46)(67.01) % + 83169.875

2699.997 -+
[2604.72, 2795.27).

(f) Use equation (9-26). For a 90% one-sided interval, appropriate t is t = Qg(.90) = 1.440

from Table B-4. The resulting lower prediction bound at =z = 212 is

.140625

1
807.063 — 1. : i gL
1807.063 — 1.440(67 01)\/1 e

1807.063 — 102.346
1704.72.

I

The resulting bound for the mean at z = 250 is

1 1415.641

2699.997 — 1.440(67. o
ASUOT.DL )y 2 8 W 8469.875

2699.997 — 109.6846
= 2590.31.

(g) Use equation (9-27). For = = 212, first using equation (9-29) ,

1 .140625

A= + = .3535769.

8469.875
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(h)

2. (a)

Finally, using equation (9-30),

1.28 + (.3535769)( 1.645 )\/1 + 305 (z—?};ﬁ%@ ~ (1645 )a)
= s = 26787

1=

The resulting bound for z = 212 is
1807.063 — 2.6787 (67.01) = 1627.6.

For z = 250, first using equation (9-30),

1 1415.641
= = — | 2
A=1\3T 3a69.875 — ‘310498

Finally, using equation (9-30),

128+ (.5404982)( 1.645 ), /1 + 5y ( ) —(1.645 )‘)
7= : = 2,932
-0

The resulting bound for z = 250 is

2699.997 — 2.932 (67.01) = 2503.5

Using the general form given in Table 9-6.
Source . 88 df MS F
Regression 4676798 1 4676798 1041.58
Error 26041 6 4490
Total 4703739 7

The p-value is
P(an F) g random variable > 1041.58),

which is less than .001, according to Tables B-6 (Q;,6(.999) = 35.51). This is

overwhelming evidence that the mean average molecular weight is related to the pot

temperature. (The model used is an improvement over the model y = 8, + ¢.)

In Ex. 3, Sec. 1, Ch. 4, , by = —3160 and by = 4345.889. The necessary computations for sy p

(the residuals) are also given there. Using equation (9-10),
sip = 9—1—2[5010.539} = 715.84,

80 spp = V/715.84 = 26.755 psi, with 7 degrees of freedom associated with it. This

measures the baseline variation in 14-day compressive strength that would be observed for

any fixed water/cement ratio, assuming that model (9-4) is appropriate. Using

equation (7-7), s, = 26.890 psi. These two estimates are very close, giving no indication
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(b)

Residuals

Residuals

that the model is inappropriate.

The residuals were computed ingx 3, Sec 1, h 4, Use equation (9-12) to compute the
standardized residuals. £ = .50, and 3 (= — £)? = .015. The rest of the calculations are

summarized below.

e &

(z-.50)°

z - B 1 € €
A5 .B498 30,1111 1.3243
.45 .B498 -10.8889  -.4789
.45 .8498 -.8889 -.0391
.50 9428 -22,8889  -.9074
.50 .9428 13.1111 5198
.50 9428 -26.8889 -1.0660
.55 8498 44.1111  1.9400
Db 8498 -.8889  -.0391
.55 .B498 -24.8889 -1.0946
=) = 5 -
= @
_E -
5 =
- _E P
=] - - 'E <=
-
' :
g. . . @ =] -
0.46 0.48 0.50 052 054 0.46 0.48 0.50 0.52 0.54
Water/Cement Ratio , x Water/Cement Ratio , >
<
g1 "l I
- g -
! g e
N -—
=] L é g - T
- E .
g . - L Q .

2600 2650 2700 2750 2800 2850 2900
A
Fitted Values,\;

383

2600 2650 2700 2750 2800 2850 2900
A
Fitted Values , &

Chapter9




13
15

05

05

Standard Normal Quanliles
i -0, 0.5
Standard Normal Quantiles

-1.5

-1.5

-20 0 20 40 -1.0 05 00 0.5 1.0 1.5 20
Residual Quantiles Standardized Residual Quantiles

For each of the three types of plots, the residuals and standardized residuals look almost
exactly the same.

(c¢) First make a confidence interval for 1, and then multiply the endpoints by .1. Use
equation (9-17). For 90% confidence, the appropriate ¢ is t = Q7(.95) = 1.895 from
Table B-4. The resulting interval for 3, is

—3160.0 = 1;395%

V.015
= —3160.0+ 413.9729

= [-3573.973, —~2746.027] psi.

Multiplying each endpoint by .1, the resulting interval for .18 is [~357.4, —274.6] psi.
(d) This can be done using the test statistic (9-16) or with (9-34). Using (9- 16},

1. Hp: By = 0.

2. Ha: By #0.

3. The test statistic is given by equation (9-16), with # = 0. The reference distribution is
the i distribution. Observed values of t far above or below zero will be considered as
evidence against Hg.

4. The samples give

—3160.0
= g7 = 1441

018
5. The ohserved level of significance is
2P(a ty random variable < —14.47)

2P(a t; random variable > 14.47)
2(less than .0005)

which is less than .001, according to Table B-4 (14.47 is greater than Q(.9995) = 5.408).
This is overwhelming evidence that the mean compressive strength is related to the
water/cement ratio. (The given model is an improvement over the model y = o + €.)

Using (9-34),

Hﬂ: ,61 =ik
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()

()

2. Ha: B1 #0.

3. The test statistic is given by equation (9-34). The reference distribution is the Fy 7
distribution. Large observed values of F' will be considered as evidence against Hg.

4. The samples give SSE = (n - 2}{3LF]: 5010.889 and SSTot = 154794.9, so

S5R = 55Tot - S5E = 149784,

5 L9784
T 715.84

= 209.24.

5. The observed level of significance is

P(an Fy 7 random variable > 209.24)

which is less than .001, according to Tables B-6 (208.24 is greater than Q(.999) = 29.24).
This is overwhelming evidence that the mean compressive strength is related to the
water/cement ratio. (The given model is an improvement over the model y = So + ¢.)

Note that the F statistic is equal to the square of the ¢ statistic.

Use equation (9-24). For 85% confidence, the appropriate ¢ is ¢t = Q(.975) = 2.365 from
Table B-4. The resulting interval for the mean at z = .5 is

]

2765.889 + 2.365(26.755) % + TiE

2765.889 + 21.09202
[2744.8, 2787.0] psi.

Use equation (9-26). The appropriate ¢ is the same one used in part (e). The resulting
prediction interval al =z = .5 is

2765.889 + 2.365(26.755)4/1 + + + ——

9 015
= 2765.889 + 66.69884
[2699.2, 2832.6] psi.

Use equation (9-27). For 2 = .5, first using equation (9-29),

0
+ — =.3333.

1
4=Vt o

Finally, using equation (9-30),

1.28 4 (.3333)(1.645 )y [1+ 3t (%g;, —(1.645 ]’)

T= I—L:IE?P

The resulting bound for 2 = .5 is

= 25136

2765.889 — 25136 (26.755) = 2698.63 psi.
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Section 1. (a) Using equation (9-40),
2
; 1

and so sgp = v/.002187619 = .0468 sec. This can also be read from the following Minitab
Version 9.1 output. sgp measures the variation in elapsed time for any fixed jetting size,
assuming that the given model is appropriate.

MTB > brief = 3
MTB > print c1-c3

ROW Time JetSize xsq

1 14.90 66 4356
2 14.67 68 4624
3 14.50 70 4900
4 14.53 T2 5184
5 14.79 T4 5476
6 15.02 76 BITE

MTB > regress cl 2 c2 c3;

SUBC> fits c4;

SUBC> residuals c5;

SUBC> sresiduals c6.

* NOTE *» JetSize is highly correlated with other predictor variables
* NOTE # xsq is highly correlated with other predictor variables

The regression equation is
Time = 104 - 2.53 JetSize + 0.0178 xsq

Predictor Coef Stdev t-ratio P

Constant 103.989 §.633 10.80 0.002

JetSize -2.5343 0.2718 -9.32 0.003

xsq 0.017946 0.001914 9.38 0.003

s =\0.04677 R-sq = 96.9% R-sq(adj) = 94.9%

Sse

Analysis of Variance

SOURCE DF S5 M5 F P

Regression 2 0.20639 0.10318 4T .17 0.005

Error 3 0.006586 0.00219

Total & 0.21205

SOURCE DF SEQ S8

JetSize | 0.01400

xsq 1 0.19239

Obs. JetSize Time Fit Stdev.Fit  Residual St.Resid
1 66.0 14.9000 14.9036 0.0424 -0.0036 ~0.18
2 68.0 14.6700 14.6447 0.0259 0.0253 0.65
3 70.0 14.5000 14.5294 0.0285 -0.0204 -0.79
4 T72.0 14.5300 14.6577 0.02856 ~-0.0277 -0.75
5 T4.0 14.7900 14.720986 0.0269 0.0604 1.55
6 76.0 15.0200 15.0450 0.0424 -0.0250 -1.26
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MTB > name c4 ’'fits’ cb ‘resids’ c6 ’stresids’

MTB > print cl-cé

ROW Time JetSize xsq fits resids stresids
1 14.90 66 4356 14.9036 -0.0035715 -0.18070
2 14.67 66 4624 14.6447 0.0252887 0.64948
3 14.50 70 4800 14.5294 -0.02042856 -0.79361
4 14,53 T2 5184  14.5577 -0.027714T7 -0.74738
B 14.79 74 5476 14.7296 0.0604286 1.55216
6 15,02 76 5776 15.0450 -0.0249996 -1.26486
(b)
g -
5% o
L
7}
2 g &
g3 g o
& e
- ﬁ
3 5 :
& .
= . o = .
66 68 70 72 74 76 66 68 70 72 74 76
Jetling Size | X Jetting Size | ¢

There is a slight difference. The large positive residual is less extreme after it has been
standardized. One of the negative residuals is more extreme after it has been standardized.

(¢) Use equation (9-47) and the Minitab printout. The appropriate t is t = Qa(.95) = 2.353
from Table B-4. The interval for Gy is

The interval for 8, is

The interval for 3; is

I

103.989 -+ 2.353(9.633)
103.989 + 22.66645
[81.3,126.7].

—2.5343 + 2.353(.2718)
~2.5343 -+ .6395454
[~3.17, —1.88).

017946 + 2.353(.001914)
017946 + 004503642
[.0134, .0225].

(d) Use equation (9-53) and the Minitab printout. The appropriate ¢ is the same one used in

part (c). For z = 70, the interval is

14,5204 4 2.353(.0285)
14.5284 4+ 0670605
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(f)

(8)

[14.46,14.60] sec.
For z = 76, the interval is

15.0450 4 2.353(.0424)
15.0450 + .0987672
= [14.95,15.14] sec.

il

Use equation (9- 54) and the Minitab printout. The appropriate f is f = Q3,3(.90) = 5.39

from Table B-6-B. For z = 70, the interval is

14.5294 + /(3)(5.39)(.0285)
= 14.5294 + 114604
= [14.41, 14.64] sec.

For z = 76, the interval is

15.0450 + +/(3)(5.39)(.0424)

= 15.0450 4+ ,1T043%9
= [14.87,15.22] sec.

Use equation (9-56). For a 90% one-sided interval, construct an 80% two-sided interval
and use the lower endpoint. For an 80% two-sided interval, the appropriate ¢ is
t = @3(.90) = 1.638 from Table B-4. The resulting lower prediction bound at z = 70 is

14.5294 — 1.638,/(.04677)? + (.0285)?
= 14.5204 — 08971221
= 14.44 sec.

For = = 76, the interval is

15.0450 — 1.638+/(.04677)? + (.0424)?
= 15.0450 — .1034043
= 14.94 sec.

Use equation (9-58). For z = 70, A = 2285 = .609365.
p= .90,

Finally, using equation (9-57)

1.28 + (.608365)(1.645 }\/1 + (I{%F,J;Ef‘,, —(1.645 )n)

T.=

1- L4t

The resulting bound for = = 70 is

14.5294 — 44011 (.04677) = 14.32 sec.
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Forz=176,4=

0424 _
0424, — 906564.

Finally, using equation (9-57)

1.28 + (.906564)( 1.645 )\/1 + sy (chual — (1645 )2)

1~Ua§r‘-*3-§-13

= = 4.88

The resulting bound for 2 = 76 is

15.0450 — 4,88  (.04677) = 14.82 sec.

(h) The ANOVA table is in the Minitab printout. This hypothesis means that the mean
Elapsed Time is not related to Jetting Size, The p-value for the test is .005. There is very
strong evidence that the quadratic model is an improvement over a model in which the
mean of Elapsed Time does not depend on Jetting Size (y = By + €).

(i) Use equation (9-46) as the test statistic. The observed value of T is t = 9.38, and the
p-value is .003 (both numbers can be found on the Minitab printout). This hypothesis
means that Elapsed Time depends only linearly on Jetting Size (no curvature). There is
strong evidence against this hypothesis; the addition of the quadratic term is an
improvement. (The model y = o + B1z + Baz? + € is an improvement over
y=po+hz+e)

(2) The following output is from Minitab Version 9.1.

MTB > brief = 3
MTB > print cl-c3

ROW SurfArea YNaOH Time

W~ e Wk =

5.956 3 30
5.60 3 60
5.44 3 80
6.22 ] 30
5.85 9 80
5.61 9 90
8.36 15 30
7.30 15 60
6.43 15 80
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MTB > regress cl1 2 c2
SUBC> fits c4;

SUBC> residuals c5;
SUBC> sresidnals cf;
SUBC> predict 10 70.

The regression equati

c3;

on is

SurfArea = 6.05 + 0.142 YNaOH - 0.0169 Time

Predictor Coef

Constant 6.0483

YNa0H 0.141867

Time -0.016944

s =(D.4851 R-s8q
R Sg¢

Analysis of Variance

Stdev t-ratio P
0.5208 11.61 0.000
0.03301 4.29 0.006
0.006601 -2.57 0.043

= 80.7% R-sq(adj) = 74.2%

F
12.51

SOURCE DF S5 MS

Regression 2 5.8854 2.9427

Error & 1.4118 0.2353

Total g 7.2972

SOURCE DF SEQ SS

#NaOH 1 4.3350

Time 1 1.5504

Obs . %NaDHE  SurfArea Fit Stdev.
i 3.0 5.950 5.965 0
2 3.0 5.600 5.457 0
3 3.0 5.440 4.948 0
a 9.0 6.220 6.815 o]
5 9.0 5.850 6.307 0
6 9.0 5.610 5.798 0
T 15.0 8.360 7.665 0
8 15.0 T.300 T.1567 0
9 15.0 €6.430 6.648 0

Fit Stdev.Fit 96% C.1.

6.279 0.178 ( 5.844, 6.714)
MTB > name c4 'fits’ cb 'resids’ c€ 'stdres’
MTBE > print ci-c6

ROW SurfArea %NaOH Time fits

1 5.95 3 30 5.86600 -0

2 5.60 3 60 5.45667 O

3 5.44 3 90 4.848B33 0O

4 6.22 g 30 6.81600 -0

5 5.85 a 60 6.3086T7T -0

6 5.61 9 80 B.79833 -0

T 8.36 15 30 7.66500 0

8 7.30 15 60 7.15667 0

9 6.43 15 80 6.64833 -0

360

X
0.007

Fit Residual St.Resid
323 -0.015 -0.04
. 268 0.143 0.35
.323 0.492 1.36
. 256 -0.5956 -1.44
.162 -0.457 =1.00
. 256 -0.188 -0.46
.323 0.695 1.92
. 266 0.143 0.35
323 -0.218 -0.60

98% P.I.

( b5.014, 7.543)
resids stdres
.015000 -0.04149
.143333 0.34770
. 491667 1.35887
.505000 -1.44335
. 456666 -0.99854
.188333 -0.45886
. 695000 1.922286
.143333 0.34770
.218334 -0.60388
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sgp = -4851 cm®/g. Assuming that the model is appropriate, this measures the variation
in Specific Surface Areas for a fixed NaOH/Time condition.

(b)
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o . E .
- m .T.
w < .
&
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For each of the three types of plots, the residuals and standardized residuals look almost
exactly the same.

(c) Use equation (9-47) and the Minitab printout. The appropriate ¢ is t = Qg(.95) = 1.943
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(d)

(e)

from Table B-4. The interval for 5y is

6.0483 + 1.843(.5208)
= 6.0483+1.011914
= [5.04,7.06].

The interval for 8, is

14167 + 1.943(.03301)
= .14167 + .06413843
[.078, .208].

The interval for G is

—.016944 + 1.943(.006601)
—.016944 4 01282574
= |[-.0298,—.0041].

I

Use equation (9-53) and the Minitab printout. The appropriate £ is the same one used in
part (¢). For z; = 9.0 and z; = 60, the interval is

6.30667 + 1.943(.162)
6.30667 + .314766
= [5.99,6.62] cm?/g.

For 21 = 10.0 and z3 = 70, the interval is

6.279 + 1.943(.178)
6.270 4 345854
= [5.93,6.62] cm®/g.

Use equation (9-54) and the Minitab printout. The appropriate f is f = Q@3,6(.90) = 3.29
from Table B-6-B. For z; = 9.0 and z; = 60, the interval is

6.30667 + /3(3.29)(.162)

6.30667 = .5089482
[5.80,6.82] cm® /g.

For z; = 10.0 and =5 = 70, the interval is

6.279 + 1/3(3.29)(.178)

6.279 + 5692147
= [5.72,6.84] em?/g.

i)

Use equation (9-56). For a 90% one-sided interval, construct an 80% two-sided interval
and use the lower endpoint. For an 80% two-sided interval, the appropriate 1 is
t = Qe(.90) = 1.440 from Table B-4. For z; = 9.0 and =3 = 60, the bound is

6.30667 — 1.440,/{.4851)2 + (.162)2
6.30667 — .7364668
5.57 cm® /g.
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For z; = 10.0 and z5 = 70, the bound is

6.279 — 1.440+/(.4851)? + (.178)?
6.279 — .7440858
= b5.53cm’/g

(g) Use equation (9-58). For z; = 9.0 and z; = 60, A = <182 = 3339518,

Finally, using equation (9-57)

1.28+ (.3339518)( 1.645 )y/1+ ofsy (rddsielay — (1645 )?)

e

The resulting bound for z; = 8.0 and =3 = 60 is

= 2.65547

T=

6.30667 — 2.65647 (.4851) =6.018cm” [g.

Forz; = 10.0and 23 =70, 4 = _—'% = .3669347.

Finally,
using equation (9-57)

1.28 + (:3869347)( 1.645), /1 + gy (el — (1645 )2
B = 2.69495

e

The resulting bound for z; = 10.0 and z3 = 70 is

6.279 —2.69495 (.4851) = 4.97 cm®/g.

(h) The ANOVA table is in the Minitab output. The p-value is
P(an Fy random variable > 12.51),

which is equal to .007, from the Minitab printout. This is very strong evidence that the
model used is an improvement over a model which does not depend at all on NaOH and
Time (y = By + €).
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Section 3
.. (2) The following printout comes from Minitab Version 9.1.

MTB > info cl-¢7

Column Name Count
C1 Increase 48
€2 Time 48
€3 Temp 48
c4 InTime 48
c5 1nTimeSq 48
C6 TempSq 48
C7 x2*]1nx1 48

MIB > brief = 3

MTB > regress cl 5 ¢4 ¢3 ¢5 c6 cT;

SUBC> fits c9.

* NOTE * InTime is highly correlated with other predictor variables
* NOTE # Temp is highly correlated with other predictor variables
% NOTE * TempSq is highly correlated with other predictor variables

The regression equation is
Increase = 31.4 + 7.43 InTime - 0.0810 Temp - 0.276 1nTimeSq
+ 0.000048 TempSq -~ 0.00660 x2+1lnxi

Predictor Coef Stdev t-ratio P
Constant 31.40 25.85 1.21 0.231
InTime 7.430 1.683 4.42 0.000
Tenp -0.08101 0.05380 -1.51 0.140
InTimeSq -0.2760 0.1185 -2.33 0.025
TempSq 0.00004792 0.00002810 1.71 0.098
x2*1nx1 -0 .006596 0.001481 -4 .45 0.000
8 = R-sq R-sqladj) = 698.1%
Sse

Analysis of Variance 1='R‘
SOURCE DF ss ME F p
Regression 3 416,845 83.369 22.00 0.000
Error 42 159.134 3.789
Total a7 575.979
SOURCE DF SEQ 55
1nTime 1 124, 649
Temp i 185.504
1nTimeSq 1 20.687
TempSq i 11.021
x2+1Inx1 1 75.114
Obs. 1nTime Increase Fit Stdev.Fit Residual St .Resid

13 3.91 3.000 1.454 0.687 1.548 0.84
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MTB > name c¢9 'fits(a)’
MTB > delete 1:12 c9

MTB >

info cll-cl7¥

Column Hame

c11
ci12
c13
Cl4
Ci5
Cc16
Cc17

MTB >
SUBC>

MIB >

MTB >

=
(=]
00~ ;Oe W -

W oW WL WG NRMNRNN RN RK B R e R e A e e e
s WO O0~00md WN O OO0 0E W=D

dIncr
dTime
dTemp
dlnTime
dinTimsg
dTempSq
dx2+1nx1

regress cll b ci4 c13 ci1b cl16 ¢17;

fits c19.

Count

name ¢19 ‘fits(b)’

print c9 ci19

fits{a) fits(b)

1.45433 2,22387

1.45433  2,22387

1.45433  2.22387
-1.0811T -0.76871
-1.08117 -0.78B71
-1.08117 -0.75871
-2.686832 -2.T4129
-2.65833 -2.74129
-2.65833 -2.74129
=3.27717 -=3.72387
-3.27T1T =3.T2387
-3. 27747 —8.72387

1.11395 1.08060

1.11395 1.08060

1.11386 1.08060
-2.14622 -2.30647
-2.14622 -2.30647
-2.14622 -2.30647
-4.44806 -4.69353
-4 . 44806 -4.69353
-4 ,44806 -4.69353
-5.79157 -6.08060
-5.79187 -6.08060
=5,79157 -6.08060
-0.02430 -0.33781
-0.02430 -0.33781
-0.,02430 -0.33781
-4 .07864 -4.16816
-4.,07864 -4.16816
-4.07864 -4.16816
-T.17T466 -6.99851
-7.17465 -6.99851
=7.17465 -6.99851
-9.31232 -B.82886
-9.31232 -8.82886
-9.31232 -8.82886

36
a6
36
36
36
36
36
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R? = 724, sqp = 1.947, and 3, = 2.136. (The first two values were read from the Minitab
printout, and the third value was computed using equation (7-7).) Since
sgp = 1.947 < 5, = 2.136, there is no indication that the model is inappropriate.

(b) The fitted values from each model are given in the Minitab printout. Factor-level
combinations have fitted values which differ by as much as .77. This is a relatively large
difference.

(c) Using Minitab,

MTB > grid c31=780:1120, ¢c30=0,6.31

MTB > name ¢30 ’lnxi* ¢31 "x2

MTB > let ¢32 = 31.40 + 7.430+#c30 - .08101#c31 - .2760%c30%%2 + &
CONT> .00004792%c31%%2 - _006596#%c30%c31

MTB > contour c32 c31 ¢30

A =wkek -0 6 B =-B.4,-7.2 C =-6.0,-4.8
D =-3.6,-2.4 E =-1.2, 0.0 F=1.2 2.4

= sa»ierasriesss s ERBREREE . v pDDDD, , , , ,CCCC. . .BBB, , ,A

~ yussrssss EEEEEEEEEEEE. .. . ... DDDDDD, , , ,CCCC. . . . BEB, ,,

1080+ EEEEEEEEEEEEEEEEEEEEE........ bpppbd,,,,,CCCC....BBB,,

- EEEEEEEEEEEEEEEEEEEE.......... bpppDD, , ,,,CCCC....BBEB

x2 = .. .EEEEEEEEEEEEEEEE. ., . .cuvoun ppppDRD, ,,,,CCCCC....BB

= S smeleey REEEEEEEEEE. . .. ...0v oo bpbppDD,,,,.CCCCC....

TV WS T A P BEEERREE. .. . oviswiess bopppDD, ,,,,CCCCC..

Q00 ..ol ie v EEEEEEEEEEE. ............ bppoop, ,,,,,CCCC

=) v e e EEEEEEEEEEEEEEEEE. .......... ppppoDD, ,,,.C

AR e EEEEEEEEEEEEEEEEEEEEEEE. .. ...... bppbpDD, , ,

~ DO v e EEEEEEEEEEEEEEEEEEEEEEEEEEEEE. ....... DDDDD

= DD EEEEEEEEEEEE, ,, , 54+ s+, EEEEEEEEEEEE.......

840+ DD...... EEEEEEEEE"IlillllJlPtlllPt#lllll!ilEREEEEBEE'

= PR v EEEEBEE, ;s s 35355 33+ s FEFFEFEFFFFF ;535532453 3:BB

- D.....EEEEEE,,,,,,,,FFFFFFFFFFFFFFFFFFFFFFFFFFFFFF, ,,

B Fmm—————— A et et b =1 %1
0.00 1.20 2.40 3.60 4.80 6.00

Here's another plot using the 8-Plus function “contour™:

s [
o £ \\\B
"8

gl d o T

log{x1)

The region where tempering seems to provide an increase in hardness is the region in
which § is positive. This is the lower-right part of each of the contour plots.
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(d) (i) Use equation (9-53) and the Minitab printout. The appropriate ¢ is
L = Q42(.975) =~ 2.018 from Table B-4. For z; = 50 and z; = 800, the interval is

1.454 4 2.018(.657)
1.454 + 1.325826
[.13, 2.78].

|

(ii) Use equation (9-56) and the Minitab printout. The ¢ is the same as the one used in
part (i). The resulting prediction interval at z; = 50 and z; = 800 is

1.454 & 2.018+/(1.947)% + (.657)?
1.454 & 4.146712
[~2.69, 5.60].

1l

I

(iii) Use equation (9-58). For z; = 50 and z; = 800, 4 = ;2L = 3374422

Finally,
using equation (9-57)

1.28 + (.3374422)( 1.645 )‘/1 Tk (r;,.l;.,%%’;m — (1645 )’)

F] = 1.93476
- zi;leL

The resulting bound for z; = 50 and z; = B0O is

=

1.454 —1.93476 (1.947) = —2.313

(a) The following output was obtained from Minitab Version 9.1.

MTIE > print c3-c6

ROW y xa2 xb2 xc2
1 1.0 =1 e =3
2 1.0 1 =3 =1
3 1.2 1 -1 =1
4 0.2 =1 1 -1
5 0.5 1 1 =%
6 0.8 1 b | 1
T 0.7 -1 =1 1
g 1.1 1 -1 1
9 0.2 =T 1 1

10 0.3 =1 1 1
11 0.5 1 1 1
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MTB > regress c3 2 ¢4 c5;

SUBC> fits <T;
SUBC> residuals c8;
SUBC> sresiduals c§.

The regression equation is
y = 0.674 + 0.124 xa2 - 0.309 xb2

Predictor Coef Stdev
Constant 0.02928
xa2 0.02928
xb2 0.02928
s = 0.09623 R-sq = 94.6U

Analysis of Variance

SOURCE DF
Regression 2
Error 8
Total 10
SOURCE DF
xa2 i
xb2 1

MTB > name c7 ’fits’
MTB > print c3-c9

ROW xa2

-

s
O W oo~ e W0 -
0000 DOOKFER
MWK~ ooNNNo o
I
[y

=~
(s

S5
1.29502
0.07407
1.36908

SEQ S5
0.26208
1.03293

0
0

t-r
2

-1

atio
3.02
4.24
0.56

P
0.000

0.003
0.000

R-sqladj) = 83.2}

MS
.64751
.00926

F
69.93

c8 'resids’ ¢9 'stresids’

xb2 xc2
-1 -1
=1 -1
-1 -1
1 =1
1 =%
=1 1
=3 1
-1 1
i 1
1 1
| i

(= - B = - B =B = N~

fits

.86926
.10741
.10741
24074
.48889
.B5926
.869286
.10741
.24074
.24074
. 48889

resids

-140741
.107407
.092593
. 040741
011111
. 040741
.168258
.007407
.040741
. 0698259
.011111

0.

P
000

stresids

.68841
. 29682
.11803
.49183
14142
. 491393
.92302
. 08944
.49183
.T1664
. 14142

The estimate of p... is .67407; the estimate of oy is .12407; the estimate of §; is -.30926.
See Ex. 10, Ch. 8 for the fitted effects obtained using the Yates algorithm. The estimates
based on the few-effects model are slightly different than the estimates based on the full

model.
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(b) The following plots use the standardized residuals.

(]
E -
Rk |- |
° o : 'g = v -
2w £~
& oA |
v L o Ls )
Standard New O1% e
Folymer Type , 4 Palymer Concentration 3 B
% - % Ll
g T - l-E T -
@
@ — -7} !
m . - {t -
‘g < o ‘E * 0
il |3
& . g *
w w
L : o J
2 |bs 12 1bs. 0.6 08 1.0
Additive Amount | C Fitted Values , §
g
§; E
= .
g 5
-1 Q 1

There is some hint of a pattern in the plot of Standardized Residuals versus levels of C,
indicating that the amount of additive may be having a small effect that the model is not &
accounting for. Otherwise, the residuals do not provide any evidence that the modelis
inadequate.

of fit.

Standardized Residual Quantiles
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End Chapter Exercises

1. (a) The following output is from Minitab Version 9.1.

MTB > brief =

3

MTB > primt cl-cb

ROW GrainSz

1 5
2 6
3 ]
4 14
5 7
6 2b
i 29
8 38
9 60

Temp

1443
1443
1443
1483
1483
1493
1543
1543
1543

Time

20

120

1320

20

120

1320

20

120

1320

105Time

.88573
.78749
.185639
.89573
.T8749
.18538
.99573
.T8T749
.185638

=l s B =~ B B~ e K

MTB > regress cl 3 c2 c4 cb;
SUBC> predict 1500 6.214608098 9321.912148.
* NOTE * logTime is highly correlated with other predictor variables
* NOTE * x1%*1nx2 is highly correlated with other predictor variables

The regression equation is

GrainSz = - 42 + 0.031 Temp - 93.7 logTime + 0.0653 x1*1nx2
Predictoer Coef Stdev t-ratio r
Constant -42.4 165.0 -0.26 0.808
Temp 0.0311 0.1105 0.28 0.790
logTime -93.72 31.27 -3.00 0.030
xi*lnx2 0.06526 0.02083 3.12 0.026
s = R-sq = 96.2% R-sq(adj) = 93.9%

Se¥
Analysis of Variance
SOURCE DF 55 MS F P
Hegression 3 2461 .40 820.47 42 .37 0.001
Error 5 96.82 19.36
Total 8 2558.22
SOURCE DF SEQ S5
Temp : 1908.17
logTime 1 365.06
x1*1nx2 i 188.17

370

xi#1nx2

4322,
6908.
10368.
4472.
T147.
10727,
4622,
T387.
11087.
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Obs. Temp GrainSz Fit Stdev.Fit Residual St.Resid

1 1443 5.00 3.83 3.586 1.17 0.45
2 1443 6.00 4.83 2.34 1.37 0.37
3 1443 9.00 5.T1 3.77 3.29 1.45
4 1493 14.00 15.18 2.25 -1.16 -0.31
5 1493 17 .00 21.81 1.48 -4.81 -1.16
6 1493 25.00 30.70 2.38 =5.T0 -1.54
T 1543 29.00 26.49 3.566 2.51 0.97
8 1543 38,00 38.98 2.34 -0.98 =0.26
9 1543 60.00 55.70 3.77 4.30 1.89
Fit Stdev.Fit 95% C.I. 954 P.I1.
30,186 1.83 ( 25.46, 34.86) ( 17.90, 42.41)
sgp = 4.401 pm.
{b) For @, = 1443, the equation is

4 = -—42.4+4 .0311(1443) — 93.72In =23 + .06526In 33(1443)
= 24773+ .45018Inz;.

For z; = 1493, the equation is

§ = -42.4+ .0311(1493)— 93.72Inz; + .06526 Inz(1493)
4.0323 + 3.71318 In 2,

I

For z; = 1543, the equation is

§ = —42.4+4 .0311(1543)— 93.72Inz; + .06526 In z3(1543)
= 5.,5873 4 6.97618 In=z;.

2 Key 1=1443 K
] 2 =493 K
o 3 = 1543 K
&
3 4 5 6 T
In(2)

Complex models will always fit the given data well, but may not be good predictors of
future process performance, especially for z’s which were not used to fit the model. With
so little data, it is difficult to tell if the fitted model is appropriate, so one should be very
cautious about interpolating or extrapolating. The largest source of error in predictions
(which statistical intervals cannot account for) is bound to be from an inappropriate
model, not from variability (which statistical intervals do take into account).

(c) Use equation (9-53) and the Minitab printout. The appropriate t is t = Q5(.975) = 2.571
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(d)

(¢)

(f)

(8)

(a)

(b)

(€)

from Table B-4. For z; = 1493 and z; = 120, the interval is

21,81+ 2.571(1.48)
21.81 + 3.80508
[18.0, 25.6] pm.

Il

Use equation (9-58) and the Minitab printout. The ¢ is the same as the one used in
part (¢). The resulting prediction interval at 2; = 1493 and 2; = 120 is

21.81 4 2.571/(4.401)2 + (1.48)2
= 21.81+ 11.93764
[9.9,33.7] pm.

This can be read directly from the printout: [25.46, 34.86] um. To “check” this answer,
use equation (9-53) with the same ¢ used in part (c):

30.16 + 2.571(1.83)
30.16 + 4.70493
[25.46, 34.86] pm.

This hypothesis means that Grain Size does not depend on Temperature or Time. (In
other words, the given model is no improvement over a model which does not depend on
Temperature or Time, y = By + €.) The observed value of F' and the p-value for this test
can be read from the printout: f = 42.37 and p-value = .001. This is very strong evidence
that Grain Size is related to Temperature or Time.

The z; In(zz) term allows there to be an interaction between Temperature and Time
(measured on the log scale). 83 = 0 implies that the true relationship does not inveolve an
interaction, y = By + Bz + P2 In(z2) -+ e. The observed value of T' and the p-value for this
test can be read from the printout: ¢ = 3.12 and p-value = .026. This is strong evidence
that there is an interaction between Temperature and Time (measured on the log scale).

It appears that the order of the 11 runs was not randomized. A randomized order would
have helped guard against time trends. The effect of iy is particularly bound to be
confused with any time trends, because its levels generally increase throughout the
experiment.

With y; as the response, R? = .974, sqgp = 49.85, and s, = 19.14. Although the R* is
high, sgp > sp, indicating that the model may not be appropriate. With y; as the
response, R? = .793, sqp = .7374; and s, = .551. Here, sgy is still a bit larger than s,,
and the R? is smaller. With y3 as the response, R* = .964, sgF = .05007, and

sp = .05196. sgp is similar to s,, and the R? is close to 1.

There is not a unique choice of the parameters that minimizes the sum of squared
residuals. This is true because there are not enough data to find a unique solution.
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(d) The following printout was made using Minitab Version 9.1.

MTB > info

Column  Name Count
c1 71 11
c2 ¥2 11
c3 ¥3 11
C4 x1 i1
cs x2 11
Cc6 x3 i1
c7 x4 11
cs xlsq 11
c9 x2sq i1
C10 x3sq 11
c11 x4sq i1
c12 x1#x2 11
€13 xi*x3 11
Ci4 xi*zd 11
Cis x2%x3 11
cis x2#%x4 11
Ci7 x3#r4 11

MTB > regress ¢2 B c4 ¢5 ¢B c7 cB c9 ci0 cii;
SUBC> fits c20;
SUBC> predict 325 550 1.2 200 105625 302500 1.44 40000.

+ NOTE = x1 is highly correlated with other predictor variables
* NOTE # x2 is highly correlated with other predictor variables
* NOTE # x3 is highly correlated with other predictor variables
* NOTE * x4 is highly correlated with other predictor variables
* NOTE + x1sq is highly correlated with other predictor variables
* NOTE # x2sq is highly correlated with other predictor variables
* NOTE # x3sq is highly correlated mith other predictor variables
* NOTE #* x4sq is highly correlated with other predictor variables

The regression equation is
y2=-24.9 - 0.010 xi{ - 0.035 x2 + 35.0 x3 + 0.204 x4 +0.000036 xisq
+0.000049 x2sq - 15.7 x3sq -0.000650 x4sq

Predictor Coetf Stdev t-ratioc P
Constant -24.86 64.79 -0.38 0.738
x1 -0.0102 0.3664 =-0.03 0.880
x2 -0.0353 0.1528 -0.23 0.838
x3 35.03 19.06 1.84 0.208
x4 0.20380 0.088556 2.30 0.148
xisq 0.0000356 0.0006115 0.06 0.959
x2sq 0.0000488 0.0001529 0.32 0.779
x3sq -15.694 9.554 -1.64 0.242
x4sq -0.0006487 0.0002725 -2.38 0.140
s = 0.5508 R-sq = 96.2% R-sq(adj) = B0.8Y
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Analysis of Variance

SOURCE DF
Regression 8
Error 2
Total 10
SOURCE DF
xl 1
x2 1
x3 ¢!
x4 1
xlsq 1
x2sq i
x3=sq 2 |
x4sq 1

Unusual Observations

Obs.

© W~ W

10

X denotes an obs. whose X value

x1

278
276
300
300
300
328
328
328

L < B - -

Fit Stdev.Fit

5.1E66

0.530

S5
15.1752
0.6067
15.7818

SEQ Ss
2.9490
5.1552
4.0604
0.3646
0.0033
0.0070
0.9207
1.7280

y2

.900
.600
.400
.600
-600
.000
.800
600

| X

MS
1.8869
0.3033

F P
6.25  0.145

Fit Stdev.Fit
0.651

.800
. 600
.400
.600
.600
.000
.900
.600

R N o e W b

95} €.1

8756, T7.436) (

o= B = I = B = B = B = ]

.b51
.551
.B61
.651
.661
.bb1
.551

Eives it large in

i.

MTE > regress c2 8 c4 c§ c7 c8 ¢9 c11 c12 cl16;
SUBC> fits c21;
SUBC> predict 3258

NOTE
NOTE
NOTE
NOTE
NOTE
NOTE
NOTE
NOTE

* % % B % %% *

*

*
*
*
*
*
*
*

x1

x2

x4
xlsgq
x2sq
x4sq
x1#%x2
x2%x4

Residual

0.000
.000
.000
.000
.000
.000
.000
000

OO0 00000

fluence.

g5k P.1.
867,

550 200 105625 302500 40000 178750 110000.
correlated with other

is
is
is
is
is
is
is
in

highly
highly
highly
highly
highly
highly
highly
highly

The regression equation is
y2 = - 116 - 0.140 x1 + 0.448 x2 + 0.366 x4 + 0.00122 x1sq +0.000049 x2sq
—-0.000072 x4sq - 0.00121 x1*x2 -0.000739 x2+x4

correlated
correlated
correlated
correlated
correlated
correlated
correlated

374

with
with
with
with
with
with
with

other
other
other
other
other
other
other

predictor
predictor
predictor
predictor
predictor
predictor
predictor
predicter

St.Resid

* # & ® B * N *
o T B - -

8.444)

variables
variables
variables
variables
variables
variables
variables
variables
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Predictor
Constant
x1

x2

x4

xlsq
x2sq
x4sq
x1#%x2
x2%x4

s = 0.5608

Coef
-115.67
=0. 1403

0.4483
0.3655

.0012186
.0000489
.0000718
.0012137
.0007394

R-8q

Analysis of Variance

SOURCE

Regression

Error
Total

SOURCE
x1

x2

x4
x1sa
x2sq

x4sq
xl#*x2
x2%x4

DF
8
2

i0

DF

i T T T

Unusnal Observations

Obs.

S W00 =W W R

fes

x1
275
275
300
300
300
325
325
325

2B T B T I S

Stdev
73.88
0.4271
0.1896
0.1321
0.0007363
0.0001529
0.0003280
0.0003462
0.0002313

= 96.2%

S5
15.1752
0.6067
15.7818

SEQ ss
.5480
.1552
.0908
nag?
.00564
2722
-5525
.1008

LI S I o T T T T ]

¥2
.800
. 600
400
.600
.600
.0Q0
.800
.600

S TR RS S R SRS

X denotes an obs. shose X value gives it large influence.

Fit
0.766

Stdev.Fit

1.136

o5y
( -4.124,

X denotes a row with X values away from the center

XX denotes a row with very extreme X values

MTB > mname ¢20 *fits{i)? <21

MTB > print c20 c21

"fits(ii)’

375

t-ratio P
-1:B7 0.258
-0.33 0.774
2.36 0.142
b i § 0.110
1.65 0.240
0.32 0.779
-0.22 0.848
-3.51 0.073
-3.20 0.085
R-sq(adj) = 80.8%
MS F P
1.8969 6.25 0.145
0.3033
Fit GStdev.Fit Residual St.Resid
.900 0.551 0.000 * X
.600 0.551 0.000 * X
.400 0.551 0.000 * X
.600 0.5561 0.000 * X
.600 0.551 0.000 * X
.000 0.551 0.000 * 1
.900 0.551 0.000 * X
.B00 0.551 0.000 * X
edin 4 95Y P.I.
5.655) ( -4.668, 6.199) XX
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ROW  fits(i) fits(ii)

1 2.33333 2.33333

2 4.90000 4.90000

3  4.80000 4.60000

4 3.40000 3.40000

5 4.80000 4.60000

6 2.33333 2.33333

T 4 .60000 4.60000 {
8 5.00000 5.00000 ';'
9  2.90000 2.90000 1
10 5.60000 5.60000
11  2.33333 2.33333 1

All of the fj; values are exactly the same for each equation for the 2’s in the data set. The
%2 values at z; = 325, @3 = 550, z3 = 1.2, and z4 = 200 are very different. This shows ;
that it is very difficult to trust any particular model when interpolating or extrapolating.
Since the “optimum” set of z’s are usually found through interpolation, this means that it
is very difficult to confidently predict what the optimum will be based only on these data.

Use equation (9-47) and following Minitab printout.
MTB > brief = 3
MIB > regress c¢3 4 c4 c5 c6 cT;

SUBC> predict 325 450 .8 125.

The regression equation is
¥3 = 2.29 + 0.00327 x1 - 0.00133 x2 - 1.04 x3 -0.000532 x4

Predictor Coef Stdev t-ratio p
Constant 2.2896 0.2644 9.00 0.000
xi 0.0032704 0.0007621 4.29 0.005
x2 -0.0013315 0.0003811 -3.49 0.013
x3 -1.04120 0.09526 -10.93 0.000
x4 -0.0005321 0.0005094 -1.04 0.337

s = 0.05007 R-sq = 96.4J R-sq(adj) = 94.0%

Analysis of Variance

SOURCE DF 55 M5 F )
Regression 4 0.40321 0.10080 40.21 0.000
Error 6 0.01504 0.00251

Total 10 0.41825

SOURCE DF SEQ s8

x1 1 0.00267

x2 1 0.08306

x3 1 0.31476

x4 1 0.00273
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()

(8)

(a)

Obs. xi
278
275
275
300
300
275
300
325
326
328
275

-
OO WS,k W

PO S T S S G G S G i S i

-

Fit Stdev.Fit
1.8538 0.0394

y3

. 6300
. 3700
. 1000
. 5800
. 2600
. 7200
. 65600
. 4200
. 6900
. 5400
. 7200

Fit Stdev.Fit

.6803
. 3068
.1007
.5239
.2890
.6903
.6203
-4187
.T473
.5124
.68903

o

O = T S S = S =
OC D0 O oGO0 O

95% C.1.

( 1.7573, 1.9503)

L0276
.0232
.0433
.0333
.0328
L0276
.0330
0381
.0393
.0388
.0276

(

Residual
=0.0603
-0.0268
=0.0007

0.0561
-0.0290
0.0287
0.0297
0.0013

-0.0573
0.0276
0.0297

95Y, P.1.

St.Resid

(=B el S o B = o i = B

1.6978, 2.0088)

1
0
0

.44
.60
.03
.50
ST
.T1
.79
.04
.85
.B7
i

The appropriate t is t = Qg(.95) = 1.943 from Table B-4. The interval for §; is

I

0032704 + 1.943(.0007621)
0032704 4+ 00148076
[.001790, .004751].

Using the signs of the coefficients, to maximize ys, set =, = 325, z5 = 450, 23 = .8, and

o4 = 125.

Use equation (8-53) and the Minitab printout. The appropriate ¢ is the same as the one
used in part (). The resulting interval is

1.8538 + 1.943(.0394)

[1.78,1.93],

1.8538 £ .0765542

The “optimal” conditions given in part (f) represent an extrapolation. The confidence
interval is only meaningful if the fitted equation is appropriate for these conditions. Data
should be collected under these conditions to confirm the validity of the equation and the

confidence interval.

The following (abbreviated) printout was made using Minitab Version 9.1.

MTB > brief = 3

MTB > regress cl 14 c¢2-clb

The regression eguation is
y=-1-2.30x1-0.08 x2 + 0.836 x3 - 3.99 x4 + 0.0162 x13q
+ 0.00130 x2sq - 0.00011 x3sq - 0.0078 x4sq + 0.0240 xi%x2
- 0.0093 x1%x3 + 0.0755 xi#%x4 - 0.00467 x2#x3
+ 0.0237 x2%c4 + 0.0007 x3*x4

8 = 5.335

R-sq = 81.6%

377

R-sq(adj) = 64.5%
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(b)

Analysis of Variance

SOURCE DF Ss MS F P
Regression 14 1898.33 135.59 4.76 0.002
Error 15 426.93 28.46

Total 28 2325.26

MTE > regress cl 4 c2-cb

The regression equation is

y=- 37.5 +0.212 x1 + 0.498 x2 + 0,130 x3 + 0.258 x4
Predictor Coef Stdev t-ratio P
Constant =37.48 13.10 -2.86 0.008
x1 0.2117 0.21086 1.01 0.324
x2 0.49833 0.07019 7.10 0.000
x3 0.12967 0.04211 3.08 0.005
x4 0.2583 0.2108 123 0.231

s = 5.158 R-sq = 71.4Y% R-sq(adj) = 66.8}%

Analysis of Variance

SOURCE DF Ss MS F P

Regression 4 1660.14 415.04 15.80 0.000

Error 25 665.12 26.60

Total 29 2325.26

Obs. x1 ¥ Fit Stdev.Fit Residual St.Resid
24 35.0 41.800 40.990 2.307 0.810 0.18

The increase in R? going from the simpler to more complex model seems to be small
compared to the increase in complexity. Based on the center points, s, = 6.016, so the
sgp values for both equations are smaller than s,. This indicates no problems with either
model, but the linear response surface model is simpler.

The “full” model is the quadratic response surface model and the “reduced” model is the
hypothesis given.

i: Hu: ﬁ;:“-:,ﬁl;:n.

2. Ha: not Hg.

3. The test statistic is given by equation (9-66). The reference distribution is the Fyg 15
distribution. Large observed values of F will be considered as evidence against Hp.

4. The data give

1898.33—1660.14

f= 42%5?93 = .837.
15

5. The observed level of significance is

P(an Fyg,15 random variable > .837).
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From Table B -6-A, Q10,15(.75) = 1.45, so the p-value is greater than .25. There is no
evidence to reject the null hypothesis that the linear model is adequate. (There is no
evidence that the full model is an improvement over the reduced model.)

(c) Use equation (9-47) and the Minitab printout. The appropriate ¢ is t = Q25(.95) = 1.708
from Table B-4. The interval for §; is

49833 + 1.708(.07019)
= 498334 .1198845
= [.378,.618] gm.
Assuming the model is accurate, ; represents the mean increase in the final ball bond

shear strength that accompanies a 1 mw increase in Power, holding all of the other factors
fixed. Since this interval does not contain zero, the p-value for this test would be small.

(d) Use equation (9-58). For =, = 35, &3 = 75, ©3 = 200, and z, = 20, 4 = 2307 = .4472664.

Finally, using equation (9-57)
2.05 -+ (4472664)( 1645 )y/1+ grksy (e — (1845 )?)

s |- 15T

The resulting bound for z; = 35, z3 = 75, z3 = 200, and 24 = 20 is

= 3.0764259

40.990 — 3.0764259(5.158) = 25.12 gm.

4. (a) There is no replication in these data sets, so you cannot compute s,.

l:b:l 1. Hy: Hy|z =y + 2.
2. Ha: not Hg.
3. The test statistic is given in the Exercise. The reference distribution is the Fy ¢
distribution. Large observed values of F will be considered as evidence against Ho.
4. The data give

(7)(26.76)°—(6)(26.75821)%
L

= (26.75521)2 e

5. The observed level of significance is
P(an Fy ¢ random variable > 1.00).

From Table B -6-A, @;,6(.75) = 1.62, so the p-value is greater than .25. There is no
evidence to reject the null hypothesis that the model is correct.
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(¢) 1. Hot piyje, o5 = Bo+ BrIn(zy) + Paza + Ba(In(zy))? + Bazd + Bszz In(zy).
2. Ha: not Hg.
3. The test statistic is given in the Exercise. The reference distribution is the Fyg 3,
distribution. Large observed values of F' will be considered as evidence against Ho.
4, The data give

{42)(1.947)*—(232)(2.136001)°
10

= .288.
(2.136001)? 8

Fr=

5. The observed level of significance is
P(an Fjo,3; random variable > .288).

From Table B-6-A, Q0,32(.75) = 1.35, so the p-value is greater than .25. There is no
evidence to reject the null hypothesis that the model is correct.

(d) 1. Ho: yje,,ca,e5.24 = Bo + Bi2y + Baza + Bazs + Pazs.
2. Ha: not Hp.
3. The test statistic is given in the Exercise. The reference distribution is the Faq s
distribution. Large observed values of F will be considered as evidence against Hg.
4. The data give

(25)(5.158)°—(5)(6.01645)”
a0

(6.01645)2 e

o —

5. The observed level of significance is
P(an Fyp 5 random variable > .669).

From Table B-6-A, Q20.5(.75) = 1.88, so the p-value is greater than .25. There is no
evidence to reject the null hypothesis that the model is correct.
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5.

(a) Some of the relevant Minitab output is given below.

MTB > info ci-¢7

Column  Name Count
o | xi g
c2 x2 g
c3 yi ]
C4 y2 g
Ccb xisg 9
(o] x2sq 9
c7 xi*x2 g

MTB > regress c¢3 5 ¢l c2 ¢5 c6 cT7;
SUBC> fits cB;

SUBC> residuals c9:

SUBC> sresiduals <10,

* NOTE # x1 is highly correlated with
* NOTE # x2 is highly coerrelated with
+ NOTE = x2sq is highly correlated with

The regression equation is
yl == 17.9 + 0.0195 x1 + 2.24 x2 -0.000017
- 0.000010 x1*x2

Predictor Coef Stdev t-ratio
Constant -17.92 63.189 -0.28
x1 0.019853 0.03979 0.49
x2 2.235 1.1956 1.87
xisq -0.00001746 0.00001679 -1.04
x2s8q -0.012083 0. 006871 -2.06
x1*x2 -0.0000104 0.0002212 -0.056
s = 3.321 R-sq = 91.5Y% R-sqladj) =

other predictor variables
other predictor variables
other predictor variables

xlsg - 0.0121 x2sq

P
.795

.657
. 158
.378
=132
. 966

o 0O o o oo

.80

MTB > name c8 *fitsl’ ¢9 ’'residsl’ c¢l0 ’stresidl’

MTB > regress c4 5 cl c2 ¢b c6 c7;
SUBC> fits cii;

SUBC> residuals cl12;

SUBC> sresiduals ci3.

# NOTE # x1 is highly correlated with
* NOTE # %2 is highly correlated with
* NOTE +# x2sq is highly correlated with

The regression equation is

other predictor variables
other predictor variables
other predictor variables

y2 = 125 - 0.108 x1 + 0.02 x2 +0.000033 x1sq - 0.0037 x2sq +0.000407 xi*x2

Predictor Coef Stdev t-ratio

Constant 126.3 161.2 0,78

x1 -0.1076 0.1015 -1.086

x2 0.015 3.050 0.00

xisq 0.00003270 0.00004283 0.76

x2sq -0.00375 0.01498 -0.25
381

0.494
0.367
0.998
0.501
0.818
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Standardized Residuals

x1%x2

0.0004068

s = B.4AT3

MTBE > name cl11 fits2’

0.0005645

R-sq = 63.2}

MTB > print cl-c4 ¢8-ci3

15

0.5

05

-1.5

0.72 0.523

R-sq(adj) = 2.0%

€12 ’resids2’

ROW x1 x2 yi ¥2 fitsi
1 1350 80 7 67 76.9683
2 980 80 83 B4 85.55621
3 600 80 91 70 88.4796
4 1350 100 80 E2 77.8888
5 950 100 8T 57 86.5556
6 800 100 87 66 86 .5656
T 1350 120 687 54 69.1428
8 a50 120 80 B2 TT.8923
g 600 120 g1 44 80.9648
RO¥W resids2 stresid2
i 6.11884 1.68538
2 -6.8022T7 -1.20489
3 0.68343 0.17781
4 -6.66667 -1.18022
E 1.6666T7 0.29505
6 5.00000 0.88516
7 0.54783 0.15089
8 5.13560 0.90967
9 -5.68343 -1.478B656
For the y; equation:
- =]
jg
8
L - m
BDO BOO 1000 1200
Agitator Speed (pm}, x ,
382

0.5 1.5

-0.5

-1.5

cl3 ‘stresid2’

residsl stresidi fits2
0.03172 0.02229 60.8812
-2.55210 -1.15335 60.8023
2.52038 1.67298 €9.3166
2.11111 0.95353 E8.B66T
0.44444 0.20074 55 .3333
-2.66656 ~-1.15427 61.0000
-2.14283 -1.50687 53.4522
2.10766 0.96250 46 .8644
0.03517 0.02336 495 .6834
80 S0 100 110
Polymer Concentration (ppm}];:l

Thy
§




Standardized Residuals

Standardized Residuals

Standardized Residuals

(b)

uwy ®
" g -
=
- m -
0 {?I“". .
o 3 ° g
: g
Z w
w0 !
g ? .
-
W ) F o 9
- 1 |-I.-

70 75 80 85
Fitted Values , 4

1.6

14 -05 00 05 1.0 1.5

Standardized Residual Guantles

The first 3 plots are patternless, and the normal plot is roughly linear, so there is no
indication that the model is inadequate. For the y; equation:

n = n |
- 'E =
- - = ™ -
3 ¢ 8 .
- - E - -
. i,
L=~ =]
" 'E T
g
. - 0 .
uh . ] .
600 800 1000 1200 80 g0 100 110 120
Agilalor Speed{:pm]:il Polymer Cancenlration (ppm) | =,
0 < 8 -
‘E -
.
w § g .
L] 'g -
Za w :
g § g1 o
9 : LL @ @],
50 55 60 65 70 -15 <10 05 00 05 1.0 15
Fitled Values | Standardized Residual Quantiies

There are no obvious patterns in the first 3 plots, and the normal plot is roughly linear, so
there is no indication that the model is inadequate.

maxyy; — miny; = 89.5556 — 69,1428 = 20.4128,

foac (6)(3.321)2

9

4 = 10.84634.

The criterion is satisfied for the equation for y;, so this response surface seems to be well

enough determined by the data.
max §; — minf; = 69.3166 — 46.8644 = 22.4522,

(6)(8.473)F
M/—g—-— = 27.6721.

I'lie crilerion is not satisficd for Lhe equation for ya, so this response surface is not well
determined enough to juslify the use of the surface for further analysis.

and
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(¢) Using the notation of Section 9-3, the fitted equation for y; has

by = —17.92 by = .01953 byy = —.00001746 by = —.0000104
by = 2.235  byy = —.012083

The nature of the surface can be determined by finding the eigenvalues. For v,

det(B — Al)

da ~.00001746 — A 3(—.0000104)
3(—.0000104) —.012083 — A

Il

(—.00001746 — X)(—.012083 — 1) — %(—.uouomq’
= A% 4 .01210046A + .00000021.

Setting this equal to zero, and using the quadratic formula, the roots are A = —.0000174
and A = —.0120830. Since both of the eigenvalues are negative, the surface is concave
(inverted bowl~shape). The stationary point (maximum) is at

531.80220
—g® b—( 92.25645)’

or at £y = 531.8 rpm and z; = 92.3 ppm.
Using the notation of Section 9-3, the fitted equation for y; has

by = 125.3 by = —.1076 byy; = .00003270 by5 = .0004068
I'.‘.'g = .015 bgg = —.00375

The nature of the surface can be determined by finding the eigenvalues. For w3, .

0 .00003270 — X 2(.0004068)
det(B—AI) = det| "4 0004068) —.00375— A
= (.00003270 — A)(—.00375 — A) — %(.0004068)2

= A% 4+ .0037173) — .00000016399656.

Setting this equal to zero, and using the quadratic formula, the roots are A = .0000436056

!
and A = —.003760906. Since one of these eigenvalues is positive, and the other is negative, 3

the surface is a saddle. The stationary point is at

[ 1220.90671
38 b“( 68.22198 )

or at 2; = 1220.91 rpm and z; = 68.22 ppm.
(d) Using Minitab, the contour plot for the y; surface can be constructed as below,

MTB > grid c32=75:125, ¢31=550:1400

MTB > name c32 ’‘x2grid’ c31 ‘'xigrid’

MTB > let €33 = -17.92 + .01953%c31 + 2.235%¢32 - .00001746#c31#%2 &
CONT> - .012083»c32#x2 - .0000104*c31%c32

MTB > name ¢33 ‘yhatigrd’
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MTB > contour ¢33 c32 c31

A
D

65.0, 67.5 B = 70.0, 72.5 75.0, 77.5
80.0, 82.5 E = 85.0, 87.5 F = 90.0, 92.5
O ISPV 1/ 1. s o« oi e ] > SNSRI BBBBBBB, , ,, ,AAAAA
x2grid - DDDDDDDDDDDDDD,,,,, ..., . ,CCCCCCCCC. . .. ... BBBBEB, ,,,,
sy o e DDDDDDDDDDDDDDD, , , 4 4555, CCCCCCC. . . . .. BBBBB,
A B R DDDDDDDDDD, , , , 4, 5 ,CCCCCC. . . . . .BB
112.0+ EEEEEEEEEEEEEEEE............ DDDDDDDD, , , , ,, ,CCCCCC. . . .
- ++s.,EEEEEEEEEEEEEEEEEE. . ....... DDDDDDDD, , , , , ,CCCCCC.
~ yesrssassssess, EEEEEEEEEEEE. ........ poDDDDD, , , , , ,CCCC
= )*JIJIJIII)J}rlIiJ.IEEEEEEEEEE ******* DDDDDDD,...,CCC
= Fisvasssrasrssssasyss» BEEEEEEEEE. . ... ... DDDDDD, ,,,,.,C
86.0+4 FFFFFFF,, .45 595s24++3,EEEEEEEEE. ... .... DDDDDD, , , , ,C
~ FFFFFFFF, , ., 005505100+, EEEEEEEEE. . ... ... DDDDDD, , , , ,C
~ FFFFF,; 35355590 3s52s00s+EEEEEEEEEE. . .. ... DDDDDD, ,, ,,,C
e esusssssesessssrsss  EEEREREEER. ... .. .. pDDDDD, , ,, ,,CC
- i i T s RERBEEEEREEE: o S pDDDDDD, ,, , , ,CCC
80.0+ ,,4,,+40s,EEEEEEEEEEEEEEE......... DDDDDDD, , , , , » , CCCCC
- EEEEEEEEEEEEEEEEEEE........... pDDDDDDD, , , , , , , CCCCCC. .

]
L[]

L ]
won

640 800 260 1120 1280

The contour plot for the y; surface:

MTB > let c34 = 125.3 - .1078+¢31 + ,015%¢c32 + .00003270#c3i%xx2 - &
CONT> .00375#%c32%+%2 + ,0004068+%c31#%c32

MTB > name ¢34 ’yhatlgrd’

MTE > contour ¢34 c32 c31

=
1]

42.0, 45.0 B =48.0, 61.0 C = 54.0, BT.0
60.0, €63.0 E 66.0, 69.0 F =72.0, 76.0

= BisasswnvasaasnssaaBAAA, 5,000 s020.,BBBBBEEB. ... ..
x2grid — BBBBBBBBB,,,,, .55 1505153255002y, BBBBBBBBBB. ... ... (o
b SO BEBBEEBBEEEBEEREBBEBBBBEBEBEBBBEBEEBEB. . . ... .. CCcccC

=
]
i

1

p I e B o B o 1 i e e A = R P e i Ccccccec,
SO T R R S e ceeeeceece, , .
S T o ol oo o110l 1o 1ot (LIS 00 CCCCCCCCCCeeec, ,, .,
= PDPD., 4 50wnn s COCECCOCOCCUCCOECOCOECCCE0O000 -0 s vsiss
= DBDDDDD; 4 555 /s 55 COCECCCCCCOCCOECECECC00T ;4 s sasrsais
G604 o TRDDDBED. 55500100 553630 COOBOOLEEEE0 ., ssuvsarssnsiD

i TR DDDDDDDDDDJ!!!EIJrllll!llll?!l!lelllP!ll!lDDD
- EEEE...... EDDDDDDDDPrll#rlllJll!!J’lllI'l!lll!JlIDDDD
- EEEEEE ------- DDDDDDDDDDp---!ln;::-rlrnnnua-an.:;DDDDD
= 4+BEEEEE....... DDDDDDDDDDDD, 4, 55555 s 55535 33523 ,00DDDDD
80.0+ ,,, ,EEEEEE........ DDDDDDDDDDDDD, 445 54 s 44 55+ s s DDDDDDDD
= Fioss s EEBEEE. ;v von « DDDDDDDDDDDDDDD, , , 44 » 4 » DDDDDDDDDD
————— e e e e L
640 800 960 1120 1280
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(e)

Here’s another plot using the S-Plus function “contour™:

120

%2
80 90 100 110

According to these surfaces, the z's thal maximize y; subject to y; < b5 are

approximately z; = 800 and z; = 104.
The Minitab output needed for this problem is given below.

MTB > regress c3 b c1 c2 c5 cB cT;
SUBC> predict 800 104.

The regression eguation is

yi=-17.9 + 0.0195 x1 + 2.24 x2 -0.000017 x1sq - 0.0121 x3sq
- 0.000010 xi*x2
Predictor Coef Stdev t-ratio P
Constant -17.92 63.19 -0.28 0.795
x1 0.01953 0.03979 0.49 0,857
x2 2.235 1.195 1.87 0,158
xisq -0.00001746 0.0Q001679 -1.04 0.3756
x28q -0.012083 0.0068T71 -2.08 0.132
x1*x2 -0.0000104 0.0002212 -0.056 0.966
s = 3.321 R-sq = 91.5Y% R-sq{adj) = 77.3%
Fit Stdev.Fit 86% C.1. 98y P.I.
87.41 2.22 ( 80.35, 94.48) ( 7T4.70, 100.13)

MTB > regress c4 b cl c2 cb c6 cT;
SUBC> predict 800 104 640000 10816 §3200.

The regression equation is

¥y2 = 125 - 0.108 x1 + 0.02 x2 +0.000033 x1sq - 0.0037 x2sq +0.000407 x1%x2

Predictor Coef S5tdev t-ratio P

Constant 126.3 161.2 0.78 0.494

x1 -0.1076 0.1015 -1.086 0.367

x2 0.015 3.0B0 0.00 0.996

xlsq 0.00003270 0.00004283 0.76 0.501

x2sq =0.003756 0.01498 -0.25 0.818
386
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x1+x2 0.0004068 0.0005645 0.72 0.523

s = B.473 R-sq = 63.2} R-sq(adj) = 2.0%
Fit Stdev.Fit 95% C.1. 95y P.I.
55.08 5.67 ( 37.06, 7a.11) ( 22.865, 87.52)

Use equation (9-56). The appropriate t is t = Q3(.95) = 2.353 from Table B-4. The
prediction interval for y; at #; = B00 and 25 = 104 is

87.41 4 2.3534/(3.321)? + (2.22)?
= B7.414 9.399474
[78.0, 96.8] %.

The prediction interval for y; at z; = 800 and z; = 104 is

55.08 4 2.353/(8.473)? 4 (5.67)?
= 55.08 & 23.98914
[31.1,79.1] %.

Use equations (9-58) and (9-59) for the tolerance bounds. For the tolerance bound for ¥

at oy = 800 and z; = 104, A = 232 = 6684734.

Finally, using
equation (9-57)

1.28 + (.6684734)(1.645 ), [1+ 5k (ﬁ(;,%,l%p —( 1.645 )’)
i = 4.4888

- U

The resulting bound for ¥y at 2y = 800 and z; = 104 is

87.41 —4.4888 (3.321)=172.5 %.

For the tolerance bound for y; at z; = 800 and z; = 104, A = i‘ff} = .6691845.

Finally, using equation (9-57)

L
L]
o

1.28 + (.6691845)( 1645 )1+ o (rlbomekeys — ( 1645

=
1
1- 2(3

The resulting bound for y; at #; = 800 and 29 = 104 is

55.08 + 4.489986 (8.473) = 93.12%.
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6. (a) FromEx. 16, Chap.4 by = 12.45769 and by = —927.6531. The necessary computations for
sLF (the residuals) are also given there. Using equation (9-10),

1
g D
st = 5 (293948.6) = 36743.57,

so sy, p = V/36743.57 = 191.69 psi, with 8 degrees of freedom associated with it.

(b) The residuals were computed in Ex 16 Chap 4 . Use equation (9-12) to compute the
standardized residuals. Z = 285.9, and 3 (z — #)* = 17896.9. The rest of the calculations
are summarized below.

,_u;'. —285.9)7 a
: z \/ - & - S e €
% 207 9510 -231.0884 -1.2677
: 233 .9502 -24.9883  -.1372
254 .9496 -6.5997  -.0363
328 9474 -88.4687  -.4871
325 9475 -61.0956  -.3364
302 .9482 275.4312 1.5154
258 .9495 363.5695  1.9976
335 9472 -115.6725  -.6371
315 9478 -36.5187  -.2010
302 9482 -74.5688  -.4103
. =
o
g ] g
g o
ﬁ \ gl
is :
& - L . E g =
5 a o '
& | '
220 240 260 280 300 320 340 220 240 260 280 300 320 340
Spiitting Tensile Strength | x Spiitting Tensile Strength , %
- © -
(5]
§ & -g -
(=]
2 g ®
4 8 B
g o —— . 33 - :
. 4 ! E . .
: 5 g
2000 2500 3000 2000 2500 3000
Fitled Values , ] Fitted Values ,
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Slandard Normal Quantiles
1]

Standard Normal Quantiles
0

-200 -100 0 00 200 300 10 05 00 05 10 15 20
Residual Quanliles Slandardized Residual Quantiles

For each of the three types of plots, the residuals and standardized residuals look almost
exactly the same.

(c) First make a confidence interval for 8, and then multiply the endpoints by 5. Use
equation (9-17). For 95% confidence, the appropriate ¢ is £ = Qg(.975) = 2.306 from
Table B-4. The resulting interval for 3, is

191.69

12.45769 =+ 2.306 ——
4/ 17896.9
12.45769+ 3.30416

= [9.153528, 15.76185] psi.

I

Multiplying each endpoint by 5, the resulting interval for 53, is [45.77, 78.81] psi.

(d) Use equation (9-24). For 90% confidence, the appropriate t is t = Qg(.95) = 1.860 from 4
Table B-4. The resulting interval for the mean at =z = 300 is

2809.653 + 1.860(191. 89]\/_* ‘ii%'agﬁ 819

= 2809.653 + 118.8441
= [2690.8,2928.5] psi.

(e) Use equation (9-26). The appropriate t is the same one used in part (d). The resulting
prediction interval at z = 300 is

198.81
17896.9

2809.653 + 1.860(191. EB]J 14— +

= 2809.653+ 375.8217
[2433.8, 3185.5] psi.

(f) Use equation (9-27). For z = 300, first using equation (9-29),

198.81

10 =+ 178968 — .3333296.

A=
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Finally, using equation (9-30),

1.98 4 (:3333296)( 1645 )y /1 + s ((dkdeler — ( 1645 )?)
= = 241418

T =
1.
! FE]
The resulting bound for z = 300 is

2809.653 —2.41418 (191.69) = 2346.877 psi.
(a) The following output is from Minitab Version 9.1.

MTB > brief = 3
MTB > regress cl 2 c2 c3

The regression equation is
weight = 10.5 + 6.12 spacing - 3.67 xsq

Predictor Coetf Stdev t-ratio P
Constant 10.5473 0.4143 25.46 ©.000
spacing 6.118 1.020 6.00 0.000
xsq -3.5707 0.5854 -6.10 0.000
s = R-sq = 32.6Y R-sq(adj) = 30.9%
K Sg¢
Analysis of Variance
SOURCE DF ss MS F P
Regression 2 4.4924 2.2462 18.64 0.000
Error Tr 9.2771 0.12086
Total T8 13.7695
SOURCE DF SEQ SS
spacing 1 0.0101
xsq 1 4.4823
Obs. spacing weight Fit Stdev.Fit [Residual St.Resid
41 1.00 12.0000 13.0944 0.0526 -1.0944 -3.18R

sgp = .3471 g. Assuming that the model is appropriate, this measures the variation in
Weights for a fixed Spacing. Using equation (7-7), s, = .3448 g. These two estimates are
very close, giving no indication that the model is inappropriate.

{b) 1. Hp: By =Pz =0.
2. Ha: not Hg.
3. The test statistic is given by equation (9-62). The reference distribution is the F 77
distribution. Large observed values of F will be considered as evidence against Hp.
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(<)

(d)

(e)

(f)

4. The samples give (using Minitab output)
f = 18.64.
5. The observed level of significance is
P(an F; 77 random variable > 18.64)

which is 0 to 3 decimal places, using the Minitab output. The null hypothesis means that
the Weight does not depend on the Spacing at all. There is overwhelming evidence against
this hypothesis; the model used is an improvement over a model in which Weight does not
depend on Spacing (y = By + ¢€).

This can be done using equation (9-47) or equation (9-66). It is easier to use the T test.

1. Hg: o = 0.

2. Ha: Bz #0.

3. The test statistic is given by equation (9-48), with # = 0. The reference distribution is
the {77 distribution. Observed values of ¢ far above or below zero will be considered as
evidence against Hg.

4. The samples give (using the Minitab printout)

1t = —6.10.
5. The observed level of significance is
EP{B 171 l‘aﬂdﬂm Vﬂl’iﬂ-ble < _ﬁ-lﬂ)

which is 0 to 3 decimal places, according to the Minitab printout. The meaning of this
hypothesis is that Weight depends only linearly on Spacing (no curvature). There is
overwhelming evidence against this hypothesis; The quadratic model is an improvement
over the straight-line model y = By + G1z + €.

Use equation (9-53) and the Minitab printout. For a 90% one-sided interval, make an 80%
two-sided interval and use the lower endpoint. The appropriate ¢ for an 80% two-sided
interval is £ = Q77(.90) = 1.2926 from Table B-4. For =z = 1.000, the 90% lower confidence
bound is then

13.0844 — 1.2926(.0526)
13.0944 — 06799076
13.03 g.

Use equation (9-56). The appropriate ¢ is the same one used in part (d). The resulting
lower prediction bound at = 1.000 is

13.0944 — 1.2926,/(.3471)2 + (.0526)2
= 13.0944 — .4537839
= 1264g.

Use equation (9-58). For z = 1.000, A = —g%;—? = .1515413.
p=.90,
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Finally, using equation (9-57)

1.28+ (:1515413)( 1.645 )y /1 + gk (538055 — (1645 )?)

r =

R

The resulting bound for z = 1.000 is

13.0944 — 1608 (.3471) = 12.54 g.

The following printout was made using Minitab Version 9.1,

MTB > info cl-c3

Column Name

Cci ¥
c2 xi
c3 x2

MTB > brief = 3

Count

2

0

20
20

MTB > regress cl 2 c2 c3;

SUBC> fits c4;
SUBC> resids cb5;
SUBC> sresids cB;

SUBC> predict 260 380,

The regression equation is
y=- 1674 + 7.61 x1 + 2.69 x2

Predictor Coef
Constant -1674.1
x1 T.612
x2 2,5939

0

Stdev t-ratio P
947.4 =1.77 0.085
3.730 2.04 0.0587
.6698 4.55 0.000

s = R-sq = 60.1% R-sq{adj) = 55.4Y%
Osf

Analysis of Variance

SOURCE DF 5S
Regression 2 387230
Error 17 263368
Total 19 660589
SOURCE DF SEQ Ss
x1 i 76220
x2 p | 321010
Obs. xi ¥

10 258 1374.0

uS F P
198615 12.82  0.000
15492

Fit Stdev.Fit Residual

1304.1 43.2 69.9

392

= 1.608

St.Resid

0.60
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Fit Stdev.Fit es¥ C.I. 95% P.I.
1280.8 47.5 ( 1190.5, 1381.0) ( 1009.8, 1571.9)
MTE > name c4 'fits’' cb 'resids’ c6 ’stresids?
MTE > print ci-c6
ROW y x3 x2 fits resids stresids
1 927 283 317 1074.07 -14T7.074 -1.254T71
2 aT78 258 324 1122.61 -144.511 -1.265T70
8 1028 288 341 1182.00 -1B4.001 -1.33623
4 906 247 350 1114.00 -207.999 -1.72B97
5 1158 256 352 1187.70 -28.697 -0.241T1
6 1058 246 363 1140.11 -85.107 -0.70644
7 1335 257 365 1229.03 105.970 0.89E585
8 1392 282 375 1283.03 88.970 0.88B0286
g 1362 255 373 1234 .56 127 .444 1.06447
10 1374 258 391 1304.08 69.917 0.58887
11 1393 253 407 1307 .52 85.476 0.72051
i2 1401 252 426 1349.20 51.804 0.44525
13 1436 246 432 1319.09 116.914 1.021B0
14 1327 250 469 1445.51 -118.509 -1.11311
15 950 242 287 834.71 115.294 1.14781
16 2988 243 302 959.04 38,957 0.34462
17 1144 239 331 1003.82 140.183 1.24199
18 1080 242 355 1088.91 -8.907T -0.075E72
19 1276 244 386 1181.95 84,052 0.79134
20 1062 234 426 + 1212.18 -150.176 -1.50501
Ss¢ T |24.5 -F"'-/S-er.
(b)
ﬁ ) Yo - 2 o
g3 . ] 23 y
g 2 :
E - -a -
g 3 ; % s :
(% f ) - x 2 ﬂ - a
235 240 245 255 260 250 300 350
Thickness (.001 in} 3% Brinell Hardness y Xq
i
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Standardized Residuals

(e)

(d)

(e)

(£)
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The first 3 plots are patternless, giving no evidence that the model is inadequate. The
normal plot is somewhat non-linear, giving some evidence that the normal part of the
model assumption is incorrect.

Use equation (9-47) and the Minitab printout. The appropriate t is t = Q47(.95) = 1.740
from Table B-4. The interval for 3; is

7.612 + 1.740(3.730)
T.612 + 6.4902
[1.1,14.1] ft/sec.

Il

The interval for 5; is

2.56939 l.?éﬂ(.SEEB]
2.5939 + .901452
[1.60, 3.59] ft /sec.

Now multiply the endpoints by 20. The increase in mean ballistic limit which accompanies
a 20-unit increase in Brinell hardness number is [32.0, 71.7] ft/sec.

Use equation (9-53) and the Minitab printout. The appropriate # is £ = Q,4(.975) = 2.110
from Table B-4. The resulting interval is

1304.1 + 2.110(43.2)
1304.1 4 91.152
[1213, 1395] ft/sec.

Use equation (9-56) and the Minitab printout. The ¢ is the same as the one used in
part (d). The resulting prediction interval at z; = 258 and z3 = 391 is

1304.1 4 2.1104/(124.5)? + (43.2)2
1304.1 + 278.06
[1026, 1582] ft /sec.

43.2

Use equation (9-58). For z; = 258 and z; = 391, 4 = %% = .

346988,
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Finally,
using equation (9-57)

2.05 + (:346988)( 1645 )1+ yrbry (L2080 — (1645 )2)

EAE T = 3.00259
1- Uiy

The resulting bound for zy = 2568 and z; = 391 is

T =

1304.1 — 3.09259 (124.5) = 919.07 ft/sec.

() This can be read directly from the printout as [1190.5, 1391.0] ft /sec. You can “check” this
answer using equation (9-53). The appropriate £ is the same as the one used in part (d).

1290.8 + 2.110(47.5)
1290.8 4+ 100.225
[1190.6, 1391.0] ft/sec.

H

() This hypothesis means that Ballistic Limit is not related to Thickness or Hardness. The
observed value of F and the p-value can be read from the printout: f = 12.82, and the
p-value is zero to 3 decimal places. This is overwhelming evidence that Ballistic Limit is
related to Thickness or Hardness.

(1) This hypothesis means that a model with both Thickness and Hardness is no improvement
over a model with only Hardness. The observed value of T and the p-value can be read
from the printout: £ = 2.04, and p-value = .057. There is moderate evidence that a model
with both Thickness and Hardness is an improvement over a model with only Hardness.
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(9)(a) bo=2.144, by = 3.276, & =.2284, s, =.1997. Since ¢ =.2284 and
sp = .1997 are very similar, it seems the modely = B+ fix + ¢ is
reasonable.

(b)

Normal Probability Plot of Standardized Residuals
Problem 9, Chapter 9

2__ [ ]
[ ]
®
1 ; "
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1. — .
[ ]
°
[ ]
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-2 -1 0 1 2

Sorted Standardized Residuals
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Residual Plot of Standardized Residuals vs. X
Problem 9, Chapter 9
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Residual Plot of Standardized Residuals vs. Predicted
Problem 9, Chapter 9
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Each of these plots suggest the standard assumptions with the straight-line
model are reasonable.
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(c)

by + tzg Sp1 becomes 3.276 + (1.701)(.14) . Thus, the interval
(3.0379, 3.514) is a 90% confidence interval for the slope.

(d) Using equation 9-24, at x = .65, the 90% confidence interval for the mean

(e)
(f

detonation velocity is 4.2745 £ (1.701)(.0417) or (4.2036, 4.3454). Note:

y(x =.65)=4.2745, t,s = 1.701 and the std deviation of fit is .0417.

Using equation 9-26, x = .65, the 90% prediction interval for the next
detonation velocity is (3.879, 4.669).

Using equation 9-27, 9-29 and 9-30, s ¢ = .2284, thus, from (d),

A = (.0417)/.2284 = .18257. Since p = .95, y = .99, n = 30, the numerator for

tis 1.645 + (.18257)(2.33) /1 +(1/2(28))[(1.645)’ /(.18257)° —(2.33)*] =
2.2974. The denominator for 1 is .903055. Thus, tis 2.2974/.903055 =
2.544. The lower 89% tolerance limit that includes 95% of charges at x = .65

glccis 4.2745 - 2.544(.2284) = 3.693. The interval (3.693, « ) is the lower
one-sided 99% tolerance limit for 95% of charges at x = .65 g/cc.

(10) (a) by = 51.6245, by = .891739, b, = - .0149974. & =12.476, s, = 13.62.

(b)

(c)

(d)

(e)

(f)

Since s, and o are very close, the quadratic model seems reasonable. The
estimate of c measures the variation amongst all y values (torque) at a fixed
x (depth).

Ho: PB1 = P2 =0 vs. H, at least one of the s are not 0.
F216 calc = 2604.79/155.65 = 16.73, p-value = P(F > 16.73) = 0. Conclude

Ha. The question being asked is: when relating y (torque) to x (depth), does
x play an important role (either in a linear or parabolic sense) in predicting y?

Ho: B2 =0vs. Ha: 3, # 0, tig=-.014997/.0051 = -2.94,
p-value = 2 P(tis > 2.94) =~ .01. Conclude Ha: B, = 0. This test answers the

question: when relating y (torque) to x (depth), does a parabolic relationship
exist?

Using equation 9-53 and the quadratic model, the 95% two-sided confidence
interval for the mean torque at x = 40 becomes (54.65, 71.95) where

y(x =40)=63.298 and ssr A =4.0812.

Using equation 9-56 and the quadratic model, the 95% two-sided prediction
interval for an additional torque at failure with x = 40 becomes (35.47, 91.13)
where y(x =40)=63.298 and ssr A = 4.0812.

An approximate y = 99% lower tolerance bound for p = 95% of torques at

x =40 is derived using equations 9-57 and 9-58. Since sgr = 12.476,

A =(4.0812)/(12.476) = .327. The numerator for t becomes

1.645 + (.327)(2.33) |1+ (1/2(16))[(1.645)* /(.327)? - (2.33)}] = 2.615087. The
denominator for t becomes 1 - (2.33)%/2(16) = .8303468. Thus t becomes
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2.615087/.8303468 = 3.1494. The 99% lower tolerance bound for p = 95%
of torques at x = 40 is 63.298 - 3.14940(12.476) = 63.298 - 39.2920 =
24.006. The resulting interval is (24.008, +«).

(11) (a) by * tgsp1 or .99372 + t5(,09458) . Since tgis 1.833, the interval
(.82035, 1.1671) is a 90% two-sided confidence interval for the B, coefficient.

(b) Letting x1 = .318, x2 = .005, the 90% confidence interval for the mean log
torque is (5.471, 5.6099).

(c) Letting x4 = .318, x2 = .005, the 95% prediction interval for a single log torque
is (5.36986, 5.71104). Exponentiating these endpoints gives
(214.832, 302.185) as a 95% prediction interval for torque at x; = .318,
Xz = .005.

(d) The 95% confidence interval for mean log torque at x4 = .3 in. and x2 = .01
in./rev. is (5.9054, 5.9984).

(12) (a) bo = 6.39925, by =-.0102413, o =.1234.

(b)

Problem 12b Residual Plot of
Standardized Residuals vs X
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Problem 12b Normal Probability Plot of
Standardized Residuals
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Problem 12b Residual Plot of
Standardized Residuals vs Fitted Inys
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The new plots do not differ much compared to what we saw in part (h) of
Exercise 25 of chapter 4. The normal probability plot in this example looks a
little different.

(c) 10by £ 10 t47 sp1 becomes -.1 + (10)(1.74)(.0008749). The interval
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(-.115822, - .0847767) is a 90% confidence interval for the change in mean
log grip force that accompanies an increase in drag of 10%.

(d) The 95% two-sided confidence interval for the mean log grip force of a tire of

this type under 30% drag (based on the simple linear regression model ) is
(6.0223, 6.1617).

(e) The 95% two-sided prediction interval for log grip force of a tire of this type
under 30% drag is (5.8225, 6.3615). Exponentiating the endpoints gives a
95% two-sided prediction interval for grip force of a tire of this type under 30%
drag (337.815, 579.114).

(f) An approximate y = 95% lower tolerance bound for the grip forces of p = 90%
of tires of this design under 30% drag (based on the linear regression model
for Iny) can be found using equations 9-27, 9-29 and 9-30. Using equation 9-
29, A =.0330/.1234 = .26742. Note .0330 is the std. dev. of fit at x = 30 and

sir =.1234. Thus, looking at equation 9-24, A can be found as stated.
The numerator for T becomes

1.285 + (.26742)(1.645) /1 +(1/2(17))[(1.285)* /(.26742)" — (1.645)*] = 1.84135.
The denominator for T becomes 1 - (1.645)%/2(17) = .9204. Thus t becomes
1.84135/.9204 = 2. The 95% lower tolerance bound for p = 90% of Inys at x

= 30 is 6.092 - 2(.1234) = 5.8452. Exponentiating (5.8452) gives 345.57 as
the 95% lower tolerance bound for the grip forces (y) of 90% of tires of this
design with 30% drag, i.e., (345.57, =).

(13)(a) 143.591= sgfr is the estimate of . s, is 136.8. A quadratic model seems
reasonable since s; is "close" to ssr .

(b) Ho: P1=Pp2=0vs. H, at least one of the ps are not 0.
Fa21 calc = 1,105,273/20,618= 53.61, p-value = P(F22¢ > 53.61) = 0.
Conclude Ha. The question being asked is: when relating y (permeability) to
x (asphalt content), does x play an important role (either in a linear or
parabolic sense) in predicting y?

(c) Ho: B2 =0vs. Ha: B; # 0, ty1 =-64.53/11.75 = -5.49,
p-value = 2 P(tz1 > 5.49) = 0. Conclude Ha: 3, # 0. This test answers the

guestion: when relating y (permeability) to x (asphalt content), does a
parabolic relationship exist?

(d) A 90% two sided confidence interval for the mean permeability of specimens
with 6.5% asphalt content is (793.2, 933.5).

(e) A 90% two-sided prediction interval for the next permeability measured on a
specimen of this type having a 6.5% asphalt content is (606.5, 1120.2).

(f) 143.591=sgr . At x = 6.5, the standard deviation of fit is 40.8. Thus,
A =40.8/143.6 = .2841 (see equation 9-53). The y = 95% tolerance bound
for p = 90% of specimens of this type having a 6.5% asphalt content can be
found. Using equation 9-57, the numerator of t becomes
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1.285 + (.2841)(1.645) Jl +(1/2(21))[(1.285)° /(.2841)" — (1.645)"] = 1.8424.
The denominator for © becomes 1 - (1.645)%/2(21) = .93557.

Thus t becomes 1.8424/.93557 = 1.96928. The lower one-sided y = 95%
lower tolerance bound for p = 90% of specimens of this type having a 6.5%
asphalt content is 863.3 - 1.96928(143.6) = 580.51, i.e, (580.51, «).

(14)(a)

(b)

(c)

(d)

Plot of Y vs X3, Problem 14a
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X3

X3 = X1°/%2 , y = axial breaking strength. x3 > .004, by = -46.79, by = 25,767
sir = 31.31 and s, = 20.32. Since there is a rather large difference between
sir and sp , perhaps the model is not appropriate.

98% two-sided confidence interval for the mean axial breaking strength
when the diameter (x; = .25) and length (xz = 8) is (136.47, 172.55). Using
equation (20), i.e., y+ts/+/4 , becomes 153.02 + t; (30.42)/(2) or

163.02 + (4.541)(15.21), i.e., (83.95, 222.09). This interval is much wider
than the interval derived using regression, both having the same confidence
level of 98%.

98% two-sided prediction interval for y (axial breaking strength) of a single
dowel (x4 = .25 and x; = 8) is (72.58, 236.44). 98% two-sided prediction
interval for y (axial breaking strength) of a single dowel (x; = .25 and x; = 6)
is (139.21, 304.02).
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(e) y=95% lower tolerance bound for breaking strengths of p = 98% of .25 inch
diameter dowels 8 inches in length is found in the following fashion.
y(x, = .25,x, =8 x, =.0078125) =154.511, s.r = 31.31 and the standard
deviation of fit = 7.07. Hence, A =7.07/31.31 = .22581.
Using equation 9-30, the numerator of t becomes

2.05 + (.22581)(1.645) |/1+ (1/2(18)[(2.05)* /(.22581)" — (1.645)*] = 2.715944.

The denominator for T becomes 1 - (1.645)%/2(18) = .9248.

Thus t becomes 2.715944/.9248 = 2.93679. The lower one-sided y = 95%
lower tolerance bound for p = 98% of dowels .25 inches in diameter and 8
inches in length 154.51 - 2.93679(31.31) = 62.559, i.e., (62.559, =).
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Appendix A: More on Probability and Model
Fitting

Section 1

1. {a)

(b)

The process is stopped if the diameter is in the Red Zone, or if the diameter is in the
Yellow Zone and a second diameter is in the Yellow or Red Zone.

P(process stopped) = .0730 4 (.3023 + .0730).3023 = .1865.

The additions above are justified by axiom 3) of Definition A-6, because the events
(diameter is in the Red Zone) and (diameter is in the Yellow Zone) are mutually exclusive
for any particular diameter. The multiplication is an application of Proposition A-4. It
also implicitly assumes that consecutive diameters are independent.

Use Definition A-T.

(.3023 + .0730).3023

P(J‘!ﬂiven B:I = 1865

= .6083.

2 There are 4 possible outcomes: (1/2 inch nut, 1/2 inch bolt), (1/2 inch nut, 9/16 inch bolt),
(9/16 inch nut, 1/2 inch bolt), and (9/186 inch nut, 9/16 inch bolt).

(a)

(b)

P(match) = P(both 1/2 inch or both 9/16 inch)
P(both 1/2 inch) + P(both 8/16 inch)
= (3)(-4)+ (.7)(.6) = 54

Il

The second line above is justified by axiom 3) of Definition A-6, because the two events
are mutually exclusive. The third line above follows from Proposition A-4 and
Definition A-8 because the nuts are selected independently.

Use Definition A-T.

P(nut is 9/16 inch|nut and bolt match) !
P(nut is 9/16 inch and nut and bolt match)
P(nut and belt match)

P(both nut and bolt are 9/16 inch)

( 54
= bTI8)
= T TT78.

Define the events

A = specimen is of substance A
B = specimen is of substance B
C = one count is observed in one second.
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(b)

()

Use Definition A-7.

F(A and C)
P(C)
P(C|A)P(A)
F(C|A)P(A)+ P(C|B)P(B)
e*(3)3
e-3(3)§ +e~*(4)3
= .5048.

P(AlC) =

The numerator of the second line above uses Proposition B-4. The denominator of the
second line uses the fact that the event C can be written as

C = (C and A) or (C and B)

where (C and 4) and (C end B) are mutually exclusive, so their probabilities can be
added together (after again applying Proposition A-4 to each of them). The third line
above uses the Poisson distribution, equation (5-10) (with A = 3 and 4 respectively), and
the fact that the specimen was chosen at random.

Define the events

A = specimen is of substance A
B = specimen is of substance B
C = 10 counts are observed in 10 seconds.

Use Definition A-T.

d
P(AlC) = P_(’%E_‘%_Cﬂ
. P(C|A)P(A)
~ P(C|A)P(A)+ P(C|B)P(B)
‘_.:olaﬂzw g
. 10 6
— _4___':{30]-' 3 + '—lu{‘o}lﬂ j
10! & 191 L]
= ,9984,

The third line above uses the Poisson distribution, equation (5-10) (with A = 30 and 40
respectively).

No. Observing 10 counts in a 10 second check is much stronger evidence that the
specimen is of substance A than observing 1 count in 1 second. Even though the average
cotint of substance A is smaller than that for substance B, it is still not too unlikely that
substance B could have produced 1 count in 1 second (relative to how likely A could have
done this), especially since the original chance that a substance B specimen would be
chosen was twice that of a substance A specimen. However, it is extremely unlikely that
substance B could have produced 10 counts in 10 seconds (relative to how likely A could
have done this), even though the original chance that a substance B specimen would be
chosen was twice that of a substance A specimen. In both part (2) and part (b), the
relative Poisson probabilities dominate over the original selection probabilities, but this is
even more pronounced in part (b) because most of the evidence comes from the long
observation.

405 Appendix A



Define the events

A = chip is good,

B = chip is bad, and

C = chip tests good.

(a) Use Proposition A-4,

P(A and C) = P(A)P(C|A)=(.8)(.95) = .76.

(b) Use axiom 3) of Definition A-6, and the fact that the event C can be written the union of
two mutually exclusive events:

C=(A and C) or (B and C).

P(C) = P((A and C) or (B and C))
= P(A and C)+ P(B and C)
= .76+ (.2)(-1) = .78.
P(AandC
(c) Use Definition A-7. Fl4ic) (_P;;j_)
Define the events = —;g = .0744.

A = The ring meets specs on the first grind,

B = The ring is above specs on the first grind,

C = The ring is below specs on the first grind, and
D = The ring meets specifications given B.

(a) Use axiom 3) of Definition A-6, and the fact that the events A and C are mutually
exclusive.

P(A or C) = P(A) + P(C) = .60 + .16 = .75.

(b) Use axiom 3) of Definition A-6, and the fact that the events A and (B and D) are
mutually exclusive. Assuming that the first grind is independent of the second,
P(A or (B and D)) = P(A)+ P(B)P(D)
.60 + (.25)(.80) = .80.
(¢) Use Definition (A-7).

P(ring is ground only once|ring meets npm]'
P(ring is ground only once and ring meets specs)
P(ring meets specs)

P(4)
80
60

0 .75,
(d) Yes, since the answers to parts (a) and (c) are the same (see Definition A-8).

(e) Any two of the events A, B, or C as defined above are mutually exclusive. They cannot
happen together.
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Define the events

A = Diameter is greater than 1.005 in. and
B = Brinell hardness is greater than 210.

(a) Use Proposition (A-3). P(4) = 26 = .242.
1000
il g 95
(b) Use Proposition (A-3) again. P(A end B) = Tt .095.
o - 347
(¢) Use Proposition (A-3) again. P(A or B)= T505. = .347.
(d) Use Definition A-7 and Proposition (A-3).
085
P(AFB:I = =00 — AT5.
1000

(e) No, because the answers to parts (a) and (d) are not the same (see Definition A-8).

(f) Define C = Diameter is less than 1.000 in. Then the events A and C are mutually
exclusive, because they cannot happen together.

Define the events

A = First widget is good,

B = Second widget is good,

C = First widget is defective,

D = Second widget is defective,

E = an additional 3 widgets are sampled, and
F = no adjustment is made

(a) Assuming consecutive widgets are independent,
P(A and B) = P(A)P(B) = (.8)(.8) = .64.

(See Proposition A-4 and Definition A-8.)

(b) Use axiom 3) of Definition A-6, and the fact that the events (A and B) and (C or D) are
mutually exclusive.

P((A and B) or (C or D)) = P(A and B)+ P(C or D)

64 + P(C) + P(D) — P(C and D)
64 -+ .05 + .05 — (.05)(.05)

= .T375.

The second line above uses Proposition A-2, and the third line uses Proposition A -4 and
Definition A -8,

(c) The event F can be written as the union of 2 mutually exclusive events:
F = (F and A and B) or (F and E).
Using Proposition A-4 and axiom 3) of Definition A-8,
P(F)= P(F|A and B)P(A and B) + P(F|E)P(E).

P(F|A and B) = 1, since there will certainly be no adjustment if both of the initial
widgets are good. P(F) can be evaluated as
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P(E) = 1- P( noi E)

1 — P((A and B) or (C or D))
= 1-(P(A and B) + P(C or D)
1 — (.64 + .05+ .05 — (.05)(.05))
.2625.

The first line above is based on Proposition A-1. The third line is based on axiom 3) of
Definition A-6, and the fact that the events (A and B) and (C or D) are mutually
exclusive. The fourth line is based on Proposition A-2.

The only thing left that needs to be computed is P(F|E). Given that 3 additional widgets
are sampled, no adjustment is made if all 3 are good, or if 2 are good and 1 is marginal.
These two outcomes are mutually excusive, so

P(F|E) = P(all 3 are good) + P(2 are good and 1 is marginal)
by axiom 3) of Definition A-6. Using independence,
P(all 3 are good) = (.8)(.8)(.8) = .512.
Also,
P(2 are good and 1 is marginal) = 3(.8)(.8)(.15) = .288,

because there are 3 ways in which this can happen, all having probability (.8)(.8)(.15).
Finally,

P(F) = (1)(.64) + (.512 + .288)(.2625) = .85.
(d) Use Definition A-T7.

P(no adjustment is made|only 2 widgets are sampled) = -ﬁ?g = .BBT8.

(e) No, because the answers to parts (c) and (d) are not the same (see Definition A-8).

(f) The events A and C as defined above are mutually exclusive, because they cannot happen
together.

(8)(a) .675 = (2.1N + .6N)/4AN, where N is the size of the smaller lot.

(b) .175=(.6N + .1N)/4N, where N is the size of the smaller lot.

(c) .857 = Prob(Lot 1 given blemished(useable)) = [.6N/4N]/[.7N/4N] where N
is the size of the smaller lot.

(9)(@) (1-p)°
(b)  21p)p)
() (-p)/[(1-p) +p]=P

(d) Using "P" from (c), P” is the answer for part (d).

(10) (a) P[A and B and not C] = 0, P[A and not B and not C] = .1,
P[not (A or B or C)] = P[not A and not B and not C] = .1

(b) P[AandB]=.1

(c) PIB|C] = .4285

(d) No, P[B]P[C] = .28 does not equal P[B and C] = .3.
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Section 2
(1) k=5,.999=r"or r=.99979.

(2) 99 =1 - (1-.9)%, solving for k gives k = 2.
(3)(a) A series of three sets of two A's in parallel. Cost = 6($8)=$48. Reliability

is (.9996)(.9996)(.9996) = .998.

A series of three sets of three B's in parallel. Cost = 9($5) = $45.
Reliability is (.999)(.999)(.999) = .997.

(b) A series of three sets of an A and B in parallel.
Cost = 3($8) + 3($5)=839. The reliability is (.998)(.998)(.998)=.994.
Section 3
1. (a) Use equation (A-16) with n = 100 and r = 10.

( 11000 ) = 1.7310309 x 102,

(b) Use equation (A-16) and Proposition A-5.

10 20 70\ o
( . )( g )( : )ﬁz.z'.r?-s?lsxw :

(2)(%)(7)
1 2 7
= .13186.
100
()
(a) Assuming that the bolts are independent, use Proposition (A-4) and Definition (A-8).

(:2)(-2)(-2)(-5)(.5)(-5)(.3)(.3)(.3)(.3) = .0000081.

(c) Use Proposition A-3.

(b) This is an application of axiom 3) of Definition A-6. Each of the mutually exclusive

outcomes consisting of 3 short, 3 good, and 4 long have the same probability of occuring
(the answer to part (a)). The total number of these outcomes be found using
equation (A-16) and Proposition A -5:

(3} }( ) =oms

So .0000081 must be added 4200 times to get the desired probability

4200(.0000081) = .03402.
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(a)

Use Proposition (A-5).

(26)(26)(26)(10)(10) = 1, 757, 600.

(b) Use Proposition (A-5) and Proposition (A-3). The total number of ways of ordering the

()

(a)

(b)

(S)(a) .

3 letters is
P3,3 = 3! =0

The total number of ways of choosing the two numbers is (10)(10) = 100, so the total
number of possible names consistent with Joe’s memory is (6)(100) = 600. Since only one
of these names is correct, the probability that he selects his own name is ﬁ = .00167.

Now the total number of ways of choosing the numbers is 10, so the total number of
possible names consistent with Joe’s memory is (6){10) = 60. Since only one of these

names is correct, the probability that he selects his own name is 313 = .0167.

Use equation (A-16), Proposition (A-5), and Proposition (A-3). The total number of ways
of choosing 4 meters from the 10 is
10
( 2 ) = 210

and the total number of ways of choosing one miscalibrated and 3 calibrated meters is

L )=

so the desired probability is 335 = .5.

Use proposition A-4, Define the events

A = Exactly one miscalibrated meter is found in the first 4 checked and
B = The fifth meter checked is miscalibrated.

|

P(A and B) = P(B|A)P(A)
= g(.sjz.lﬁﬁ'r.

P(B|A) = % because, given A, there are 6 meters left, 2 of which are miscalibrated, and
one of these 6 will be chosen at random.

125 = (1/2)°
72 = 1(9/10)(8/10)
512/1000 = .512

(6)(@) 72=4X2X3X3

8=2X1X2X2
36 =8 + (4)(1)(1)(1) + @(MNB)2)
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Section 4
1. (a) See also equation (5-24) and just below it.

B(X +Y)=EX + EY = 15+ 5 = 20 hrs,

and
Var(X + ¥) = VarX + VarY = (15)? + (5)* = 250

so the standard deviation of X + Y i3 /250 = 15.811 hrs.

(b) This can be written as P(Y <t — X), The joint density is the product of the marginal
densities because X and Y are independent (see equation (5-50)).

flz,y) = ;lgﬂ“‘_"ée'%

for z and y greater than gero. To find the desired probability, integrate f(z,y) over the
region where y <1 —z,
ﬁ[

= 1-=

T

T

P(Y <t-X)

f(z,y)dyde

mlwot"‘"‘w

e~ 16 4 %e'%
fort > 0.

(c) The answer to part (b) is the CDF of T. Using equation (5-17), the probability density of
Tis
_dF(t) _ 1 (. s
f(ﬂ*'d't' —-Ta(ﬂ = )
for t > 0.

(d) From definition {A-13), the survivorship function is

==
- EL S

S(t) = 1-F(t) = ze~ i -

b3 | b=

From definition (A-14), the force of mortality function is

gy = 34
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The function is graphed below.

0.06

0.04

h{y)

0.02

0.0

The graph shows that the force of mortality function is not constant. It starts at zero, and
increases to an asymptote of ﬁ+ For t > 30 hrs., the function is approximately constant.

(2)(e) h(t) is zero at t=0 and increases then eventually decreases. When the
mean is 0 and sigma is 1, h(t) generally decreases (except for very small t). This
is not good for in-service replacement policy.
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