Index

Note: boldface page numbers indicate definitions.

2-factor interaction of factors, $\mathbf{5 5 3}, \mathbf{5 7 3}$
2^{p} factorial studies
balanced, 580-587
confidence intervals for, 587-590
special devices for, 187-190
without replication, 577-580
2^{p-1} fractional factorials
choosing, 596-597
data analysis for, 603-607
determining the alias structure of, 600-601
2^{p-q} fractional factorials
choosing, 613-614
data analysis for, 618-620
determining the alias structure of, 614
3-factor interaction, $\mathbf{5 7 3}$

Accelerated life test, 62
Accelerated life testing, 210
Accompanying variable, 39
Accurate measurement, 17
Alias structure, 601
Allocation of resources, 46
Alternative hypothesis, 347
Analysis of variance (ANOVA)
multiple linear regression, 691-696
one-way, 478
F test, 479-482
identity and table, 482-487
random effects models and analyses, 487-491
estimator of the treatment variance, 492
inference for variance components, 491-495
simple linear regression, 669-672, 673
Analytical study, 6
ANOVA, see Analysis of variance (ANOVA)
Arithmetic mean, 93
"As past data" Shewhart control charts, 500
Assignable causes, 498
Attributes data
bar charts and plots for, 107-112
numerical summarization of, 104-107
Axioms, 728
Axioms of probability theory, 729-735, 733

Balanced 2^{p} factorial studies, confidence intervals for, 587-590
fitting and checking simplified models, 580-587
Balanced data, 172
Balanced data confidence limits
for a 2^{p} effect, 587
for one-way random effects model, 491, 493
Baseline variation, 44, 498
Bathtub curve, 763
Bell-shaped histogram, 73
Bimodal histogram, 72
Binomial distribution, 233-236
mean of, 236
variance of, 236
Bivariate data, 11
check sheet, 30-31

Block of experimental units, 41
Blocking variables, 40
Bonferroni inequality, 470, 471-472
Book paper thickness, measurements, 16
Boxplots, 81
Brittleness, measuring, 14
Brownlee's stack loss data, 150
Bunching, 530
Burn-in period, 763
Calibration, 17
Capability, 95
Capability of a process, 389
Carryover effects, 290
Categorical data, 8-9 (see also qualitative data)
Causality, 5
Cause-and-effect diagram, 60
Census, 33
Center of mass, 93
Central limit effect, 316-321
Central Limit Theorem, 316
Changes in level, 530
Charts for demerits, 538
Chebyschev's Theorem, 97
Chi-squared distribution, 386
Coefficient of determination, 130-132, $143,173,486-487$
simple linear regression, sum of squares, 670
Coefficients for a quadratic
matrix of quadratic, 703
vector of linear, 703
Combination, 754-757
Comparative study, 43-44, 374

Complete block plans, 630-631
Complete randomization, 48-49
Completely randomized experiments, 47-50
Conceptual population, 8
Concomitant variable, 39
Conditional densities, geometry of, 298
Conditional distributions, for continuous
random variables, 297-300
Conditional probability, 739-743
Conditional probability density function, for continuous random variables, 297
Conditional probability function, for discrete random variables, 284-285
Confidence intervals, 335
factorial effects, 554-562
interpretation of, 342
large-sample, 335-344
P-R method of simultaneous, 472
Tukey method, 474-477
Confidence intervals for means, 461-464
Confidence levels
individual and simultaneous, 469-470
interpretation, 341-342
of prediction intervals, 424
of tolerance intervals, 424-425
Confidence limits
effects in a 2^{p} factorial, 575
mean system response, 662,686
one-way model, 461-462
one-way random effects model, 491, 493
simultaneous (in regression), 664, 688
slope parameter, 659
Tukey simultaneous for main effects, 562-563
variance of one-way model, 457
Continuous data
likelihood function, 774-781
\log likelihood function, 775
Continuous distributions, means and variances for, 249-250
Continuous random variable, 222, 244-263, 292-300
conditional distributions, 297-300
conditional probability density function, 297
independent, 299
joint probability density, 292
marginal probability density, 295
mean or expected value of, 249
standard deviation of, $\mathbf{2 5 0}$
variance of, $\mathbf{2 5 0}$
Continuous variables, 9

Contour plot, 701-702
Control chart patterns, 527-531 (see also Shewhart control charts)
Control charts, see Shewhart control charts
Control limits, 498
setting, 499
Controlled variables, 38, 40
Correlation vs. causation, 137
Correlations
sample, 129-130, 137
squared, 131
Count data, descriptive statistics for, 104-112 (see also attributes data)
Count variables, 27
Cumulative probability functions, 226-228, 247-249
Curve fitting by least squares, 149-158
Cyclical patterns, 147, 528
Daniel, Cuthbert, 577-578
Data
attributes
bar charts and plots for, 107-112 numerical summarization of, 104-107
analysis for 2^{p-1} fractional studies, 603-607
balanced, 172
bivariate, 11, 123
Brownlee's stack loss, 150
categorical, $\mathbf{8}$
continuous
likelihood function, 774-781
log likelihood function, 775
count, 104-112 (see also attributes

data)

discrete
likelihood function, 765-774
log likelihood function, 776
engineering
collection of, 26-32
preparing to collect, $56-64$
measurement, 104
mixed
likelihood function, 779
log likelihood function, 779
multivariate, 11
numerical, 9
overfitting of, 160
paired, 11
qualitative, 8-9, 104-112 (see also
attributes data)
quantitative, 9
repeated measures, $\mathbf{1 1}$
types of, 8-11
univariate, 11
variables, 104
Data analysis, 19-23
Data collection
physical preparation, 63
problem definition, 57-60
recording, 30-32
sampling, 28-30
study definition, 60-63
Data structures, types of, 11-14
Data vectors, influence of in regression, 159
Decreasing force-of-mortality (DFM) distribution, 761
Defining relation, 602, 615
Definition of effects, 552-554, 572-575
Descriptive statistics, 104-112
Design resolution, 620-625, 621
Deterministic models, 202-203
Diagram, cause-and-effect, 60
Diagrams
dot, 66-68, 74, 76
Ishikawa, 61
Pareto, 58
Direct measure, 26
Discrete data
likelihood function, 765-774
log likelihood function, 766
Discrete probability distributions, 228-232
binomial, 232-237
geometric, 237-240
Discrete probability functions, 223-226
Discrete probability models, 221
Discrete random variable, 222
conditional distributions of, 283-284
conditional probability function,

$$
284-285
$$

expected value of, $\mathbf{2 2 8}$
independence of, $\mathbf{2 8 9}$
mean of, $\mathbf{2 2 8}$
standard deviation of, 230
variance of, 230
Disjoint events, 731
Distribution
center of mass, 93
first moment, 93
Distributional shapes
engineering interpretations of, 72-73
terminology for, 73
Distributions
binomial, 233-236
chi-squared, 386
decreasing force-of-mortality (DFM),

761

exponential, 257-260
Gaussian, 251
geometric, 237-239
increasing force-of-mortality (IFM), 761
joint, 279
marginal, 282
normal, 251
null, 348
Poisson, 240-243
probability, 222, 251-257
reference, 348
Snedecor $F, \mathbf{3 9 1}$
standard normal, 88
Studentized extreme deviate, 472
Studentized range, 475
Weibull, 260-263, 761
Documentation, 31-32
Dot diagram, 66-68, 74, 76, 81, 94
Dummy variables, 706
regression analysis, 713

Effect sparsity, 577
Effective experimentation, principles for, 38-47
Eigenvalues, 703
Empirical models, 161
Empty event, 731
Engineering data
collection of, 26-32
preparing to collect, 56-64
Engineering data-generating process, stability of, 496
Engineering statistics, 2
Enumerative studies
judgment-based method, 33
sampling, 33-37
systematic method, 33
Enumerative study, 6
Equal variances, 651
Equations
choice and interpretation of appropriate, 151
normal, 126, 141
polynomial, 141
Error sum of squares, 484
Estimation of all r individual mean responses, 471
Events, 729
dependent, 741
disjoint, 731
empty, 731
independence of, 741-743
mutually exclusive, $\mathbf{7 3 1}$
Experimental study, 5
Experimental variables, $\mathbf{3 8}$
Experiments, completely randomized, 47-50
Exponential distributions, 257-260, 258
Extraneous variables, 40
blocking, 40
control of, 40
randomization, 40
Extrapolation, caution concerning, 158-159

Factorial effects, individual confidence intervals for, 554-562
Factorial inference methods, 705
Factorial interactions, interpretation of, 183-184
Factorial notation, special $2^{p}, 187-188$
Factorial study
2^{p}
confidence intervals for, 587-590
special devices for, 187-190
without replication, 577-580
balanced 2^{p} factorial studies confidence intervals for, 587-590 fitting and checking simplified models, 580-587
complete, 12
fractional, 13
Factorials, importance of two-level, 190
Factors
2-factor interaction of in three-way factorial studies, 573
3-factor interaction of in three-way factorial studies, 573
fitted interaction of, 169, 182
fitted main effect of, 166, 182
interaction of in p-way factorials, 553
levels, 12
main effect of in p-way factorials, $\mathbf{5 5 2}$
main effect of in three-way factorial studies, 572
Few-effects model, confidence intervals for balanced 2^{p} studies, 587-590
Few-effects sample variance, $\mathbf{5 8 2}$
alternative formula for, 583
First (or lower) quartile, $\mathbf{8 0}$
First moment, 93
Fishbone diagram, see cause-and-effect and Ishikawa diagrams
Fitted effects, normal-plotting of, 577-580
Fitted factorial effects, 162-190
2-factor studies, 163-171
three-way and higher factorials, 178-184
Fitted interaction of factors, 169, 182, 183
Fitted main effect of factors, 166, 182
Fitted quadratics, interpreting, 701-702
Fitted value, 129
Flowcharts, 58
Force-of-mortality function, 760-764
Formal inference, methods of, 361
Fractional factorial experimentation, 591
Fractional factorial studies
aliases, 601
blocks, 625-631
complete block plans, 630-631
design resolution, 620-625
experiment size, 631
fundamental issues, 596-597
generator, 601, 614
observations about, 592-596
Fractional factorials, saturated, 622
Frequency histogram, 72
Frequency table, 70-71, 74
Functions
conditional probability, 284-285
conditional probability density, 297
cumulative probability, 226-228, 247-249
discrete probability, 223-226
force-of-mortality, 760-764
geometric cumulative probability relationship for, 237
hazard (see force-of-mortality)
joint probability, 279
likelihood
continuous and mixed data, 774-781
discrete data, 765-774
mixed, 779
linear, 698
log likelihood
continuous data, 775
discrete data, 766
mixed, 779
marginal probability, 282
probability density, 245-247
conditional, 297
probability, 223-228
conditional, 284-285
cumulative, 226-228, 247-249
discrete, 223-226
geometric cumulative, 237
joint, 279
marginal, 282
mathematically valid, 225
standard normal cumulative, 252
quadratic, 698
quantile, standard normal, 254
reliability (see survivorship)
standard normal cumulative probability, 252
standard normal quantile, 254
survivorship, 759-760
Gauge R and R studies, 27
Gaussian probability distribution, 251
(see also normal distribution)
General linear combinations of means, intervals for, 464-469
Generators, 601, 614
defining relation, 615 Geometric cumulative probability function, relationship for, 237 Geometric distribution, 237-239
mean of, 239
variance of, 239
Geometry of conditional densities, 298
Grouping, 530
Half fraction of a 2^{p} factorial
aliasing, 600-603
best, 597
defining relation for, $\mathbf{6 0 2}$
Half normal plot, 577
Hazard function, see force-of-mortality function
Histograms, 71-73, 74, 81, 85
bell-shaped, 72
bimodal, 72
frequency, 72
guidelines for making, 72
left-skewed, 73
multimodal, 72
probability, 228
relative frequency, 72
right-skewed, 73
truncated, 73
uniform, 73
Hypothesis testing, 347 (see also significance testing)
iid, see independent and identically distributed random variables
Incomplete block experiments, 53-55
Increasing force-of-mortality (IFM) distribution, 761
Independence of events, 741-743
Independent continuous random
variables, 299

Independent discrete random variables, 289
Independent identical success-failure trials, 232, 400
Independent and identically distributed (idd) random variables, 291
Individual confidence intervals for factorial effects, 554-562
Individual confidence levels, 562
Industrial process improvement, 515-516
Inference
single proportion, 400-407
two proportions, 407-413
Inference methods
definition of effects, 552-554
likelihood-based large-sample, 781-784
one-way in two-way factorials, 547-551
p-way factorials, 568-590
two way factorial notation, 551-554
Inference methods for individual values, 440
Inference methods for one and two means, 441
Inference methods for proportions, 442
Inference methods for variances, 442
Inference for specified regression parameters, 682-685
Inferences for variances, caveats about, 398
Inferring causality, 5
Instability, 101, 528
Instrument drift, 18
Interaction of factors, p-way factorial studies, 553
Interaction plot, 165
Interquartile range, 81
Ishikawa diagram, 61 (see also cause-and-effect and fishbone diagrams)

JMP, 103
Joint probability density, for continuous random variables, 292
Joint probability function, 279
Jointly continuous random variables, 292-297
Jointly discrete random variables, 279-283

Lack of fit, testing for, 723
Large-sample likelihood-based inference methods, 781-784

Least squares
curve fitting by, 141-149
fitting a line by, 123-136, 651
principle of, 124-129, 125
surface fitting by, 149-158
Left-skewed histogram, 73
Likelihood estimate, maximum, 772
Likelihood functions
continuous data, 774-781
discrete data, 765-774
mixed data, 774-781
Likelihood-based large-sample inference methods, 781-784
Linear combination, confidence limits for two-way factorial means, 556
Linear combination of means, confidence limits for, 465
Linear combinations of random variables, 307-310
Linear functions, 698
Linear regression model
multiple, 675-682
fitted values for, 677
graphical representation of, 676
residuals for, 677
standardized residuals for, 682
simple, 651-658
fitted values for, 653
graphical representation of, 652
residuals for, 653
standardized residuals for, 656
Line-fitting sample variance, 653 (see also simple linear regression model)
Logarithmic transformation, 193
Long-term variation, 498
Lurking variables, 5
Main effect of factors
three-way factorial studies, $\mathbf{5 7 2}$
two-way factorial studies, 552
Managed variable, 38
Marginal distribution, 282
Marginal probability densities, for continuous random variables, 295
Marginal probability function, 282
Mathematical models, 19-23
predictive ability, 19-20
simplicity, 19
Maximum likelihood estimate, 772
Means arithmetic, 93
binomial distribution, 236
confidence intervals for, 461-464
continuous distributions, 249-250
continuous random variables, 249
discrete random variables, 228
general linear combinations intervals for, 464-469
geometric distribution, 239
inference methods for, 441
linear combinations, 464
confidence limits for, 465
confidence limits for 2-way factorial, 556
paired differences
inference for, 368-374
Poisson distributions, 241
population, 98
process, 101
random variables
linear combinations of, 307-310
sample, 163, 178
linear combination of, 464
simultaneous two-sided confidence limits for, 664, 688
Weibull, 260
Mean system response
confidence limits for, 662,686
estimate of all r individual, 471
inference for, 661-666, 685-689
Measurement
accuracy, 15,17
blind, 29
calibration of a system, 17
methods of, 14-19
precision, 15, 16-17
unbiased, 17
validity, 15
variation/error, 15
Measurement data, 104 (see also variables data)
Measures of location, 92-95
Measures of spread, 95-98
Median, 80
Memoryless property, 259
Methods of formal inference, 361
MINITAB, 102-103, 138-139, 142-143, 150-151, 156, 170, 306, 402, 486, 561, 672-674, 704
Mixed data
likelihood function, 779
\log likelihood function, 779
Multimodal histogram, 72
Multiple linear regression
ANOVA, 691-696
prediction intervals, 689-691
prediction limits, alternative formula for, 689
tolerance intervals, 689-691

Multiple linear regression model, 675-682
fitted values for, 677
residuals for, 677
standardized residuals for, 682
Multiple linear regression program, 141
Multiple regression
common residual plots in, 155
goal of, 152
interpreting fitted coefficients from, 151
Multiple regression methods, 650
Multiple regression model, factorial analyses, 705-719
Multiplication principle, 751-752
Multiplication rule of probability, 740, 742
Multisample studies, 478-479
notational convention for, $\mathbf{4 8 0}$
pooled estimate of variance for, 455-457
Multivariate data, 11
Mutually exclusive events, 731
Nonrandom variation, 498
Normal distribution
inference for the variance of, 386-391
prediction intervals, 414-419
Normal distributions, 651
with a common variance, 378
Normal equations, 126
Normal plot, 88 (see also probability plot)
Normal probability distributions, 251-257
Normal probability paper, 90
Normal probability plots, 264-269
Normal-plotting of fitted effects, 577-580 interpreting, 579
Null distribution, $\mathbf{3 4 8}$ (see also reference distribution)
Null hypothesis, 347
Numerical data, 9 (see also quantitative data)
discrete, 9
Numerical summary measures, 92-104
Observational study, 5
Observed level of significance, $\mathbf{3 4 9}$
One-way methods in p-way factorials, 569-571
One-way methods in two-way factorials, 547-551 (see also inference methods)
One-way model, 447
assumptions, 447
confidence limits for, 461-462
confidence limits for variance of, 457
fitted values for, 448
residuals for, 449
standardized residuals for, 459
statement in symbols, 447
One-way random effects model, 488
balanced data confidence limits, 491, 493
Operating characteristic curve, 331
Operational definitions, 27
Outcomes, 729
p charts, 518-523 (see also Shewhart control charts)
Paired data, 11
Paired differences, inference for the mean of, 368-374
Paired distortion measurements, 11
Parallel systems, 747-749
Parallel traces, 168
Parameters, 98
fitting or estimating, 20
Pareto diagram, 58
Permutations, 753-754
Peterson, Dr. Frank, 20
Physical preparation, 63
Pillai-Ramachandran method, 471-474
(see also P-R method)
Pilot plants, 62
Plots
attributes data, 107-112
boxplots, 81-85
common residual, 155
contour, 701-702
cube, 180-181
cycles in, 101
cyclical pattern of, 147
exponential probability, 270-273
half normal, 577
interaction, 165
interpreting fitted quadratic, 701-702
multiple regression
common residual, 155
normal, 88
normal probability, 264-269
probability, 88
$Q-Q, 85-92,86$
quantile, 80-81
residual, 135-136
scatterplots, 74-75
steam-and-leaf, 68-70, 74
summary statistics, 99-101
theoretical $Q-Q, \mathbf{8 8}$

Weibull distribution, 273-277
Plots against process variables, 101-102
Plots against time, 99-101
patterns on, 101
Plotting, 137
Poisson distributions, 240-243
mean of, 241
variance of, 241
Poisson observations, independent, 767
Pooled sample standard deviation, 380,

455

Pooling, 379
Population, 7-8
conceptual, 8
Population mean, 98
Population means, linear combination of, 464
Population standard deviation, 99
Population variance, 99
Power laws, 194
P-R method of simultaneous confidence intervals, 472
Precise measurement, 16-17
Predicted value, 129
Prediction interval, 416
cautions concerning, 418
interpretation of, $\mathbf{4 1 9}$
Prediction intervals
cautions about, 669
confidence levels of, 424
multiple linear regression, 689-691
normal distribution, 414-419
simple linear regression, 666-669
Principle of least squares, $\mathbf{1 2 5}$
Probabilistic models, see stochastic models
Probability, 22
multiplication rule of, 740, 742
Probability density, mechanics analogy for, 245
Probability density functions, 245-247
Probability distribution, 222
Probability distributions, see distributions
Probability functions, 223-228
conditional, 284-285
cumulative, 226-228, 247-249
discrete, 223-226
geometric cumulative, 237
joint, 279
marginal, 282
mathematically valid, 225
standard normal cumulative, 252
Probability histogram, 228
Probability paper, 90
Probability plot, $\mathbf{8 8}$

Probability theory
axioms of, 729-735, 733
simple theorems of, 736-739
Problem definition, 57-60
Process capability, 268
Process mean, changes in level of, 101
Process variables, plots against, 101-102
Propagation of error formulas, 310-315
p-value, 349
p-way factorial
definitions of effects, 572-575
notation, 571-572
$Q-Q$ plots, $85-92,86$
Quadratic functions, 698
Qualitative and count data, Shewhart control charts for, 518-533
Qualitative data, 8-9 (see also categorical data)
descriptive statistics for, 104-112 (see also attributes data)
Qualitative variables, 27
Quantile function, standard normal, 254
Quantile plots, 80-81
Quantile-quantile plot, see $Q-Q$ plots
Quantiles, 78-81
standard normal, 89
Quantitative data, 9 (see also numerical data)
Quartiles, 80
Random digit table, 35
Random effects model, assumptions, 488
Random effects models and analyses, 487-491
Random variables, 221-223, 222
conditional distributions of discrete, 283-284
continuous, 222, 249, 292-300
discrete, $\mathbf{2 2 2}$
discrete independent, $\mathbf{2 8 9}$
distribution of a function of, 302-304
independent and identically distributed, 291
jointly continuous, 292-297
jointly discrete, 279-283
linear combinations of, 307-310
means and variances for linear combinations of, 307-310
Random variation, 498
Randomization, 40-41
Randomized complete block experiments, 50-53
Range, 95

Reality, 19-23
Recording, 30-32
documentation, 31
Reference distribution, 348
Regression program, 138
Regression sum of squares, $\mathbf{6 6 9}$
Relative frequency histogram, 72
Reliability function, see survivorship function
Repeatability, 27
Repeatability and reproducibility studies, see gauge R and R studies
Repeated measures data, 11
Replication, 44-46
Reproducibility, 28
Reproducibility of results, 44
Residual analysis, 580
Residuals, 132-136, 173
linear regression model multiple, 677 simple, 653
normal plotting of, 135-136
patterns on plots of, 135
standardized, 457-460, 458, 656, 682
Resources, allocation of, 46
Response surface, 650
Response surface studies, 698-705
Response variable, $\mathbf{3 8}$
Retrospective contexts, 500
Retrospective \bar{x} Shewhart control charts, 504-509
Reverse Yates algorithm, 189
Right-skewed histogram, 73
Run charts, 75-77
Runs, 530
Sample, 7-8
Sample (linear) correlation, 129-130
Sample means
linear combination of, 464
notation for, 163, 178
Sample space, 729
Sample standard deviation, 96
Sample variance, 96
Sampling, 28-30 mechanical methods, 34
random digit methods, 34
simple random, 34
SAS, 103
Satterthwaite, 383
Saturated fractional factorials, 622
Scatterplots, 74-75
Sequential investigations, 46
Series systems, 746-747
Series-parallel systems, 749-750

Shewhart control charts
bunching, 530
common chart patterns, 527-531
changes in level, 530
cyclical, 528
generalities about, 496-500
grouping, 530
instability of, 528
measurements and industrial process improvement, 515-516
p charts, 518-523
pooled estimator, 520
retrospective control limits, 521
"standards given" control limits, 519
"as past data," $\mathbf{5 0 0}$
R charts, 509-512
retrospective control limits, 511
"standards given" control limits, 510
retrospective, 500, 504-509
runs, 530
special checks, 531-533
s charts, 512-515
retrospective control limits, 513
"standards given" control limits, 514
"standards given," 500-504
control limits for $R, 510$
control limits for $s, 512$
systematic differences on, 529
u charts, 523-527
pooled estimator, 524
retrospective control limits, 524
"standards given" control limits, 524
\bar{x} charts, $500-509$
retrospective control limits, 508, 509
"standards given" control limits, 502
Shewhart monitoring chart, see Shewhart control charts
Shewhart's partition of process variation, 498
Short-term variation, 498
Significance level, 354
Significance testing, 347, 478-479 goal of, 345
Simple linear regression
ANOVA, 669-672, 673
prediction intervals, 666-669
prediction limits, 667
tolerance intervals, 666-669
Simple linear regression model, 651-658
(see also Least squares)
fitted values for, 653
graphical representation of, 652
residuals for, 653
standardized residuals for, 656
Simple random samples, 290

Simple random sampling, 34
objective method, 37
probability, 37
Simultaneous confidence levels, 562-563
Simultaneous or joint confidence, 470
Simultaneous two-sided confidence limits for all means, 664, 688
Single proportion, inference for, 400-407
Slope parameter
confidence limits for, 659
inference for, 658-661
Small-sample inference, 362-368
Snedecor F distribution, 391
Software, 138-139
statistical or spreadsheet, 36
summary statistics, 102-104
Special causes, 498
SPLUS, 103
SPSS, 103
Stable processes, 528
Standard deviation, 95
population, 99
sample, 96
Standard normal cumulative probability function, 252
Standard normal distribution, 88, 252
Standard normal quantile function, 254
Standard normal quantiles, 89
Standardized residuals, 457-460, 458, 651-658, 675-682
Standards given, 499
charting and hypothesis testing, 500
Stationary point, 703
Statistical engineering study, planning, 56-57
Statistical models
deterministic, 202-203
stochastic (or probabilistic), 203
Statistical significance vs. practical importance, 358
Statistical software, simple linear regression, 672-674
Statistical or spreadsheet software, 36
Statistical studies, types of, 5-8
Statistical tolerance interval, $\mathbf{4 2 0}$
Statistics, 98, see Engineering statistics
Stem-and-leaf plots, 68-70, 74
back-to-back, 69-70
Stochastic models, 203
Student $t, 362$
Studentized extreme deviate distributions, 472
Studentized range distributions, 475
Studies,
analytical, 6
balanced 2^{p} factorial
confidence intervals for, 587-590
fitting and checking simplified models, 580-587
comparative, 43-46, 374
data collection
definition, 60-63
enumerative, 6
experimental, 5
factorial
$2^{p}, 187-190,577-580,587-590$
complete, 12
fractional, 13
observational, 5
statistical engineering planning, 56-57
Study definition, 60-63
Sum of squares
error, 484
total, 484
treatment, 484
Summary statistics, plots of, 99-101
Supervised variable, $\mathbf{3 8}$
Surface fitting, 698-705
replication, 160
Surface fitting by least squares, 149-158
Surface-fitting analyses, 650
Surface-fitting sample variance, 653 (see also multiple linear regression model)
Survivorship function, 759-760
SYSTAT, 103
System of formal multiplication, 601
conventions for, 602
System of probabilities, 733
Systematic variations, 101
Systems
combination series-parallel, 749-750
parallel, 747-749
series, 746-747
t distribution, see Student t distribution
Taxonomy of variables, 38-39
Test statistic, 348
Theoretical $Q-Q$ plot, $\mathbf{8 8}$
Third (or upper quartile), $\mathbf{8 0}$
Three-way data sets, 184-187
Tolerance intervals, 420-426
cautions about, 669
confidence levels of, 424-425
interpretation of, $\mathbf{4 2 2}$
multiple linear regression, 689-691
multiplier to use, 689
simple linear regression, 666-669

Total sum of squares, 484
Transformation
logarithmic, 193
power, 193
Transformations
multifactor studies, 194-202
multiple samples, 193-194
single sample, 192-193
Transmission of variance formulas, 311 (see also propagation of error)
Treatment sum of squares, $\mathbf{4 8 4}$
Trend charts, 75-77 (see also run charts)
Truncated histogram, 73
Tukey's method, 474-477, 479
comparing main effects, 562-567
Two proportions, inference for the difference between, 407-413
Two-level factorials, standard fractions of, 591-611
Two-way factorial notation, 551-554
Type I error, 353
probability, 354
Type II error, 353
probability, 354
u charts, 523-527 (see also Shewhart control charts)
Uniform histogram, 73
Univariate data, 11

Variables
accompanying, 39
behavior of, 75
blocking, 40
concomitant, 39
continuous, 9
controlled, 38, 40
count, 27
dummy, 706
for regression analysis, 713
experimental, 38
extraneous, 40
factors, 12
handling extraneous, 40-43
iid random, 291
independent continuous random, 299
independent discrete random, 289
jointly continuous random, 292-297
jointly discrete random, 279-283
linear combinations of random,

307-310

lurking, 5
managed, 38
plots against process, 101-102
qualitative, 27
random, 221-223, 222
response, $\mathbf{3 8}$
supervised, 38
taxonomy of, 38-39

Variables vs. attributes control charting, 538
Variables data, 104
Variance, 95
population, 99
sample, 96
transforming to stabilize, 194
Variances
equal, 651
estimate for multiple linear regression model, 675-682
estimate for simple linear regression model, 651-658
Variation, 498

Wear-out, 763
Weibull distributions, 260-263, 761
mean of, 260
median of, 261
variance of, 260
Weibull paper, 276-277
Weibull probability density, 260
Whiskers, 82
Wood joint strength, measuring, 15
Yates algorithm, 188-189
reverse, 189
Yates standard order, 188

