Answers to
Section Exercises

Chapter 1
Section 1 Section 2
1. Designing and improving complex products and 1. Observational study—you might be interested in

systems often leads to situations where thereis no
known theory that can guide decisions. Engineers
are then forced to experiment and collect data to
find out how a system works, usually under time
and monetary constraints. Engineers aso collect
datain order to monitor the quality of productsand
services. Statistical principles and methods can be
used to find effective and efficient ways to collect
and analyze such data.

. The physical world is filled with variability. It
comes from differences in raw materials, machin-
ery, operators, environment, measuring devices,
and other uncontrollablevariabl esthat change over
time. Thisproducesvariability in engineering data,
at least some of whichisimpossibleto completely
eliminate. Statistics must therefore address the re-
ality of variability in data.

. Descriptive statistics provides away of summariz-
ing patterns and major features of data. Inferential
statistics uses a probability model to describe the
process from which the data were obtained; data
are then used to draw conclusions about the pro-
cess by estimating parameters in the model and
making predictions based on the model.

806

3.

4.

assessing the job satisfaction of a large number
of manufacturing workers; you could administer
a survey to measure various dimensions of job
satisfaction. Experimental study—you might want
to compare several different job routing schemes
to see which one achieves the greatest throughput
in ajob shop.

Qualitative data—rating the quality of batches of
ice cream as either poor, fair, good, or exceptional.
Quantitative data—measuring the time (in hours)
it takes for each of 1,000 integrated circuit chips
to fail in a high-stress environment.

Any relationships between the variables x and y
can only be derived from a bivariate sample.

You might want to compare two laboratories in
their ability to determine percent impuritiesinrare
metal specimens. Each specimen could be divided
intwo, with each half goingto adifferent lab. Since
each specimen isbeing measured twicefor percent
impurity, the data would be paired (according to
specimen).



5. Full factorial data structure—tests are performed

for all factor-level combinations:

Design  Paper Loading Condition
delta construction  with clip

t-wing  construction  with clip

delta typing with clip

t-wing  typing with clip

delta construction  without clip
t-wing  construction  without clip

delta typing without clip
t-wing  typing without clip

Fractional factoria data structure—tests are per-
formed for only some of the possible factor-level
combinations. One possibility isto choose thefol-
lowing “half fraction”:

Design  Paper Loading Condition
delta construction  without clip
t-wing  construction  withclip

deta typing with clip

t-wing  typing without clip

. Variables can be manipulated in an experiment.
If changes in the response coincide with changes
in factor levels, it is usually safe to infer that the
changes in the factor caused the changes in the
response (as long as other factors have been con-
trolled and there is no source of bias). There is
no control or manipulation in an observational
study. Changes in the response may coincide with
changes in another variable, but there is always
the possibility that a third variable is causing the
correlation. It is therefore risky to infer a cause
and-effect relationship between any variable and
the response in an observational study.

Section 3
1. Evenif ameasurement system isaccurate and pre-

cisg, if it isnot truly measuring the desired dimen-
sion or characteristic, then the measurements are
useless. If a measurement system is valid and ac-
curate, but imprecise, it may be useless because it
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produces too much variability (and this cannot be
corrected by calibration). If a measurement sys-
tem is valid and precise, but inaccurate, it might
be easy to make it accurate (and thus useful) by
calibrating it to a standard.

If the measurement system is not valid, then tak-
ing an average will still produce a measurement
that isinvalid. If the individual measurements are
inaccurate, then the averagewill beinaccurate. Av-
eraging many measurements only improves preci-
sion. Suppose that the long-run average yield of
the process is stable over time. Imagine making
5 yield measurements every hour, for 24 hours.
This produces 120 individual measurements, and
24 averages. Sincethe averagesare “ pulled” to the
center, there will be less variability in the 24 aver-
ages than in the 120 individual measurements, so
averaging improves precision.

Unstable measurement systems (e.g., instrument
drift, multiple inconsistent devices) can lead to
differences or changes in validity, precision, and
accuracy. In a statistical engineering study, it is
important to obtain valid, precise, and accurate
measurements throughout the study. Changes or
differences may create excessive variability, mak-
ing it hard to draw conclusions. Changes or differ-
ences can aso bias results by causing patternsin
data that might incorrectly be attributed to factors
in the experiment.

Section 4

1

Mathematical models can help engineers describe
(inarelatively simple and concise way) how phys-
ical systems behave, or will behave. They are an
integral part of designing and improving products
and processes.

Chapter 2

Section 1

1

Flight distance might be defined as the horizontal
distance that a plane travels after being launched
from amechanical slingshot. Specifically, the hor-
izontal distance might be measured from the point
on the floor directly below the slingshot to the
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point on the floor where any part of the plane first
touches.

2. If dl operators aretrained to use measuring eguip-
ment in the same consistent way, this will result
in better repeatability and reproducibility of mea
surements. The measurementswill bemorerepeat-
ablebecauseindividual operatorswill usethe same
technique from measurement to measurement, re-
sulting in small variability among measurements
of the same item by the same operator. The mea-
surements will be more reproducible because all
operatorswill betrained to usethe sametechnique,
resulting in small variability among measurements
made by different operators.

3. Thisschemewill tend to “over-sample’ larger lots
and “under-sample” smaller lots, since the amount
of information obtained about a large population
from a particular sample size does not depend on
the size of the population. To obtain the same
amount of information from each lot, you should
use an absolute (fixed) sample size instead of a
relative one.

4. If the response variable is poorly defined, the data
collected may not properly describe the character-
istic of interest. Even if they do, operators may
not be consistent in the way that they measure the
response, resulting in more variation.

Section 2

1. Label the 38 runout values consecutively, 1-38, in
the order given in Table 1.1 (smallest to largest).
First ssmplelabels: { 12, 15, 5, 9, 11} ; First sample
runout values: {11, 11, 9, 10, 11}. Second sample
labels: {34, 31, 36, 2, 14} ; Second sample runout
values: {17, 15, 18, 8, 11}. Third sample labels:
{10, 35, 12, 27, 30} ; Third sample runout values:
{10, 17, 11, 14, 15} . Fourth sample labels: { 15, 5,
19, 11, 8}; Fourth sample runout values: {11, 9,
12, 11, 10}. The samples are not identical. Note:
the population mean is 12.63; the sample means
are 10.4, 13.8, 13.4, and 10.6.

3. A simple random sample is not guaranteed to be
representative of the population from which it is
drawn. It givesevery set of nitemsan equal chance
of being selected, so there is aways a chance that

the n items chosen will be “extreme’” members of
the population.

Section 3
1. Possible controlled variables: operator, launch an-

gle, launch force, paper clip size, paper manu-
facturer, plane constructor, distance measurer, and
wind. The response is Flight Distance and the ex-
perimental variables are Design, Paper Type, and
Loading Condition. Concomitant variables might
be wind speed and direction (if these cannot be
controlled), ambient temperature, humidity, and
atmospheric pressure.

. Advantage: may reduce baseline variation (back-

ground noise) in the response, making it easier to
see the effects of factors. Disadvantage: the vari-
able may fluctuate in the real world, so controlling
it makes the experiment more artificial—it will be
harder to generalize conclusions from the experi-
ment to the real world.

. Treat “distance measurer” as an experimental

(blocking) variable with 2 levels. For each level
(team member), perform a full factorial experi-
ment using the 3 primary factors. If therearediffer-
encesin the way team members measure distance,
then it will still be possible to unambiguously as-
sess the effects of the primary factors within each
“sub-experiment” (block).

. List thetestsfor Mary in the same order given for

Exercise 5 of Section 1.2. Then list the tests for
Tom after Mary, again in the same order. Label
the tests consecutively 1-16, in the order listed.
Let the digits 01-05 refer to test 1, 06—10 to test
2,...,and 76—80 to test 16. Move through Table
B.1 choosing two digits a a time. Ignore previ-
ously chosen test labels or numbers between 81
and 00. Order the testsin the same order that their
corresponding two-digit numbers are chosen from
the table. Using this method (and starting from the
upper-left of the table), the test labeled 3 (Mary,
delta, typing, with clip) would be first, followed
by the testslabeled 13, 9, 1, 2, 7, 10, 8, 14, 11, 6,
15, 4, 16, 12, and 5.



5. For the delta/construction/with clip condition (for

example), flying the same plane twice would pro-
vide information about flight-to-flight variability
for that particular plane. This would be useful
if you are only interested in making conclusions
about that particular plane. If you areinterested in
generalizing your conclusions to all delta design
planes made with construction paper and loaded
with a paper clip, then reflying the same airplane
does not provide much more information. But
making and flying two planes for this condition
would give you some idea of variability among
different planes of this type, and would therefore
validate any general conclusions made from the
study. This argument would be true for al 8 con-
ditions, and would al so apply to comparisons made
among the 8 conditions.

. Random sampling is used in enumerative studies.
Its purpose is to choose a representative sample
from some population of items. Randomization
isused in analytical/experimenta studies. Its pur-
pose is to assign units to experimental conditions
in an unbiased way, and to order procedures to
prevent bias from unsupervised variabl es that may
change over time.

. Blocking is a way of controlling an extraneous
variable: withineach block, theremay belessbase-
line variation (background noise) in the response
than there would be if the variable were not con-
trolled. This makes it easier to see the effects of
the factors of interest within each block. Any ef-
fects of the extraneous variable can beisolated and
distinguished from the effects of the factors of in-
terest. Compared to holding the variable constant
throughout the experiment, blocking aso results
in amore realistic experiment.

. Replication is used to estimate the magnitude of
baseline variation (background noise, experimen-
tal error) in the response, and thus helps sharpen
and validate conclusions drawn from data. It pro-
vides verification that results are repeatable and
establishes the limits of that repeatability.

. Itisnot necessary to know exactly how the entire
budget will be spent. Experimentation in engineer-
ing is usualy sequential, and this requires some
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decisions to be made in the middle of the study.
Although some may think that this is improper
from ascientific/statistical point of view, it isonly
practical to base the design of later stages on the
results of earlier stages.

Section 4
1. If you regard student as a blocking variable, then

this would be a randomized complete block ex-
periment. Otherwise, it would just be acompletely
randomized experiment (with afull factorial struc-
ture).

2. (a) Labd the 24 runs asfollows:

Labels Level of A Levedof B Level of C
1,23 1 1 1
4,5,6 2 1 1
7,8,9 1 2 1
10,11, 12 2 2 1
13,14, 15 1 1 2
16, 17,18 2 1 2
19,20, 21 1 2 2
22,23,24 2 2 2

Use the following coding for the test labels: ta-
ble number 01-04 for test label 1, table number
05-08 for test label 2, . . ., table number 93-96 for
test number 24. Move through Table B.1 choosing
two digits at atime, ignoring numbers between 97
and 00 and those corresponding to test labels that
have already been picked. Order the tests in the
sameorder that their corresponding two-digit num-
bers are picked from the table. Using this method,
and starting from the upper-left corner of the ta-
ble, the order would be 3, 4, 24, 16, 11, 2, 9, 12,
17,8, 21, 1, 13, 7, 18, 5, 20, 14, 19, 15, 22, 23,
6, 10. (b) Treat day as a blocking variable, and
run each of the 8 factor-level combinationsonceon
each day. Blocking allows comparisons among the
factor-level combinations to be made within each
day. If blocking were not used, differences among
days might cause variation in the response which
would cloud comparisons among the factor-level
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combinations. (c) List the 8 factor-level combi-
nations separately for each day. For each day, label
the runs as follows:

Day Levedof A Levelof B Levelof C

Label Level of A Levelof B Leve of C

W W wwwwwow
NNEFEP NEFEDNPRP P
P NFP NMNNEFEDNPRP
N NDNDNPFEPF NP PP

Part (a) randomized al 24 runstogether; here, each
block of 8 runsis randomized separately.

3. Thefactor Person isthe “block” variable.

0N UAWN R
NPFRPNRPNRNEPR
NNRP R NNR PR
NNNNPR R R PR

For each day, move through Table B.1 one digit
at atime ignoring the digits 9 and 0 and any that Block  Design  Paper
have already been picked. Order the 8 runsin the

same order that the numbers were picked from the Tom  delta  construction
table. Starting from where | Ieft off in part (a), the Tom — twing  typing
order for day 1is5, 3, 8, 4, 1, 2, 6 (which implies Juanita  delta typing
that run 7 goeslast). For day 2, the order is5, 1, 8, Juanita  t-wing  construction

7, 2, 3, 6 (which implies that run 4 goes last). For
day 3,theorderisi, 3,2,7,4,5, 8, (whichimplies 4. Focusing on Design, you would want each per-

that run 6 goes last). son to test two delta-wing planes and two t-wing
The plan is summarized below: planes; thiswould allow youto clearly comparethe
two designs. You could separately compare the de-
Day LevelofA LevdofB Level of C signs “within” each person. If possible, you would
want a plan such that thisis true for all three pri-
1 1 1 2 mary factors, ssmultaneoudly. This is possible by
1 1 2 1 using the same pattern that is used in Table 2.6:
1 2 2 2
1 2 2 1 Person  Design  Paper Loading Condition
1 1 1 1
1 2 1 1 Juanita  delta construction  with clip
1 2 1 2 Tom t-wing  construction  withclip
1 1 2 2 Tom delta typing with clip
Juanita  t-wing  typing with clip
2 1 1 2 Tom delta construction  without clip
2 1 1 1 Juanita  t-wing  construction  without clip
2 2 2 2 Juanita  delta typing without clip
2 1 2 2 Tom t-wing  typing without clip
2 2 1 1
2 1 2 1 This design also allows each person to test each
2 2 1 2 Design/Paper combination once, each Design/
2 2 2 1




L oading combination once, and each Paper/L oad-
ing combination once.

5. Thisisan incomplete block experiment.

Section 5

1. A cause-and-effect diagram may be useful for rep-
resenting a complex system in a relatively sim-
ple and visua way. It enables people to see how
the components of the system interact, and may
help identify areas which need the most atten-
tion/improvement.

Chapter 3

Section 1

1. Onechoiceof intervalsfor the frequency table and
histogram is65.5-66.4, 66.5-67.4, . .., 73.5-74.4.
For this choice, the frequenciesare 3, 2, 9, 5, 8, 6,
2, 3, 2; therelative frequencies are .075, .05, .225,
125, .2, .15, .05, .075, .05; the cumulative rel ative
frequencies are .075, .125, .35, .475, .675, .825,
.875, .95, 1. The plots reveal afairly symmetric,
bell-shaped distribution.

2. Theplotsshow that the depthsfor 200 grain bullets
are larger and have less variability than those for
the 230 grain bullets.

3. (a) There are no obvious patterns.  (b) The dif-
ferences are —15, 0, —20, 0, -5, 0, -5, 0, -5,
20, —25, —5, —10, —20, and 0. The dot diagram
shows that most of the differences are negative
and “truncated” at zero. The exception isthe tenth
piece of equipment, with a difference of 20. This
point does not fit in with the shape of the rest of
thedifferences, soitisan outlier. Since most of the
differences are negative, the bottom bolt generally
required more torque than the top bolt.

Section 2

1. (a) For the lengthwise sample: Median = .895,
Q(.25) = .870, Q(.75) = .930, Q(.37) = .880.
For the crosswise sample: Median = .775,

Q(.25) = .690, Q(.75) = .800, Q(.37) =.738.
(b) On the whole, the impact strengths are larger
and more consistent for lengthwise cuts. Each
method also produced an unusual impact strength
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value (outlier). (c) The nonlinearity of the Q-
Q plot indicates that the overall shapes of these
two data sets are not the same. The lengthwise
cuts had an unusually large data point (“long right
tail”), whereas the crosswise cuts had an unusu-
aly small data point (“long left tail”). Without
these two outliers, the data sets would have simi-
lar shapes, since the rest of the Q—Q plot isfairly
linear.

2. Usethe (i —.5)/n quantiles for the smaller data
set. The plot coordinates are: (.370, .907), (.520,
1.22), (.650, 1.47), (.920, 1.70), (2.89, 2.45), (3.62,
5.89).

3. The first 3 plot coordinates are; (65.6, —2.33),
(65.6, —1.75), (66.2, —1.55). The normal plot is
quite linear, indicating that the data are very bell-
shaped.

4. Theoretica Q—Q plotting allows you to roughly
check to seeif adata set has a shape that is similar
to some theoretical distribution. This can be use-
ful inidentifying atheoretical (probability) model
to represent how the process is generating data.
Such amodel can then be used to make inferences
(conclusions) about the process.

Section 3

1. Forthelengthwisecuts: X = .919, Median = .895,
R = .310, IQR = .060, s = .088. For the cross-
wise cuts: x = .743, Median = .775, R = .430,
IQR = .110, s = .120. The sample meansand me-
dians show that the center of the distribution for
lengthwise cutsis higher than the center for cross-
wise cuts. The sampleranges, interquartile ranges,
and sample standard deviations show that there
is less spread in the lengthwise data than in the
crosswise data.

2. These values are statistics. They are summariza-
tions of two samples of data, and do not represent
exact summarizations of larger populations or the-
oretical (long-run) distributions.

4. Inthefirst case, the sample mean and median in-
crease by 1.3, but none of the measures of spread
change; in the second case, all of the measures
double.
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Section 4

1. p=theproportion of part ordersthat are delivered
on timeto the factory floor. = number of defects
per shift produced on an assembly line. A mea
sured value of 65% yield for a run of a chemical
proceﬁs is of neither form.

2. Prag = 35 =198 Py = .615. Most en-
gineeri ng stuatlons call ?or minimizing variation.
The p values do not give any indication of how
much spread thereisin each set of data, and would
not be helpful in comparing the two methods with
respect to variation.

3. Neither type. These rates represent continuous
measurements on each specimen; there is no
“counting” involved.

Chapter 4

Section 1

1. @ 9=94—-10x (b) r=-945 (c) r =
.945. Thisisthe negative of ther in part (b), since
the §'s are perfectly negatively correlated with the
x's. (d) R? = .893 = r? from both (b) and (c).
(e) —.4, 6, —.4, .6, —.4. These are the vertica
distances from each data point to the least squares
line.

3. (@) R?=.994 (b) § = —3174.6 4+ 23.50x. 23.5
(c) Residuals: 105.36, —21.13, —60.11, —97.58,
16.95, 14.48, 42.00, .02. (d) Thereisno replica
tion (multiple experimental runsat a particular pot
temperature). (€) For x = 188 °C, § = 1243.1.
For x = 200°C, § = 1525.1. It would not be wise
to make asimilar prediction at x = 70 °C because
there is no evidence that the fitted relationship is
correct for pot temperatures aslow as x = 70 °C.
Some data should be obtained around x = 70 °C.

4. (a) The scatterplot is not linear, so the given
straight-line relationship does not seem appro-
priate. R? = .723. (b) This scatterplot is much
more linear, and a straight-line relationship seems
appropriate for the transformed variables. R? =
.965. _(c) Iny 34.344 — 5.1857Inx. For x =
550, Iny = 1.6229 50 § = €922 — 507 minutes,

The implied relationship between x and y isy =
efoxPi.

Section 2

1. § = —1315+ 5.6x + .04212x. R? = .996. For
the quadratic model, at x = 200 °C, § = 1487.2,
whichisrelatively closeto 1525.1 from part (€) of
Exercise 3 of Section 1.

2. (a) y=16.0483 + .14167x, — .016944x,. b, =
.14167 means that as X, increases by 1% (holding
X, constant), y increases by roughly .142 cm/g.
b, = —.016944 means that as x, increases by
one minute (holding X, constant), y decreases by
roughly .017 cm®/g. R?> = .807. (b) The resid-
uals are —.015, .143, .492, —.595, —.457, —.188,
695, .143, —.218. (c) For x, = 30, the equa
tionis § = 5.53998 + .14167x, . For x, = 60, the
equationisy = 5.03166 + .14167x,. For x, = 90,
the equation is § = 4.52334 + .14167x,. The fit-
ted responses do not match up well, because the
relationship between y and x; is not linear for
any of the x, values. (d) At x; = 10% and X, =
70 minutes, § = 6.279 cm®/g. It would not be
wise to make a similar prediction at x; = 10%
and x, = 120 minutes because there is no evi-
dence that the fitted relationship is correct un-
der these conditions. Some data should be ob-
tained around x, = 10% and x, = 120 minutes.
(e) § = 4.98 4+ .260x, + .00081x, — .00197X,X,,
and R? = .876. The increase in R? from .807 to
.876 is not very large; using the more compli-
cated equation may not be desirable (this is sub-
jective). (f) For x, = 30, the equation is § =
5.0076 + .20084x, . For x, = 60, the equation is
¥ = 5.0319 + .14168x,. For x, = 90, the equa-
tion is § = 5.0562 +- .08252x,. The new model
alows there to be a different slope for different
values of x,, so these lines fit the data better
than the lines in part (c). But they still do not
account for the nonlinearity between x, and y. An
x1 term should be added to the model.  (g) There
is no replication (multiple experimental runs at a
particular NaOH/Time combination). (h) These
data have a complete (full) factorial structure.
The straight-line least squares equation for x, is



§ = 5.0317 + .14167x, with a corresponding R?
of .594. Thestraight-lineleast squares equationfor
X, is § = 7.3233 — .01694x, with a correspond-
ing R? of .212. The slopes in these one-variable
linear equations are the same as the corresponding
slopes in the two variable equation from (a). The
R? value in (a) is the sum of the R? values from
the two one-variable linear equations.

Section 3
1. (a)Labelingx, asAandx,asB,a; = —.643,a, =
—.413,a; = 1.057, b, = .537, b, = —.057, b; =

—.480, ab;, = —.250, ab,, = —.007, ab;=
.257, ab,, = —.210, ab,, = .013, ab,; = .197,
aby, = .460, ab,, = —.007, ab,; = —.453. The
fitted interactions ab,, and ab,, are large (rela
tiveto fitted main effects) indicating that the effect
on y of changing NaOH from 9% to 15% de-
pends on the Time (non-paralelism in the plot).
It would not be wise to use the fitted main effects
aone to summarize the data, since there may be
animportantly largeinteraction. (b) ¥,, = 6.20,
y,, =561, §,, =518, §, =643, §,, =584,
Y3 =541, Y5 =7.90, ¥, = 7.31, 5, = 6.88.
Like the plot in part (c) and unlike the plot in
(f) of Exercise 2 in Section 4.2, the fitted val-
ues for each level of B (x,) must produce parallel
plots; no interactions are alowed. However, un-
like parts (c) and (f) of that exercise, the current
model allows these fitted values to be nonlinear
in x, (factorial models are generally more flexible
than lines, curves, and surfaces).  (c) R? = .914.
The plots of residuals versus Time and residuals
versus ¥, both have patterns; these show that the
“main effects only” model is not accounting for
the apparent interaction between the two factors.
Even though R? is higher than both of the models
in Exercise 2 of Section 4.2, this model does not
seem to be adequate.

. (@ y.=20792, a,=.113, b,=-13.807,
ab,, = —.086, ¢, = 7.081, ac,, = —.090, bc,, =
—6.101, abc,,, = .118. Other fitted effects can
be obtained by appropriately changing the signs
of the above. The simplest possible interpreta-
tion is that Diameter, Fluid, and their interaction
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are the only effects on Time. (b) y_ = 2.699,
a, = .006,b, = —.766,ab,, = —.003,c, = .271,
ac,, = —.003, bc,, = —.130, abc,,, = .007. Yes,
but the Diameter x Fluid interaction still seems
to be important.  (c) In standard order, the fitted
values are 3.19, 3.19, 1.66, 1.66, 3.74, 3.74, 2.20,
2.20. R® = .974. For a model with all factorial
effects (Iny;, =Iny;,), R?=.995. (d) b, -
b, = 1.532 In(sec) decrease; divide the .188 raw
drain time by !5 to get the .314 drain time. This
suggests that (.188 drain time/.314 drain time) =
el%%2 — 4.63; the theory predicts this ratio to be
7.78.

3. Interpolation, and possibly some cautious extrapo-
lation, is only possible using surface-fitting meth-
ods. In many engineering situations, an “optimal”
setting of quantitative factors is sought. This can
be facilitated by interpolation (or extrapolation)
using a surface-fitting model.

Section 4

1. Transforming data can sometimes make relation-
ships among variables simpler. Sometimes nonlin-
ear relationships can be made linear, or factorsand
response can betransformed so that therearenoin-
teractions among the factors. Transformations can
aso potentially make the shape of a distribution
simpler, allowing the use of statistical models that
assume a particular distributional shape (such as
the bell-shaped normal distribution).

2. Interms of the raw response, there will be interac-
tions, since x, and x, are multiplied together inthe
power law. The suggested plot of raw y versus x,
will have different slopesfor different values of x,,.
This means that the effect of changing x, depends
on the setting of x,, which is one way to define an
interaction.

In terms of the log of y, there will not be inter-
actions, since x, and x, appear additively in the
equation for Iny. Therefore, the suggested plot of
Iny versus x, will have the same slope for all val-
ues of x,. This means that the effect of changing
X, does not depend on the setting of x, (there are
no interactions).
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Section 5

1. A deterministic model is used to describe a sit-
uation where the outcome can be almost exactly
predictedif certain variablesareknown. A stochas-
tic/probabilistic model is used in situations where
it is not possible to predict the exact outcome.
This may happen when important variables are
unknown, or when no known deterministic the-
ory can describe the situation. An example of a
deterministic model is the classical Economic Or-
der Quantity (EOQ) model for inventory control.
Given constant rate of demand R, order quantity
X, ordering cost P, and per unit holding cost C, the
total cost per time periodisY = P (£) + C (%).

Chapter 5

Section 1
1. (b)4.1; 1.136.

2. (a) X hasabinomial distribution withn = 10 and
p = 3. Useequation (5.3) withn = 10and p = 3.
f (0)—f (10) are.0173, .0867, .1951, .2601, .2276,
.1366, .0569, .0163, .0030, .0003, .0000. (b) As-
suming that they are just guessing, the chance that
7 (or more) out of 10 subjects would be correct
is P(X > 7) = .0197. Under the hypothesis that
they are only guessing, this kind of extreme out-
come would only happen about 1 in 50 times, so
the outcome is strong evidence that they are not
just guessing.

3. (@) Using equations (3.4) and (3.5), u =4,
o®=2,ando =1.291.

(b)

x|23456

12
6 6

ol

POX=x | o

Since all members of the population are equally

First  Second

Item Item X s Probability
2 3 25 5 i
2 4, 30 20 e
2 4, 30 20 %
2 5 35 45 i
2 6 40 80 i
3 4, 35 5 i
3 4, 35 5 i
3 5 40 20 i
3 6 45 45 i
4, 4, 40 0 i
4, 5 45 5 i
4, 6 50 20 i
4, 5 45 5 i
4, 6 50 20 %
5 6 55 5 i

Using the above table, the probability distribu-

tionfor X is:

% | 25 3 35 4 45 5 55

N o 1 2 3 3 3 2 1
P(X=X) | £ & B 1B 1B i 1

Using equations (5.1) and (5.2), EX =4 and
VarX = £. As might be expected, the mean of

X is the same as the mean of X, and the variance
is smaller. The probability distribution for S is

s? |0

2 45 8

P& =5% | 1—15

3 2 1
15 15 15

likely to be chosen, the probability histogram for
X isthe same as the population relative frequency
distribution. Using eguations (5.1) and (5.2),
EX=4andVarX = 2. (c) Label thevalues2, 3,
4,,4,,5,6.

. For p=.1, f(0)—f(5) are .59, .33, .07, .01, .00,

00, u=np=.5 o=/np(l-p)=.67. For
p=.3 f-f(5) are.17, .36, .31, .13, .03, .00;
uw=15 oc=12102 For p=.5 f(0)-f(5) are
.03, .16, .31, .31, .16, .03; u = 2.5; 0 = 1.12. For



5.

6.

7.

8.
9.

10.

p=.7 f(0)-f(5) are.00, .03, .13, .31, .36, .17;
uw =35 0=102. For p=.9, f(0)-f(5 are
.00, .00, .01, .07, .33, .59; u = 4.5; 0 = .67.

Binomial distribution: n = 8, p = .20. (a).147
(b) .797 (c)np=16 (d)np(l—p) =128
(e) 1.13

Geometric distribution: p = .20. (a) .08 (b) .59
(©1/p=5 (d)(L—p)/p°=20 (e)447

For » = .5, f(0), f(1),...are.61, .30, .08, .01,

00, .00,...;u=A1=.5 o =+Ai=.71 For
A =10, f), f(1),... are .37, .37, .18, .06,
.02,.00,.00,...; x =1.0;0 = 1.0.For» = 2.0,

£(0), f (1), ...are.14, .27, .27, .18, .09, .04, .01,
.00, .00,...; 0 =20; o = 1.41. For A = 4.0,
£(0), f (1), ...are.02,.07, .15, .20, .20, .16, .10,
.06,.03, .01, .00, .00, ...; i = 4.0; ¢ = 2.0.

(a) 323 (b).368

(a).0067 (b)Y ~ Binomial(n = 4, p = .0067);
.00027

Probability is a mathematical system used to de-
scribe random phenomena. It is based on a set of
axioms, and al the theory is deduced from the
axioms. Once a model is specified, probability
provides a deductive process that enables predic-
tions to be made based on the theoretical model.

Statistics uses probability theory to describe
the source of variation seenindata. Statisticstries
to create realistic probability models that have
(unknown) parameters with meaningful interpre-
tations. Then, based on observed data, statistical
methods try to estimate the unknown parame-
ters as accurately and precisely as possible. This
means that statistics is inductive, using data to
draw conclusions about the process or popula-
tion from which the data came.

Neither is asubfield of the other. Just as engi-
neering uses calculus and differential equations
to model physical systems, statistics uses proba-
bility to model variation in data. In each case the
mathematics can stand alone as theory, so calcu-
lusisnot asubfield of engineering and probability
isnot asubfield of statistics. Conversely, statistics

11.
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isnot asubfield of probability just as engineering
isnot asubfield of calculus; many simple statisti-
cal methods do not require the use of probability,
and many engineering techniques do not require
calculus.

A relativefrequency distributionisbased on data.
A probability distribution is based on a theoreti-
cal model for probabilities. Since probability can
be interpreted as long-run relative frequency, a
relative frequency distribution approximates the
underlying probability distribution, with the ap-
proximation getting better as the amount of data
increases.

Section 2

1

@2/9 (¢.5
0 forx <0

d) F(x) = —10x9—x2 forO<x <1

1 forx > 1
(e) 13/27; .288
(@) .2676 (b) .1446 (c).3393 (d).3616

(e).3524 (f).9974 (g)1.28 (h) 1.645
(i) 2.17

() 7291 (b).3594 (c).2794 (d).4246

(e) .6384 (f)48.922 (g)44.872. (h) 7.056
(a) .4938 (b) Set u to the midpoint of the speci-
fications: « = 2.0000; .7888 (c) .0002551

() P(X < 500) = .3934; P(X > 2000) = .1353
(b) Q(.05) = 51.29: Q(.90) = 2,302.58

(b) Median = 68.21 x 10° (c) Q(.05) =
21.99 x 10°% Q(.95) = 128.9 x 10°

Section 3

1

Datathat are being generated from aparticular dis-
tribution will have roughly the same shape as the
density of the distribution, and this is more true
for larger samples. Probability plotting provides
a sensitive graphical way of deciding if the data
have the same shape as a theoretical probability
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distribution. If a distribution can be found that ac-
curately describesthe data generating process, one
can then estimate probabilities and quantiles and
make predictions about future process behavior
based on the model.

Fit aline (by eye or some other method) through
the pointson the plot. The x-intercept isan approx-

imate mean, and an approximate standard devia-
AX A data quantiles

. . ~ 1 AX
tioniso =~ dope ~— Ay ~ a sd. normd quantiles’

3. (b) u =~ 6950 ~ 1/dope= 2.1
4. (a) First 3 coordinates of the normal plot of the

raw data: (17.88, —2.05), (28.92, —1.48), (33.00,
—1.23). The normal plot is not linear, so a Gaus-
sian (normal) distribution does not seem to fit
these data. First 3 coordinates of the normal plot
of the natural log of the data: (2.884, —2.05),
(8.365, —1.48), (3.497, —1.23). This normal plot
is fairly linear, indicating that a lognormal distri-
bution fits the datawell. u ~ 4.1504, o ~ .5334.
3.273; 26.391. (b) Thefirst 3 coordinates of the
Weibull plot are (2.88, —3.82), (3.36, —2.70),
(3.50, —2.16). The Weibull plot isfairly linear, in-
dicating that a Weibull distribution might be used
to describe bearing load life. o ~ 81.12, 8 ~ 2.3;
22.31.

(b) The exponential plot isfairly linear, indicating
that an exponential distribution fits the data well.
Sincealineontheplot indicatesthat Q(0) ~ 0, no
need for athreshold parameter greater than zerois
indicated.

Section 4

1

If X and Y areindependent, then observing the ac-
tual value of X doesnot in any way change proba-
bility assessments about the yet-to-be-observed Y,
or vice-versa. Independence provides great mathe-
matical simplicity in the description of the behav-
iorof Xand.

(@Forx=012 f,(x)=.5, .4, . LFory=
0,1 2 3 4 f,(y= .21, 19, .26 .21, .13
(b) No, since f(x,y) # f,(x) f,(y). (c).6; .44
(d) 1.86;1.74 (¢) Fory=0,1,2, 3,4, leX(y |
0 =.3.2.2.2.16.

3 (@ Fory=1234, f,,(yl00=0001

and f,(y|1) = .25 .25 .25 25. f(0,1) =
f(0,2)=f(0,3)=0, f(0,4=p, (1,1 =
f(1,2) = f(1,3) = f(L4) =.251— p).
(b)25+15p (c) p> .143

. (@) Since X and Y are independent, f(X,y) =

f (X) f, (y) (Definition 27),

542 forx e (1.97,2.02) and
f(x,y) = y € (2.00, 2.06)
0 otherwise

333.33 for x € (1.97, 2.02) and
= y € (2.00, 2.06)
0 otherwise

(b) Find the volume below this density over there-
gioninwhich2.00 < y < xand1.97 < x < 2.02.

Thisis.0667. (Using calculus, thisis
2.02 x

[ [ 333.33dydx.)
2.002.00

- (@)

2x for0<x<1

fx(x) = {

0 otherwise

21—y
0 otherwise

forO<y<l1
fy(y)= ;

u=EX=2/3.
(b) Yes, since f(x,y) = f, () f, (y).
(d) E(X|Y =.5)=2/3

(c) .7083

. (@

fx,y)=
e e ifx>0ady>0

f f =
x0T {0 otherwise

22 fort>0

bye® (c) f () = :
) © = ® {0 otherwise

This is an exponential distribution with mean .5.
(d) (1 —e™)2.



fort > 0O;
(e) fT(t) =

2etl—eh
otherwise

E(T)=15

Section 5
1. mean = .75 in.; standard deviation = .0037.

2. (a) Propagation of error formula gives 1.4159 x
107%. (b) Thelengths.

3. (a) 13/27; .0576 (b) X ~ Normal with mean
13/27 and standard deviation .0576. (c) .3745
(d) .2736 (e) 13/27, .0288; X ~ Normal with
mean 13/27 and standard deviation .0288; .2611;
.5098.

4. .7888, .9876, 1.0000

5. Rearrange the relationship in terms of g to get
g = “°LTake the given length and period to be
approii mately egual to the means of these input
random variables. To use the propagation of error
formula, the partial derivatives need to be eval-

uated at the means of the input random variables
and 29 = — 6418837 and 2¢ = L =
—25.8824089. Then applying equation (5.59),
Var(g) ~ (6.418837)(.0208)%+ (—25.8824089)>
x (.1)? = 6.7168 ft?/sec* so the approximate stan-
dard deviation of g is v/6.7168 = 2.592 ft/sec?.
The precision in the period measurement is the
principal limitation on the precision of the derived
g because its term (variance x sguared partia
derivative) contributes much more to the propaga-
tion of error formulathan the length’s term.

Chapter 6

Section 1

1. [6.3,7.9] ppmis aset of plausible values for the
mean. The method used to construct this interval
correctly contains the true mean in 95% of re-
peated applications. This particular interval either
contains the mean or it doesn’t (there is no prob-
ability involved). However, because the method is
correct 95% of thetime, we might say that we have
95% confidence that it was correct thistime.
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2. (8)[111.0,174.4] (b)[105.0,180.4] (c)167.4
(d)174.4 (e)[111.0,174.4] ppmisaset of plau-
sible values for the mean aluminum content of
samplesof recycled PET plastic fromtherecycling
pilot plant at Rutgers University. The method used
to construct thisinterval correctly contains means
in 90% of repeated applications. Thisparticular in-
terval either contains the mean or it doesn’t (there
is no probability involved). However, because the
method is correct 90% of the time, we might say
that we have 90% confidence that it was correct
thistime.

3. n=66

4. (a) x =4.6858 and s=.02900317 (b) =
[4.676, 4.695] mm  (c) [4.675, 4.696] mm. This
interval is wider than the one in (b). To increase
the confidencethat w isintheinterval, you need to
maketheinterval wider. (d) Thelower boundis
4.677 mm. This is larger than the lower endpoint
of theinterval in (b). Since the upper endpoint here
is set to oo, the lower endpoint must be increased
to keep the confidence level the same. (e) To
make a 99% one-sided interval, construct a 98%
two-sided interval and usethelower endpoint. This
wasdonein part (a), and theresulting lower bound
is 4.676. This is smaller than the value in (d); to
increase the confidence, the interval must be made
“wider” (f) [4.676, 4.695] ppm isaset of plau-
sible values for the mean diameter of this type
of screw as measured by this student with these
calipers. The method used to construct this inter-
val correctly contains means in 98% of repeated
applications. This particular interval either con-
tainsthe mean or it doesn’t (thereis no probability
involved). However, because the method is correct
98% of the time, we might say that we have 98%
confidence that it was correct thistime.

Section 2

1 Hy:iw=200; H,:p>200, z=-298 p-
value = .9986. Thereis no evidence that the mean
aluminum content for samples of recycled plastic
is greater than 200 ppm.
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(@ Hy:p =.500; H,:pn#.500; z= 155, p-
value= .1212. Thereissome (weak) evidencethat
the mean punch height isnot .500in. (The rounded
X and s given produce a z that is quite a bit dif-
ferent from what the exact values produce. X =
.005002395 and s = .002604151, computed from
the raw data, produce z = 1.85, and a p-value of
2(.0322) = .0644.) (b)[.49990, .50050] (c) If
uniformity of stamps on the same piece of material
is important, then the standard deviation (spread)
of the distribution of punch heights will be impor-
tant (in addition to the mean).

The mean of the punch heights is amost cer-
tainly not exactly equal to .50000000inches. Given
enough data, a hypothesistest would detect thisas
a“dstatistically significant” difference (and produce
asmall p-vaue). What is practically important is
whether themeanis* close enough” to .500 inches.
The confidence interval in part (b) answers this
more practical question.

Hy: u =470, H:u#470 ; z=-3.46;, p-
value = .0006. There is very strong evidence that
the mean measured diameter differsfrom nominal.

Although there is evidence that the mean is not
equal to nominal, the test does not say anything
about how far the mean is from nominal. It may
be “significantly” different from nominal, but the
difference may be practically unimportant. A con-
fidence interval iswhat is needed for determining
how far the mean isfrom nominal.

Section 3

1

The normal distribution is bell-shaped and sym-
metric, with fairly “short” tails. The confidence
interval methods depend on this regularity. If the
distribution is skewed or prone to outliers/extreme
observations, the normal-theory methods will not
properly take this into account. The result is an
interval whose real confidence level is different
from the nominal value (and often lower than the
nominal value).

(a) Independence among assemblies; normal dis-
tribution for top-bolt torques.  (b) Hy: 1 = 100;
H,: u # 100 ; t = 4.4; p-vaue = .001. There is

. (8) [-0.0023, .0031] mm

2. (a) [7.437, 0)

strong evidence that the mean torque is not 100
ft Ib. (c) [104.45,117.55] (d) Independence
among assemblies; normal distribution for differ-
ences. (€) Hy: uy = 0; H,: gy < O (where dif-
ferences are Top — Bottom); t = —2.10 on 14 df;
025 < p-vaue < .05. (f) [—13.49, 1.49]

(b) Hy: g =05 H,;:
py # 0,2 =.24; p-vaue= .8104. Thereisnoev-
idence of asystematic difference between calipers.
(c) The confidence interval in part (a) contains
zero; in fact, zero is near the middle of the inter-
val. This meansthat zero is avery plausible value
for the mean difference—there is no evidence that
the mean is not equal to zero. Thisis reflected by
the large p-vauein part (b).

. (&) The data within each sample must be iid nor-

mal, and the two distributions must have the same
variance 2. One way to check these assumptions
isto normal plot both data sets on the same axes.
For such small samplesizes, it isdifficult to defini-
tively verify the assumptions. But the plots are
roughly linear with no outliers, indicating that the
normal part of the assumption may be reasonable.
The slopesare similar, indicating that the common
variance assumption may bereasonable. (b) La-
bel the Treaded data Sample 1 and the Smooth
dataSample 2. Hy: g — p, = O H oy — ey, #
0; t = 2.49; p-value is between .02 and .05. This
is strong evidence of a difference in mean skid

lengths. () [2.65,47.35]  (d) [2.3, 47.7]

Section 4 ,

1. (a) [9.60, 37.73] () 5758 (0) Hy: L =1
s

2
H,: :_;2 #1, f =.64 on 55 df; p-vaue > .50

(d) [.36, 1.80]

(b) [44.662, c0) (c) Top and
bottom bolt torques for a given piece are probably
not sensibly modeled as independent.

Section 5
1. (@) Conservative method: [.562, .758]; .578. Other

method: [.567,.753];.582. (b)H,: p = .55 H,:



p > .55; z=2.21; p-value = .0136. (c) Con-
servative method: [—.009, .269]. Other method:
[-.005,.265]. (d)Hy:ps—p. =0, H,: pg—
p. # 0; z=1.87; p-value = .0614.

2. 9604

3. Conservative method: [.22, .35]. Other method:
[.23, .34].

4 Hy:ipp—p,=0H, pp—p,#0,2=—.97; p-
value = .3320.

Section 6

1. A consumer about to purchase asingle auto would
be most interested in a prediction bound, because
the single auto that the consumer will purchase is
likely to have mileage above the bound. Thisis not
truefor aconfidence bound for the mean. That may
be more useful for the EPA official, since this per-
son wants to be sure that the manufacturer is pro-
ducing cars that exceed some minimum average
mileage. The design engineer would be most inter-
estedinalower tolerance bound for most mileages,
to be sure that a high percentage of the cars pro-
duced are able to cruise for at least 350 miles. A
confidence for the mean or prediction bound does
not answer this question.

2. (a) [132.543,297.656] (b) [92.455, 337.745]
(c) The tolerance interval is much wider than the
prediction interval. The interval in (b) is meant to
bracket 90% of all observations, while the the one
from (@) is meant only to bracket a single addi-
tional observation.  (d) The confidence interval
for mean lifetime is smaller than both the predic-
tion interval and the tolerance interval. It is meant
only to bracket the mean/center of the population,
not additional observation(s). (e) [152.811, co)
(f) [113.969, co)

3. (a) [3.42, 6.38]; [30.6, 589.1] (b) [3.87, 5.93];
[48.1, 375.0] (c) Theintervalsin (a) are wider
than those in (b). Thisisusualy true when apply-
ing tolerance intervals and prediction intervals in
the same situation.

4. 92.6%; 74.9%
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Chapter 7

Section 1

1. (a) The plot revealstwo outliers. The assumptions
of the one-way normal model appear to be less
than perfectly met in this problem. (Both of the
outliers come from the 8,000 psi condition. This
is an indication that the common o part of the
one-way norma model may be less than perfect.)
(b) .02057. This measures the magnitude of base-
line variation in any of the five treatments, assum-
ing it is the same for all five treatments; [.01521,
.03277].

2. (a) The plot reveds one outlier/unusua residual
(the 1.010 valuefrom Van #1 producestheresidua
—.0094). One should proceed under the one-way
model assumptions only with caution.  (b) The
standardized residuals tell the same story told in
part (3). (c) s, = 0036 measures the (suppos-
edly common) variation in tilt angle for repeated
measurement of a particular van; [.0026, .0058].

Section 2

1. (a) .02646; 75% (b) .03742 (c) [—.0724,
.0572] provides no corvincing evidence of non-
linearity over the range from 2,000 to 6,000, as it
includes 0.

2. (a) The intervals in numerical order of the four
vansare: [1.0875, 1.0984],[.9608, 9716],[1.0145,
1.0242], [.9968, 1.0076]; at least 96% simulta-
neous confidence. (b) A =.0077; A = .0073
(c) [.013516, .02408]

3. Before the data are collected,the probability is .05
that an individual 95% confidence interval will be
in error—that it will not contain the quantity that it
is supposed to contain. If several of these individ-
ud intervals are made, then the probability that at
least one of the intervalsisin error is greater than
.05. (If each interval has a .05 chance of failing,
then the overall chance of at least one falure is
greater than .05.) When making severa intervals,
most people would like the overall or simultane-
ous error probability to be small. In order to make
sure, for example, that the overall error probability
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is.05, the error probability associated with thein-
dividual intervals must be made smaller than .05.
Thisisequivalent to increasing theindividual con-
fidences (above 95%), which makes the intervals
wider.

Section 3
1. (a) .03682; itislarger. (b) .05522; itislarger.

2. (a) k; = 2.88 sotheintervalsin numerical order of
the four vansare: [1.0878, 1.0982], [.9610, 9714],
[1.0147, 1.0240], [.9970, 1.0074]. (b) A=
.0097; A = .0092. Thesearelarger thantheearlier
A’s. The confidence level here is a ssmultaneous
one while the earlier level was an individual one.
Theintervals here are doing a more ambitious job
and must therefore be wider.

Section 4

1. (a) Small, since some means differ by more than
the A there. (b) SSTr = .285135, MSIr =
.071284, df = 4; SSE = .00423, MSE = .000423,
df = 10; SSTot = .289365, df = 14; f = 168.52
on 4,10 df; p-value < .001. R? = .985.

2. (a) Small, since some sample meansdiffer by more
thanthe A’sthere.  (b) SSTr = .034134, MSTr =
.011378, df = 3; SSE = .000175, MSE = .000013,
df = 13; SSTot = .034308, df = 16; f = 847 on
3,13 df; p-value < .001.

3. (a) To check that the u;’s are normal, make a nor-
mal plot of the y,’s. To check that the ¢;’s are
normal, make anormal plot of the residuals. (Nor-
mal plotting each sample individually will not
be very helpful because the sample sizes are so
small.) Both plots are roughly linear, giving no ev-
idence that the one-way random effects model as-
sumptionsareunreasonable.  (b) SSTr = 9310.5,
MSTr = 1862.1, df =5; SSE = 194.0, MSE =
16.2, df = 12; SSTot = 9504.5, df =17; f =
115.18 on 5,12 df; p-value < .001. 6 = 4.025
measures variation in y from repeated measure-
ments of the same rail; 6_ = 24.805 measures
the variation in y from differences among rails.
(c) [3.46, 13.38]

4. (a) Unstructured multisample data could also be
thought of as data from one factor with r levels.
In many situations, the specific levels of the fac-
tor included in the study are the levels of interest.
For example, in comparing three drugs, the fac-
tor might be called” Treatment.” It might have four
levels: Drug 1, Drug 2, Drug 3, and Control. The
experimenter is interested in comparing the spe-
cific drugs used in the study to each other and to
the control. Sometimes the specific levels of the
factor are not of interest in and of themselves,
but only because they may represent (perhaps they
are a random sample of ) many different possible
levels that could have been used in the study. A
random effects analysisis appropriate in this situ-
ation. For an example, see part (b).  (b) If there
are many technicians, and five of these were ran-
domly chosen to be in the study, then interest is
in the variation among all technicians, not just the
five chosen for the study. (¢) 6 = .00155 in;
6, =.00071in.

Section 5

1. (a) Center ling; = 21.0, UCL, =22.73, LCL, =
19.27. Center linep = 1.693, UCL = 4.358, no
LCL,. (b)Center line, = .8862, UCL_ = 2.276,
no LCL.. (c) 1.3585; 1.3654; s, =132
(d) Center line, = 21.26,UCL, = 23.61,LCL, =
18.91. Center liney = 2.3, UCL = 5.9202, no
LCL,. (e) Center line, = 21.26, UCL, = 23.62,
LCL, =18.90. Centerling, =121, UCL =
3.10728, no LCL...

2 (@) R =402 _ 1742318 x .00lin; £ =

R
, 2.326 7]
1732637 _ 1 843296 % .001 in. (b) For the R chart

Center Line, = 2.326(1.843226) = 4.287344 x
.001in., UCL = 4.918(1.843226) = 9.064985 x
.001in. and there is no lower control limit. For
the s chart Center Ling, = 1.732632 x .001 in.
UCL, =2.089(1.732632) = 3.619468 x .001in.
and there is again no lower control limit. Neither
chart indicatesthat the short-term variability of the
process (asmeasured by o) wasunstable.  (c) Use
Center Line, = 11.17895 x .001 in. above nom-
inal, LCL, = 11.17895 — 312Y2% = 8.706 x .001




in. above nomina and UCL, = 11.17895+
3-¥E2 = 13.65189 x .001 in. above nominal.
x from sample 16 comes close to the upper con-
trol limit, but overall the process mean seems to
have been stable over the time period.  (d) The
X'sfrom samples 9 and 16 seem to have “jumped”
from the previous X. The coil change may be caus-
ing this jump, but it could also be explained by
common cause variation. It may be something
worth investigating.  (€) Assuming that the mean
could be adjusted (down), you need to look at
one of the estimates of o to answer this question
about individual thread lengths. (You should not
use control limits to answer this question!) If u
could be made equal to zero, then (assuming nor-
mally distributed thread lengths), amost al of the
thread lengths would fall in the interval +30. Us-
ing the estimate of o based on S from part (@), this
can be approximated by 3(1.843226) = 5.53x
.001 in. It does seem that the equipment is ca-
pable of producing thread lengths within .01 in.
of nominal. If the equipment were not capable
of meeting the given requirements, the company
could invest in better equipment. Thiswould “ per-
manently” solve the problem, but it might not
be feasible from a financial standpoint. A sec-
ond option is to inspect the bolts and remove the
ones that are not within .01 in. of nomina. This
might be cheaper than investing in new equip-
ment, but it will do nothing to improve the quality
of the process in the long run. A third option is
to study the process (through experimentation) to
see if there might be some way of reducing the
variability without making a large capital invest-
ment.

. Control charting is used to monitor a process and
detect changes (lack of stability) in aprocess. The
focus is on detecting changes in a meaningful pa-
rameter suchasu, o, p, or A. Pointsthat plot out of
control areasignal that the processis not stable at
the standard parameter value (for astandards given
chart) or was not stable at any parameter value (for
a retrospective chart). The overall goad is to re-
duce process variability by identifying assignable
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causes and taking action to eliminate them. Reduc-
ing variability increases the quality of the process
output.

. Shewhart control charts do not physically control

a process in the sense of guiding or adjusting it.
They only monitor the process, trying to detect
process instability. There is an entirely different
field dedicated to “engineering control”; thisfield
uses feedback techniques that manipulate process
variables to guide some response. Shewhart con-
trol charts simply monitor aresponse, and are not
intended to be used to make “real time" adjust-
ments.

. Out-of-control pointsshould beinvestigated. If the

causes of such points can be determined and elim-
inated, this will reduce long-term variation from
the process. There must be an active effort among
those involved with the process to improve the
quality; otherwise, control charts will do nothing
to improve the process.

. Control limits for an X chart are set so that, un-

der the assumption that the process is stable, it
would be very unusual for an X to plot outside the
control limits. The chart recognizes that there will
be some variation in the X’'s even if the process
is stable, and prevents overadjustment by allow-
ing the X’s to vary “randomly” within the control
limits. If the process mean or standard deviation
changes, x’swill be more likely to plot outside of
the control limits, and sooner or later the alarm will
sound. This provides an opportunity to investigate
the cause of the change, and hopefully take steps
to prevent it from happening again. Inthelong run,
such troubleshooting may improve the process by
making it less variable.

Section 6
1. (a) Center line, = .02, UCLﬁ = .0438, no LCL@.

©

(b) Center line,, =.0234, UCL,=.0491,noLCL .

o

2. Center ling, =.138 for al i, UCL, =.138+

3./48,noLCL, foralli.
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3. (a) Center ling, = .714forali,UCL, =.714 +

3,/ noLCL, forali.Theprocessseemstobe

Tl
seble.  (b) () if k = 1, .0078; if k — 2, .0033.

(i) if k = 1,.0959; if k, = 2,.1133.

. p= 2% =.072, 0 CenterLine, =.072. The
control limits depend on the sample size n,. For

n, = 20, .072 — 3,/221-072 — _ 101399 < O,

so0 there is no lower control limit, while UCLp_ =

072+ 3,/ 0200972 — 245399. For n, = 30,
0723,/ 92001 — _ 06957966 < 0, so there

is no lower control limit, while UCL, =.072+

.072(1—-.072
3,/ 220 = 2135797, For n; = 40, .072 —
3,/ L0 — _ 05061158 < 0, so there is no

lower control limit, while UCL, =.072+

3,/ 22402 — 1946116. There is no evidence

that the process fraction nonconforming was un-
stable (changing) over the time period studied.

. If different data collectors have different ideas of
exactly what a“nonconformance” is, then the data
collected will not be consistent. A stable process
may look unstable (according to the ¢ chart) be-
cause of these inconsistencies.

. It may indicate that the chart was not applied prop-
erly. For example, if hourly samplesof sizem = 4
are collected, it may or may not be reasonable to
use a retrospective X chart with m = 4. If the 4
items sampled are from 4 different machines, 3 of
which are stable at some mean and the 4th stable at
adifferent mean, then the sample ranges and stan-
dard deviationswill beinflated. Thiswill makethe
control limitsonthe X chart too wide. Also, theX’s
will show very little variation about a center line
somewhere between the two means. Thisisadl a
result of the fact that each sample is really com-
ing from four different processes. Four different
control charts should be used.

Chapter 8

Section 1

1

(a) Error bars. y, | £23.54. (b)a, =21.78,a, =
—21.78, b; = —41.61, b, = 16.06, b, = 25.56,
ab;; = —1.94, ab,, = 1.39, ab,; = .56, ab,, =
1.94, ab,, = —1.39, ab,; = —.56. Interactions:
ab;; £9.52. A main effects: a +6.73. B main
effects: bj =+ 9.52. Interactions are not detectable,
but main effects for both A and B are. (¢) y. | =
y,; £20.18

(@) s, = 33.25 measuresbaselinevariationiny for
each factor-level combination, assuming it is the
samefor all factor-level combinations.  (b) Error
bars: y,; +27.36. (d) & = —2.77, a, = —17.4,
a;=2017, b, =-1333, b,=-120, b;=
14.53, ab,; = .033, ab,, = —5.40, ab,; = 5.37,
ab,, = —-213, ab,, =-.567, ab,; =270,
aby, = 2104, ab,, =597, aby,=-8.07.
(e) 18.24. No. (f) Use(a, — &) & 22.35. (g) Use
(a —a) + 26.88.

Section 2

1

(@) E +£.014. B and C main effects, BC inter-
action.  (b) s =.0314 with 20 df; close to
s, = .0329. (c) Using few effectsmodel: [3.037,
3.091]. Using general method: [3.005, 3.085].

(a) Only the main effect for A plots “off theline.”
(b) Since the D main effect is almost as big (in
absolute value) asthe main effect for A, you might
choose to includeit. For this model, the fitted val-
uesare(instandard order): 16.375, 39.375, 16.375,
39.375, 16.375, 39.375, 16.375, 39.375, —4.125,
18.875, —4.125, 18.875, —4.125, 18.875, —4.125,
18.875. (c) Set A low (unglazed) and D high (no
clean). [0, 9.09].

. (@ y.. =359, a, =—.806, b, = .156, ab,, =

—.219, ¢, = —.056, ac,, = —.031, bc,, = .081,
abc,,, =.031, d,=-.056, ad,, =—.156,
bd,, = .006, abd,,, =—.119, cd,, = —.031,
acd,,, = —.056, bcd,,, = —.044, abcd,,,, =
.006. (b) It appears that only the main effect for
A is detectably larger than the rest of the effects,
since the point for a, is far awvay from the rest of



the fitted effects.  (c) To minimize y, use A(+)
(monks cloth) and B(+) (treatment Y).

Section 3

1. Since A < BCDE, if both are large but opposite
in sign, their estimated sum will be small.

2. (a) 8.23, .369, .256, —.056, .344, —.069, —.081,
—.093, —.406, .181, .269, —.344, —.094, —.156,
—.069,.019. (b).312. Thesumsa, + By €500,
V2 b€y, 8, + afy €ppp, ANA By, + vy
are detectable. Simplest explanation: A, C, D main
effectsand CE interaction areresponsiblefor these
largesums. (¢)A (+),C(+),D (-),andE (-).
The abc combination, which did have the largest
observed bond strength.

3. (b) (1), ad, bd, ab, cd, ac, bc, abcd. Estimated
sumsof effects: 3.600, —.850, .100, —.250, —.175,
—.025, —, 075, —.025.  (c) Theestimate of o, +
By 8,5, plots off theline. Still, one might conclude
that this is due to the main effect for A, but the
conclusion here would be a little more tentative.

Section 4

1. The advantage of fractional factorial experiments
is that the same number of factors can be stud-
ied using less experimental runs. Thisisimportant
when there are a large number of factors, and/or
experimental runsare expensive. Thedisadvantage
is that there will be ambiguity in the results; only
sums of effects can be estimated. The advantage
of using a complete factorial experiment is that
all means can be estimated, so all effects can be
estimated.

2. Itwill beimpossible to separate main effects from
two-factor interactions. You would hope that any
interactions are small compared to main effects;
the results of the experiment can then be (tenta-
tively) summarized in terms of main effects. (If all
interactions are really zero, then it is possible to
estimate all of the main effects.) Looking at Ta-
ble 8.35, the best possibleresolution is 3 (at most).

3. Those effects (or sums of effects) that are nearly
zero will have corresponding estimates that are
“randomly” scattered about zero. If al of the ef-
fects are nearly zero, then one might expect the
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estimates from the Yates algorithm (excluding the
onethat includesthe grand mean) to be bell-shaped
around zero. A normal plot of these estimates
would then be roughly linear. However, if there
are effects (or sums of effects) that are relatively
far from zero, the corresponding estimateswill plot
away from the rest (off the line), and may be con-
sidered morethan just random noise. The principle
of “sparsity of effects’ saysthat in most situations,
only afew of the many effectsin afactorial exper-
iment are dominant, and their estimates will then
plot off the line on anormal plot.

4. (a)| < ABCDF <> ABCEG <> DEFG (b) ABDF,
ABEG,CDEFG () +, +;—,— (d) Thatonly
A, F, and their interaction areimportant in describ-
ingy.

5. 3.264

6. (a) | <+ ABCE <« BCDE <« ADEF
+,— (c) 489

(b) -, —;

Chapter 9

Section 1

1. (@) s = 67.01 measures the baseline variation
in Average Molecular Weight for any particular
Pot Temperature, assuming this variation is the
same for al Pot Temperatures. (b) Standard-
ized residuas: 2.0131, —.3719, —.9998, —1.562,
2715, .2394, .7450, .0004 (c) [22.08, 24.91]
(d)[1761, 1853], [2630, 2770]  (€) [1745, 1869],
[2605, 2795]  (f) 1705; 2590 (g) 1627; 2503
(h) SSR = 4,676,798, MSR = 4,676,798, df = 1,
SSE = 26,941, MSE = 4490, df = 6; SSTot =
4,703,739, df = 7; f = 1041.58 on 1,6 df; p-value
< .001

2. (@) by=43459, b, =-3160.0, 5 =26.76
(close to S, = 26.89) (b) Standardized resid-
uas: 1.32, —.48, —.04, —.91, .52, —1.07, 1.94,
—.04,-1.09. (c)[—357.4,—274.64] (d)t=
—14.47 on 7 df, p-value < .001; or f = 209.24
on 1,7 df, p-value < .001. (e) [2744.8, 2787.0]
(f) [2699.2, 2832.6] (g) 2698.5
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Section 2

1. (a) s = .04677 measures variation in Elapsed
Time for any particular Jetting Size, assuming
this variation is the same for al Jetting Sizes.
(b) Standardized residuals. —.181, .649, —.794,
—.747, 1.55, —1.26. (c) [81.32, 126.66]; [—3.17,
—1.89]; [.01344, .02245] (d) [14.462, 14.596];
[14.945, 15.145]  (e) [14.415, 14.644]; [14.875,
15.215] (f)14.440;14.942 (g) 14.323;14.816
(h) SSR = .20639, MSR = .01319, df = 2; SSE =
.00656, MSE = .00219, df = 3; SSTot = .21295,
df =5; f =42.17 on 2,3 df; p-value = .005. H,
means that Elapsed Time is not related to Jet-
ting Size. (i) t = 9.38; p-value =.003. H,: y ~
By + B1x + 0;i.e., Elapsed Timeisrelated to Jet-
ting Size only linearly (no curvature).

2. (a) sy = .4851 measures baseline variation in
y for any (x;,X,) combination, assuming this
variation is the same for al (x;, X,) combina-
tions. (b) Standardized residuals: —.041, .348,
1.36, —1.44, —1.00, —.457, 1.92, .348, —.604.
(c) [5.036, 7.060]; [.0775, .2058]; [—.0298,
—.0041] (d) [5.992, 6.622]; [5.933, 6.625]
(e) [5.798, 6.816]; [5.720, 6.838] (f) 5.571;
5535 (g) 5.017; 4970 (h) SSR = 5.8854,
MSR = 2.9427, df = 2; SSE = 1.4118, MSE =
.2353, df = 6; SSTot = 7.2972,df = 8; f = 12.51
on 2,6 df; p-value = .007.

Section 3

1. (@) § =31.404 7.430Inx, — .08101x, — .2760
(Inx,)? +.00004792x3 — .006596x, InX,. R* =
24, s = 1.947. S = 2.136, which is greater
than sy, so there is no indication that the model
is inappropriate.  (b) Factor-level combinations
have fitted values that differ by as much as .77.
(d) (i) [.128, 2.781]. (ii) [—2.693, 5.601]. (iii)
—2.332.

2. (a) Estimate of = .67407, estimate of o, =
.12407; estimate of g, = —.30926.  (b) There

is some hint of a pattern in the plot of Standard-
ized Residuals versus levels of C, indicating that
the amount of additive may be having a small ef-
fect that the model is not accounting for. Other-
wise, the residuas do not provide any evidence
that the model isinadequate.  (C) Sz = .09623.
S = 12247, No; s < S

Appendix A (selected answers only)

Section 1

1. (a).1865 (b).6083

2. (@.54 (b).78

3. (8) .505 (b).998

4. (a).76 (b).78 (c).974

5.(@ .75 (b) .80 (c).75 (d) Yes, since the

answersto parts(a) and (c) arethesame.  (€) One
such pair is “ring meets spec.s on first grind” and
“ring is ground twice."

Section 2

1. r = .99979

2. k=2

Section 3

1. (@) 1.7310 x 102 (b)2.2777 x 10*?  (c).1316

2. (a) .0000081 (b) .03402

3. (a) 1,757,600 (b).00167 (c).0167

4. ()5 (b).167

Section 4

1. (8)20;15.81 (b)1— gexp( L)+ sexp (%)
(©) fr(®) = 5 (exp(—15) — exp(—3))
(d) St =3exp(3s) —zexp(—5). hr®) =

1 &p(—15)-ep(-5)
5<3@(p(7%)7exp( t)) h(t) is not constant. It
starts at 0, and increases to an asymptote of 1/15.





