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Answers to
Section Exercises

Chapter 1

Section 1

1. Designing and improving complex products and
systems often leads to situations where there is no
known theory that can guide decisions. Engineers
are then forced to experiment and collect data to
find out how a system works, usually under time
and monetary constraints. Engineers also collect
data in order to monitor the quality of products and
services. Statistical principles and methods can be
used to find effective and efficient ways to collect
and analyze such data.

2. The physical world is filled with variability. It
comes from differences in raw materials, machin-
ery, operators, environment, measuring devices,
and other uncontrollable variables that change over
time. This produces variability in engineering data,
at least some of which is impossible to completely
eliminate. Statistics must therefore address the re-
ality of variability in data.

3. Descriptive statistics provides a way of summariz-
ing patterns and major features of data. Inferential
statistics uses a probability model to describe the
process from which the data were obtained; data
are then used to draw conclusions about the pro-
cess by estimating parameters in the model and
making predictions based on the model.

Section 2

1. Observational study—you might be interested in
assessing the job satisfaction of a large number
of manufacturing workers; you could administer
a survey to measure various dimensions of job
satisfaction. Experimental study—you might want
to compare several different job routing schemes
to see which one achieves the greatest throughput
in a job shop.

2. Qualitative data—rating the quality of batches of
ice cream as either poor, fair, good, or exceptional.
Quantitative data—measuring the time (in hours)
it takes for each of 1,000 integrated circuit chips
to fail in a high-stress environment.

3. Any relationships between the variables x and y
can only be derived from a bivariate sample.

4. You might want to compare two laboratories in
their ability to determine percent impurities in rare
metal specimens. Each specimen could be divided
in two, with each half going to a different lab. Since
each specimen is being measured twice for percent
impurity, the data would be paired (according to
specimen).

806
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5. Full factorial data structure—tests are performed
for all factor-level combinations:

Design Paper Loading Condition

delta construction with clip

t-wing construction with clip

delta typing with clip

t-wing typing with clip

delta construction without clip

t-wing construction without clip

delta typing without clip

t-wing typing without clip

Fractional factorial data structure—tests are per-
formed for only some of the possible factor-level
combinations. One possibility is to choose the fol-
lowing “half fraction”:

Design Paper Loading Condition

delta construction without clip

t-wing construction with clip

delta typing with clip

t-wing typing without clip

6. Variables can be manipulated in an experiment.
If changes in the response coincide with changes
in factor levels, it is usually safe to infer that the
changes in the factor caused the changes in the
response (as long as other factors have been con-
trolled and there is no source of bias). There is
no control or manipulation in an observational
study. Changes in the response may coincide with
changes in another variable, but there is always
the possibility that a third variable is causing the
correlation. It is therefore risky to infer a cause-
and-effect relationship between any variable and
the response in an observational study.

Section 3

1. Even if a measurement system is accurate and pre-
cise, if it is not truly measuring the desired dimen-
sion or characteristic, then the measurements are
useless. If a measurement system is valid and ac-
curate, but imprecise, it may be useless because it

produces too much variability (and this cannot be
corrected by calibration). If a measurement sys-
tem is valid and precise, but inaccurate, it might
be easy to make it accurate (and thus useful) by
calibrating it to a standard.

2. If the measurement system is not valid, then tak-
ing an average will still produce a measurement
that is invalid. If the individual measurements are
inaccurate, then the average will be inaccurate. Av-
eraging many measurements only improves preci-
sion. Suppose that the long-run average yield of
the process is stable over time. Imagine making
5 yield measurements every hour, for 24 hours.
This produces 120 individual measurements, and
24 averages. Since the averages are “pulled” to the
center, there will be less variability in the 24 aver-
ages than in the 120 individual measurements, so
averaging improves precision.

3. Unstable measurement systems (e.g., instrument
drift, multiple inconsistent devices) can lead to
differences or changes in validity, precision, and
accuracy. In a statistical engineering study, it is
important to obtain valid, precise, and accurate
measurements throughout the study. Changes or
differences may create excessive variability, mak-
ing it hard to draw conclusions. Changes or differ-
ences can also bias results by causing patterns in
data that might incorrectly be attributed to factors
in the experiment.

Section 4

1. Mathematical models can help engineers describe
(in a relatively simple and concise way) how phys-
ical systems behave, or will behave. They are an
integral part of designing and improving products
and processes.

Chapter 2

Section 1

1. Flight distance might be defined as the horizontal
distance that a plane travels after being launched
from a mechanical slingshot. Specifically, the hor-
izontal distance might be measured from the point
on the floor directly below the slingshot to the
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point on the floor where any part of the plane first
touches.

2. If all operators are trained to use measuring equip-
ment in the same consistent way, this will result
in better repeatability and reproducibility of mea-
surements. The measurements will be more repeat-
able because individual operators will use the same
technique from measurement to measurement, re-
sulting in small variability among measurements
of the same item by the same operator. The mea-
surements will be more reproducible because all
operators will be trained to use the same technique,
resulting in small variability among measurements
made by different operators.

3. This scheme will tend to “over-sample” larger lots
and “under-sample” smaller lots, since the amount
of information obtained about a large population
from a particular sample size does not depend on
the size of the population. To obtain the same
amount of information from each lot, you should
use an absolute (fixed) sample size instead of a
relative one.

4. If the response variable is poorly defined, the data
collected may not properly describe the character-
istic of interest. Even if they do, operators may
not be consistent in the way that they measure the
response, resulting in more variation.

Section 2

1. Label the 38 runout values consecutively, 1–38, in
the order given in Table 1.1 (smallest to largest).
First sample labels: {12, 15, 5, 9, 11}; First sample
runout values: {11, 11, 9, 10, 11}. Second sample
labels: {34, 31, 36, 2, 14}; Second sample runout
values: {17, 15, 18, 8, 11}. Third sample labels:
{10, 35, 12, 27, 30}; Third sample runout values:
{10, 17, 11, 14, 15}. Fourth sample labels: {15, 5,
19, 11, 8}; Fourth sample runout values: {11, 9,
12, 11, 10}. The samples are not identical. Note:
the population mean is 12.63; the sample means
are 10.4, 13.8, 13.4, and 10.6.

3. A simple random sample is not guaranteed to be
representative of the population from which it is
drawn. It gives every set of n items an equal chance
of being selected, so there is always a chance that

the n items chosen will be “extreme” members of
the population.

Section 3

1. Possible controlled variables: operator, launch an-
gle, launch force, paper clip size, paper manu-
facturer, plane constructor, distance measurer, and
wind. The response is Flight Distance and the ex-
perimental variables are Design, Paper Type, and
Loading Condition. Concomitant variables might
be wind speed and direction (if these cannot be
controlled), ambient temperature, humidity, and
atmospheric pressure.

2. Advantage: may reduce baseline variation (back-
ground noise) in the response, making it easier to
see the effects of factors. Disadvantage: the vari-
able may fluctuate in the real world, so controlling
it makes the experiment more artificial—it will be
harder to generalize conclusions from the experi-
ment to the real world.

3. Treat “distance measurer” as an experimental
(blocking) variable with 2 levels. For each level
(team member), perform a full factorial experi-
ment using the 3 primary factors. If there are differ-
ences in the way team members measure distance,
then it will still be possible to unambiguously as-
sess the effects of the primary factors within each
“sub-experiment” (block).

4. List the tests for Mary in the same order given for
Exercise 5 of Section 1.2. Then list the tests for
Tom after Mary, again in the same order. Label
the tests consecutively 1–16, in the order listed.
Let the digits 01–05 refer to test 1, 06–10 to test
2, . . . , and 76–80 to test 16. Move through Table
B.1 choosing two digits at a time. Ignore previ-
ously chosen test labels or numbers between 81
and 00. Order the tests in the same order that their
corresponding two-digit numbers are chosen from
the table. Using this method (and starting from the
upper-left of the table), the test labeled 3 (Mary,
delta, typing, with clip) would be first, followed
by the tests labeled 13, 9, 1, 2, 7, 10, 8, 14, 11, 6,
15, 4, 16, 12, and 5.
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5. For the delta/construction/with clip condition (for
example), flying the same plane twice would pro-
vide information about flight-to-flight variability
for that particular plane. This would be useful
if you are only interested in making conclusions
about that particular plane. If you are interested in
generalizing your conclusions to all delta design
planes made with construction paper and loaded
with a paper clip, then reflying the same airplane
does not provide much more information. But
making and flying two planes for this condition
would give you some idea of variability among
different planes of this type, and would therefore
validate any general conclusions made from the
study. This argument would be true for all 8 con-
ditions, and would also apply to comparisons made
among the 8 conditions.

6. Random sampling is used in enumerative studies.
Its purpose is to choose a representative sample
from some population of items. Randomization
is used in analytical/experimental studies. Its pur-
pose is to assign units to experimental conditions
in an unbiased way, and to order procedures to
prevent bias from unsupervised variables that may
change over time.

7. Blocking is a way of controlling an extraneous
variable: within each block, there may be less base-
line variation (background noise) in the response
than there would be if the variable were not con-
trolled. This makes it easier to see the effects of
the factors of interest within each block. Any ef-
fects of the extraneous variable can be isolated and
distinguished from the effects of the factors of in-
terest. Compared to holding the variable constant
throughout the experiment, blocking also results
in a more realistic experiment.

8. Replication is used to estimate the magnitude of
baseline variation (background noise, experimen-
tal error) in the response, and thus helps sharpen
and validate conclusions drawn from data. It pro-
vides verification that results are repeatable and
establishes the limits of that repeatability.

9. It is not necessary to know exactly how the entire
budget will be spent. Experimentation in engineer-
ing is usually sequential, and this requires some

decisions to be made in the middle of the study.
Although some may think that this is improper
from a scientific/statistical point of view, it is only
practical to base the design of later stages on the
results of earlier stages.

Section 4

1. If you regard student as a blocking variable, then
this would be a randomized complete block ex-
periment. Otherwise, it would just be a completely
randomized experiment (with a full factorial struc-
ture).

2. (a) Label the 24 runs as follows:

Labels Level of A Level of B Level of C

1, 2, 3 1 1 1

4, 5, 6 2 1 1

7, 8, 9 1 2 1

10, 11, 12 2 2 1

13, 14, 15 1 1 2

16, 17, 18 2 1 2

19, 20, 21 1 2 2

22, 23, 24 2 2 2

Use the following coding for the test labels: ta-
ble number 01–04 for test label 1, table number
05–08 for test label 2, . . . , table number 93–96 for
test number 24. Move through Table B.1 choosing
two digits at a time, ignoring numbers between 97
and 00 and those corresponding to test labels that
have already been picked. Order the tests in the
same order that their corresponding two-digit num-
bers are picked from the table. Using this method,
and starting from the upper-left corner of the ta-
ble, the order would be 3, 4, 24, 16, 11, 2, 9, 12,
17, 8, 21, 1, 13, 7, 18, 5, 20, 14, 19, 15, 22, 23,
6, 10. (b) Treat day as a blocking variable, and
run each of the 8 factor-level combinations once on
each day. Blocking allows comparisons among the
factor-level combinations to be made within each
day. If blocking were not used, differences among
days might cause variation in the response which
would cloud comparisons among the factor-level
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combinations. (c) List the 8 factor-level combi-
nations separately for each day. For each day, label
the runs as follows:

Label Level of A Level of B Level of C

1 1 1 1

2 2 1 1

3 1 2 1

4 2 2 1

5 1 1 2

6 2 1 2

7 1 2 2

8 2 2 2

For each day, move through Table B.1 one digit
at a time ignoring the digits 9 and 0 and any that
have already been picked. Order the 8 runs in the
same order that the numbers were picked from the
table. Starting from where I left off in part (a), the
order for day 1 is 5, 3, 8, 4, 1, 2, 6 (which implies
that run 7 goes last). For day 2, the order is 5, 1, 8,
7, 2, 3, 6 (which implies that run 4 goes last). For
day 3, the order is 1, 3, 2, 7, 4, 5, 8, (which implies
that run 6 goes last).

The plan is summarized below:

Day Level of A Level of B Level of C

1 1 1 2

1 1 2 1

1 2 2 2

1 2 2 1

1 1 1 1

1 2 1 1

1 2 1 2

1 1 2 2

2 1 1 2

2 1 1 1

2 2 2 2

2 1 2 2

2 2 1 1

2 1 2 1

2 2 1 2

2 2 2 1

Day Level of A Level of B Level of C

3 1 1 1

3 1 2 1

3 2 1 1

3 1 2 2

3 2 2 1

3 1 1 2

3 2 2 2

3 2 1 2

Part (a) randomized all 24 runs together; here, each
block of 8 runs is randomized separately.

3. The factor Person is the “block” variable.

Block Design Paper

Tom delta construction

Tom t-wing typing

Juanita delta typing

Juanita t-wing construction

4. Focusing on Design, you would want each per-
son to test two delta-wing planes and two t-wing
planes; this would allow you to clearly compare the
two designs. You could separately compare the de-
signs “within” each person. If possible, you would
want a plan such that this is true for all three pri-
mary factors, simultaneously. This is possible by
using the same pattern that is used in Table 2.6:

Person Design Paper Loading Condition

Juanita delta construction with clip

Tom t-wing construction with clip

Tom delta typing with clip

Juanita t-wing typing with clip

Tom delta construction without clip

Juanita t-wing construction without clip

Juanita delta typing without clip

Tom t-wing typing without clip

This design also allows each person to test each
Design/Paper combination once, each Design/
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Loading combination once, and each Paper/Load-
ing combination once.

5. This is an incomplete block experiment.

Section 5

1. A cause-and-effect diagram may be useful for rep-
resenting a complex system in a relatively sim-
ple and visual way. It enables people to see how
the components of the system interact, and may
help identify areas which need the most atten-
tion/improvement.

Chapter 3

Section 1

1. One choice of intervals for the frequency table and
histogram is 65.5–66.4, 66.5–67.4, . . . , 73.5–74.4.
For this choice, the frequencies are 3, 2, 9, 5, 8, 6,
2, 3, 2; the relative frequencies are .075, .05, .225,
.125, .2, .15, .05, .075, .05; the cumulative relative
frequencies are .075, .125, .35, .475, .675, .825,
.875, .95, 1. The plots reveal a fairly symmetric,
bell-shaped distribution.

2. The plots show that the depths for 200 grain bullets
are larger and have less variability than those for
the 230 grain bullets.

3. (a) There are no obvious patterns. (b) The dif-
ferences are −15, 0, −20, 0, −5, 0, −5, 0, −5,
20, −25, −5, −10, −20, and 0. The dot diagram
shows that most of the differences are negative
and “truncated” at zero. The exception is the tenth
piece of equipment, with a difference of 20. This
point does not fit in with the shape of the rest of
the differences, so it is an outlier. Since most of the
differences are negative, the bottom bolt generally
required more torque than the top bolt.

Section 2

1. (a) For the lengthwise sample: Median = .895,
Q(.25) = .870, Q(.75) = .930, Q(.37) = .880.
For the crosswise sample: Median = .775,
Q(.25) = .690, Q(.75) = .800, Q(.37) = .738.
(b) On the whole, the impact strengths are larger
and more consistent for lengthwise cuts. Each
method also produced an unusual impact strength

value (outlier). (c) The nonlinearity of the Q–
Q plot indicates that the overall shapes of these
two data sets are not the same. The lengthwise
cuts had an unusually large data point (“long right
tail”), whereas the crosswise cuts had an unusu-
ally small data point (“long left tail”). Without
these two outliers, the data sets would have simi-
lar shapes, since the rest of the Q–Q plot is fairly
linear.

2. Use the (i − .5)/n quantiles for the smaller data
set. The plot coordinates are: (.370, .907), (.520,
1.22), (.650, 1.47), (.920, 1.70), (2.89, 2.45), (3.62,
5.89).

3. The first 3 plot coordinates are: (65.6, −2.33),
(65.6, −1.75), (66.2, −1.55). The normal plot is
quite linear, indicating that the data are very bell-
shaped.

4. Theoretical Q–Q plotting allows you to roughly
check to see if a data set has a shape that is similar
to some theoretical distribution. This can be use-
ful in identifying a theoretical (probability) model
to represent how the process is generating data.
Such a model can then be used to make inferences
(conclusions) about the process.

Section 3

1. For the lengthwise cuts: x̄ = .919, Median = .895,
R = .310, IQR = .060, s = .088. For the cross-
wise cuts: x̄ = .743, Median = .775, R = .430,
IQR = .110, s = .120. The sample means and me-
dians show that the center of the distribution for
lengthwise cuts is higher than the center for cross-
wise cuts. The sample ranges, interquartile ranges,
and sample standard deviations show that there
is less spread in the lengthwise data than in the
crosswise data.

2. These values are statistics. They are summariza-
tions of two samples of data, and do not represent
exact summarizations of larger populations or the-
oretical (long-run) distributions.

4. In the first case, the sample mean and median in-
crease by 1.3, but none of the measures of spread
change; in the second case, all of the measures
double.
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Section 4

1. p̂ = the proportion of part orders that are delivered
on time to the factory floor. û = number of defects
per shift produced on an assembly line. A mea-
sured value of 65% yield for a run of a chemical
process is of neither form.

2. p̂Laid = 6
38 = .158. p̂Hung = 24

39 = .615. Most en-
gineering situations call for minimizing variation.
The p̂ values do not give any indication of how
much spread there is in each set of data, and would
not be helpful in comparing the two methods with
respect to variation.

3. Neither type. These rates represent continuous
measurements on each specimen; there is no
“counting” involved.

Chapter 4

Section 1

1. (a) ŷ = 9.4 − 1.0x (b) r = −.945 (c) r =
.945. This is the negative of the r in part (b), since
the ŷ’s are perfectly negatively correlated with the
x’s. (d) R2 = .893 = r2 from both (b) and (c).
(e) −.4, .6, −.4, .6, −.4. These are the vertical
distances from each data point to the least squares
line.

3. (a) R2 = .994 (b) ŷ = −3174.6 + 23.50x . 23.5
(c) Residuals: 105.36, −21.13, −60.11, −97.58,
16.95, 14.48, 42.00, .02. (d) There is no replica-
tion (multiple experimental runs at a particular pot
temperature). (e) For x = 188 ◦C, ŷ = 1243.1.
For x = 200 ◦C, ŷ = 1525.1. It would not be wise
to make a similar prediction at x = 70 ◦C because
there is no evidence that the fitted relationship is
correct for pot temperatures as low as x = 70 ◦C.
Some data should be obtained around x = 70 ◦C.

4. (a) The scatterplot is not linear, so the given
straight-line relationship does not seem appro-
priate. R2 = .723. (b) This scatterplot is much
more linear, and a straight-line relationship seems
appropriate for the transformed variables. R2 =
.965. (c) l̂n y = 34.344 − 5.1857 ln x . For x =
550, l̂n y = 1.6229 so ŷ = e1.6229 = 5.07 minutes.

The implied relationship between x and y is y =
eβ0 xβ1 .

Section 2

1. ŷ = −1315 + 5.6x + .04212x2. R2 = .996. For
the quadratic model, at x = 200 ◦C, ŷ = 1487.2,
which is relatively close to 1525.1 from part (e) of
Exercise 3 of Section 1.

2. (a) ŷ = 6.0483 + .14167x1 − .016944x2. b1 =
.14167 means that as x1 increases by 1% (holding
x2 constant), y increases by roughly .142 cm3/g.
b2 = −.016944 means that as x2 increases by
one minute (holding x1 constant), y decreases by
roughly .017 cm3/g. R2 = .807. (b) The resid-
uals are −.015, .143, .492, −.595, −.457, −.188,
.695, .143, −.218. (c) For x2 = 30, the equa-
tion is ŷ = 5.53998 + .14167x1. For x2 = 60, the
equation is ŷ = 5.03166 + .14167x1. For x2 = 90,
the equation is ŷ = 4.52334 + .14167x1. The fit-
ted responses do not match up well, because the
relationship between y and x1 is not linear for
any of the x2 values. (d) At x1 = 10% and x2 =
70 minutes, ŷ = 6.279 cm3/g. It would not be
wise to make a similar prediction at x1 = 10%
and x2 = 120 minutes because there is no evi-
dence that the fitted relationship is correct un-
der these conditions. Some data should be ob-
tained around x1 = 10% and x2 = 120 minutes.
(e) ŷ = 4.98 + .260x1 + .00081x2 − .00197x1x2,
and R2 = .876. The increase in R2 from .807 to
.876 is not very large; using the more compli-
cated equation may not be desirable (this is sub-
jective). (f) For x2 = 30, the equation is ŷ =
5.0076 + .20084x1. For x2 = 60, the equation is
ŷ = 5.0319 + .14168x1. For x2 = 90, the equa-
tion is ŷ = 5.0562 + .08252x1. The new model
allows there to be a different slope for different
values of x2, so these lines fit the data better
than the lines in part (c). But they still do not
account for the nonlinearity between x1 and y. An
x2

1 term should be added to the model. (g) There
is no replication (multiple experimental runs at a
particular NaOH/Time combination). (h) These
data have a complete (full) factorial structure.
The straight-line least squares equation for x1 is
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ŷ = 5.0317 + .14167x1 with a corresponding R2

of .594. The straight-line least squares equation for
x2 is ŷ = 7.3233 − .01694x2 with a correspond-
ing R2 of .212. The slopes in these one-variable
linear equations are the same as the corresponding
slopes in the two variable equation from (a). The
R2 value in (a) is the sum of the R2 values from
the two one-variable linear equations.

Section 3

1. (a) Labeling x1 as A and x2 as B, a1 = −.643, a2 =
−.413, a3 = 1.057, b1 = .537, b2 = −.057, b3 =
−.480, ab11 = −.250, ab12 = −.007, ab13 =
.257, ab21 = −.210, ab22 = .013, ab23 = .197,
ab31 = .460, ab32 = −.007, ab33 = −.453. The
fitted interactions ab31 and ab33 are large (rela-
tive to fitted main effects) indicating that the effect
on y of changing NaOH from 9% to 15% de-
pends on the Time (non-parallelism in the plot).
It would not be wise to use the fitted main effects
alone to summarize the data, since there may be
an importantly large interaction. (b) ŷ11 = 6.20,
ŷ12 = 5.61, ŷ13 = 5.18, ŷ21 = 6.43, ŷ22 = 5.84,
ŷ23 = 5.41, ŷ31 = 7.90, ŷ32 = 7.31, ŷ33 = 6.88.
Like the plot in part (c) and unlike the plot in
(f) of Exercise 2 in Section 4.2, the fitted val-
ues for each level of B (x2) must produce parallel
plots; no interactions are allowed. However, un-
like parts (c) and (f) of that exercise, the current
model allows these fitted values to be nonlinear
in x1 (factorial models are generally more flexible
than lines, curves, and surfaces). (c) R2 = .914.
The plots of residuals versus Time and residuals
versus ŷi both have patterns; these show that the
“main effects only” model is not accounting for
the apparent interaction between the two factors.
Even though R2 is higher than both of the models
in Exercise 2 of Section 4.2, this model does not
seem to be adequate.

2. (a) ȳ··· = 20.792, a2 = .113, b2 = −13.807,
ab22 = −.086, c2 = 7.081, ac22 = −.090, bc22 =
−6.101, abc222 = .118. Other fitted effects can
be obtained by appropriately changing the signs
of the above. The simplest possible interpreta-
tion is that Diameter, Fluid, and their interaction

are the only effects on Time. (b) ȳ··· = 2.699,
a2 = .006, b2 = −.766, ab22 = −.003, c2 = .271,
ac22 = −.003, bc22 = −.130, abc222 = .007. Yes,
but the Diameter × Fluid interaction still seems
to be important. (c) In standard order, the fitted
values are 3.19, 3.19, 1.66, 1.66, 3.74, 3.74, 2.20,
2.20. R2 = .974. For a model with all factorial
effects (l̂n yi jk = ln yi jk), R2 = .995. (d) b1 −
b2 = 1.532 ln (sec) decrease; divide the .188 raw
drain time by e1.532 to get the .314 drain time. This
suggests that (.188 drain time/.314 drain time) =
e1.532 = 4.63; the theory predicts this ratio to be
7.78.

3. Interpolation, and possibly some cautious extrapo-
lation, is only possible using surface-fitting meth-
ods. In many engineering situations, an “optimal”
setting of quantitative factors is sought. This can
be facilitated by interpolation (or extrapolation)
using a surface-fitting model.

Section 4

1. Transforming data can sometimes make relation-
ships among variables simpler. Sometimes nonlin-
ear relationships can be made linear, or factors and
response can be transformed so that there are no in-
teractions among the factors. Transformations can
also potentially make the shape of a distribution
simpler, allowing the use of statistical models that
assume a particular distributional shape (such as
the bell-shaped normal distribution).

2. In terms of the raw response, there will be interac-
tions, since x1 and x2 are multiplied together in the
power law. The suggested plot of raw y versus x1
will have different slopes for different values of x2.
This means that the effect of changing x1depends
on the setting of x2, which is one way to define an
interaction.

In terms of the log of y, there will not be inter-
actions, since x1 and x2 appear additively in the
equation for ln y. Therefore, the suggested plot of
ln y versus x1 will have the same slope for all val-
ues of x2. This means that the effect of changing
x1 does not depend on the setting of x2 (there are
no interactions).
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Section 5

1. A deterministic model is used to describe a sit-
uation where the outcome can be almost exactly
predicted if certain variables are known. A stochas-
tic/probabilistic model is used in situations where
it is not possible to predict the exact outcome.
This may happen when important variables are
unknown, or when no known deterministic the-
ory can describe the situation. An example of a
deterministic model is the classical Economic Or-
der Quantity (EOQ) model for inventory control.
Given constant rate of demand R, order quantity
X , ordering cost P , and per unit holding cost C , the
total cost per time period is Y = P

(
R
X

) + C
(

X
2

)
.

Chapter 5

Section 1

1. (b) 4.1; 1.136.

2. (a) X has a binomial distribution with n = 10 and
p = 1

3 . Use equation (5.3) with n = 10 and p = 1
3 .

f (0)– f (10) are .0173, .0867, .1951, .2601, .2276,
.1366, .0569, .0163, .0030, .0003, .0000. (b) As-
suming that they are just guessing, the chance that
7 (or more) out of 10 subjects would be correct
is P(X ≥ 7) = .0197. Under the hypothesis that
they are only guessing, this kind of extreme out-
come would only happen about 1 in 50 times, so
the outcome is strong evidence that they are not
just guessing.

3. (a) Using equations (3.4) and (3.5), µ = 4,
σ 2 = 5

3 , and σ = 1.291.
(b)

x 2 3 4 5 6

P(X = x) 1
6

1
6

2
6

1
6

1
6

Since all members of the population are equally
likely to be chosen, the probability histogram for
X is the same as the population relative frequency
distribution. Using equations (5.1) and (5.2),
EX = 4 and VarX = 5

3 . (c) Label the values 2, 3,

41, 42, 5, 6.

First Second
Item Item x̄ s2 Probability

2 3 2.5 .5 1
15

2 41 3.0 2.0 1
15

2 42 3.0 2.0 1
15

2 5 3.5 4.5 1
15

2 6 4.0 8.0 1
15

3 41 3.5 .5 1
15

3 42 3.5 .5 1
15

3 5 4.0 2.0 1
15

3 6 4.5 4.5 1
15

41 42 4.0 0 1
15

41 5 4.5 .5 1
15

41 6 5.0 2.0 1
15

42 5 4.5 .5 1
15

42 6 5.0 2.0 1
15

5 6 5.5 .5 1
15

Using the above table, the probability distribu-
tion for X is:

x̄ 2.5 3 3.5 4 4.5 5 5.5

P(X = x̄) 1
15

2
15

3
15

3
15

3
15

2
15

1
15

Using equations (5.1) and (5.2), E X = 4 and
VarX = 2

3 . As might be expected, the mean of
X is the same as the mean of X , and the variance
is smaller. The probability distribution for S2 is

s2 0 .5 2 4.5 8

P(S2 = s2) 1
15

6
15

5
15

2
15

1
15

4. For p = .1, f (0)– f (5) are .59, .33, .07, .01, .00,
.00; µ = np = .5; σ = √

np(1 − p) = .67. For
p = .3, f (0)– f (5) are .17, .36, .31, .13, .03, .00;
µ = 1.5; σ = 1.02. For p = .5, f (0)– f (5) are
.03, .16, .31, .31, .16, .03; µ = 2.5; σ = 1.12. For
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p = .7, f (0)– f (5) are .00, .03, .13, .31, .36, .17;
µ = 3.5; σ = 1.02. For p = .9, f (0)– f (5) are
.00, .00, .01, .07, .33, .59; µ = 4.5; σ = .67.

5. Binomial distribution: n = 8, p = .20. (a) .147
(b) .797 (c) np = 1.6 (d) np(1 − p) = 1.28
(e) 1.13

6. Geometric distribution: p = .20. (a) .08 (b) .59
(c) 1/p = 5 (d) (1 − p)/p2 = 20 (e) 4.47

7. For λ = .5, f (0), f (1), . . . are .61, .30, .08, .01,
.00, .00, . . . ;µ = λ = .5; σ = √

λ = .71. For
λ = 1.0, f (0), f (1), . . . are .37, .37, .18, .06,
.02, .00, .00, . . . ;µ = 1.0; σ = 1.0. For λ = 2.0,
f (0), f (1), . . . are .14, .27, .27, .18, .09, .04, .01,
.00, .00, . . . ;µ = 2.0; σ = 1.41. For λ = 4.0,
f (0), f (1), . . . are .02, .07, .15, .20, .20, .16, .10,
.06, .03, .01, .00, .00, . . . ;µ = 4.0; σ = 2.0.

8. (a) .323 (b) .368

9. (a) .0067 (b) Y ∼ Binomial(n = 4, p = .0067);
.00027

10. Probability is a mathematical system used to de-
scribe random phenomena. It is based on a set of
axioms, and all the theory is deduced from the
axioms. Once a model is specified, probability
provides a deductive process that enables predic-
tions to be made based on the theoretical model.

Statistics uses probability theory to describe
the source of variation seen in data. Statistics tries
to create realistic probability models that have
(unknown) parameters with meaningful interpre-
tations. Then, based on observed data, statistical
methods try to estimate the unknown parame-
ters as accurately and precisely as possible. This
means that statistics is inductive, using data to
draw conclusions about the process or popula-
tion from which the data came.

Neither is a subfield of the other. Just as engi-
neering uses calculus and differential equations
to model physical systems, statistics uses proba-
bility to model variation in data. In each case the
mathematics can stand alone as theory, so calcu-
lus is not a subfield of engineering and probability
is not a subfield of statistics. Conversely, statistics

is not a subfield of probability just as engineering
is not a subfield of calculus; many simple statisti-
cal methods do not require the use of probability,
and many engineering techniques do not require
calculus.

11. A relative frequency distribution is based on data.
A probability distribution is based on a theoreti-
cal model for probabilities. Since probability can
be interpreted as long-run relative frequency, a
relative frequency distribution approximates the
underlying probability distribution, with the ap-
proximation getting better as the amount of data
increases.

Section 2

1. (a) 2/9 (c) .5

(d) F(x) =


0 for x ≤ 0

10x−x2

9 for 0 < x < 1

1 for x ≥ 1

(e) 13/27; .288

2. (a) .2676 (b) .1446 (c) .3393 (d) .3616
(e) .3524 (f) .9974 (g) 1.28 (h) 1.645
(i) 2.17

3. (a) .7291 (b) .3594 (c) .2794 (d) .4246
(e) .6384 (f) 48.922 (g) 44.872. (h) 7.056

4. (a) .4938 (b) Set µ to the midpoint of the speci-
fications: µ = 2.0000; .7888 (c) .0002551

5. (a) P(X < 500) = .3934; P(X > 2000) = .1353
(b) Q(.05) = 51.29; Q(.90) = 2,302.58

6. (b) Median = 68.21 × 106 (c) Q(.05) =
21.99 × 106; Q(.95) = 128.9 × 106

Section 3

1. Data that are being generated from a particular dis-
tribution will have roughly the same shape as the
density of the distribution, and this is more true
for larger samples. Probability plotting provides
a sensitive graphical way of deciding if the data
have the same shape as a theoretical probability
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distribution. If a distribution can be found that ac-
curately describes the data generating process, one
can then estimate probabilities and quantiles and
make predictions about future process behavior
based on the model.

2. Fit a line (by eye or some other method) through
the points on the plot. The x-intercept is an approx-
imate mean, and an approximate standard devia-

tion is σ ≈ 1
slope = 1x

1y = 1 data quantiles
1 std. normal quantiles .

3. (b) µ ≈ 69.5; σ ≈ 1/slope = 2.1

4. (a) First 3 coordinates of the normal plot of the
raw data: (17.88, −2.05), (28.92, −1.48), (33.00,
−1.23). The normal plot is not linear, so a Gaus-
sian (normal) distribution does not seem to fit
these data. First 3 coordinates of the normal plot
of the natural log of the data: (2.884, −2.05),
(3.365, −1.48), (3.497, −1.23). This normal plot
is fairly linear, indicating that a lognormal distri-
bution fits the data well. µ ≈ 4.1504, σ ≈ .5334.
3.273; 26.391. (b) The first 3 coordinates of the
Weibull plot are (2.88, −3.82), (3.36, −2.70),
(3.50, −2.16). The Weibull plot is fairly linear, in-
dicating that a Weibull distribution might be used
to describe bearing load life. α ≈ 81.12, β ≈ 2.3;
22.31.

5. (b) The exponential plot is fairly linear, indicating
that an exponential distribution fits the data well.
Since a line on the plot indicates that Q(0) ≈ 0, no
need for a threshold parameter greater than zero is
indicated.

Section 4

1. If X and Y are independent, then observing the ac-
tual value of X does not in any way change proba-
bility assessments about the yet-to-be-observed Y ,
or vice-versa. Independence provides great mathe-
matical simplicity in the description of the behav-
ior of X and Y .

2. (a) For x = 0, 1, 2, fX (x) = .5, .4, .1. For y =
0, 1, 2, 3, 4, fY (y) = .21, .19, .26, .21, .13.
(b) No, since f (x, y) 6= fX (x) fY (y). (c) .6; .44
(d) 1.86; 1.74 (e) For y = 0, 1, 2, 3, 4, fY |X (y |
0) = .3, .2, .2, .2, .1; 1.6.

3. (a) For y = 1, 2, 3, 4, fY |X (y | 0) = 0, 0, 0, 1
and fY |X (y | 1) = .25, .25, .25, .25. f (0, 1) =
f (0, 2) = f (0, 3) = 0, f (0, 4) = p, f (1, 1) =
f (1, 2) = f (1, 3) = f (1, 4) = .25(1 − p).
(b) 2.5 + 1.5p (c) p > .143

4. (a) Since X and Y are independent, f (x, y) =
fX (x) fY (y) (Definition 27),

f (x, y) =


1
.05

1
.06 for x ∈ (1.97, 2.02) and

y ∈ (2.00, 2.06)

0 otherwise

=


333.33 for x ∈ (1.97, 2.02) and
y ∈ (2.00, 2.06)

0 otherwise

(b) Find the volume below this density over the re-
gion in which 2.00 < y < x and 1.97 < x < 2.02.
This is .0667. (Using calculus, this is
2.02∫

2.00

x∫
2.00

333.33 dy dx .)

5. (a)

fX (x) =
{

2x for 0 ≤ x ≤ 1

0 otherwise
;

fY (y) =
{

2(1 − y) for 0 ≤ y ≤ 1

0 otherwise
;

µ = E X = 2/3.
(b) Yes, since f (x, y) = fX (x) fY (y). (c) .7083
(d) E(X |Y = .5) = 2/3

6. (a)
f (x, y) =

fX (x) fY (y) =
{

e−x e−y if x ≥ 0 and y ≥ 0

0 otherwise

(b) e−2t (c) fT (t) =
{

2e−2t for t ≥ 0

0 otherwise
.

This is an exponential distribution with mean .5.
(d) (1 − e−t )2.
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(e) fT (t) =
{

2e−t(1 − e−t) for t ≥ 0;
0 otherwise

.

E(T ) = 1.5

Section 5

1. mean = .75 in.; standard deviation = .0037.

2. (a) Propagation of error formula gives 1.4159 ×
10−6. (b) The lengths.

3. (a) 13/27; .0576 (b) X ∼ Normal with mean
13/27 and standard deviation .0576. (c) .3745
(d) .2736 (e) 13/27, .0288; X ∼ Normal with
mean 13/27 and standard deviation .0288; .2611;
.5098.

4. .7888, .9876, 1.0000

5. Rearrange the relationship in terms of g to get
g = 4π2 L

τ2 . Take the given length and period to be
approximately equal to the means of these input
random variables. To use the propagation of error
formula, the partial derivatives need to be eval-
uated at the means of the input random variables
and ∂g

∂L = 4π2

τ2 = 6.418837 and ∂g
∂τ

= −8π2 L
τ3 =

−25.8824089. Then applying equation (5.59),
Var(g) ≈ (6.418837)2(.0208)2+(−25.8824089)2

× (.1)2 = 6.7168 ft2/sec4 so the approximate stan-
dard deviation of g is

√
6.7168 = 2.592 ft/sec2.

The precision in the period measurement is the
principal limitation on the precision of the derived
g because its term (variance × squared partial
derivative) contributes much more to the propaga-
tion of error formula than the length’s term.

Chapter 6

Section 1

1. [6.3, 7.9] ppm is a set of plausible values for the
mean. The method used to construct this interval
correctly contains the true mean in 95% of re-
peated applications. This particular interval either
contains the mean or it doesn’t (there is no prob-
ability involved). However, because the method is
correct 95% of the time, we might say that we have
95% confidence that it was correct this time.

2. (a) [111.0, 174.4] (b) [105.0, 180.4] (c) 167.4
(d) 174.4 (e) [111.0, 174.4] ppm is a set of plau-
sible values for the mean aluminum content of
samples of recycled PET plastic from the recycling
pilot plant at Rutgers University. The method used
to construct this interval correctly contains means
in 90% of repeated applications. This particular in-
terval either contains the mean or it doesn’t (there
is no probability involved). However, because the
method is correct 90% of the time, we might say
that we have 90% confidence that it was correct
this time.

3. n = 66

4. (a) x̄ = 4.6858 and s = .02900317 (b) =
[4.676, 4.695] mm (c) [4.675, 4.696] mm. This
interval is wider than the one in (b). To increase
the confidence that µ is in the interval, you need to
make the interval wider. (d) The lower bound is
4.677 mm. This is larger than the lower endpoint
of the interval in (b). Since the upper endpoint here
is set to ∞, the lower endpoint must be increased
to keep the confidence level the same. (e) To
make a 99% one-sided interval, construct a 98%
two-sided interval and use the lower endpoint. This
was done in part (a), and the resulting lower bound
is 4.676. This is smaller than the value in (d); to
increase the confidence, the interval must be made
“wider.” (f) [4.676, 4.695] ppm is a set of plau-
sible values for the mean diameter of this type
of screw as measured by this student with these
calipers. The method used to construct this inter-
val correctly contains means in 98% of repeated
applications. This particular interval either con-
tains the mean or it doesn’t (there is no probability
involved). However, because the method is correct
98% of the time, we might say that we have 98%
confidence that it was correct this time.

Section 2

1. H0 : µ = 200; Ha : µ > 200; z = −2.98; p-
value

.= .9986. There is no evidence that the mean
aluminum content for samples of recycled plastic
is greater than 200 ppm.
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2. (a) H0 : µ = .500; Ha : µ 6= .500; z = 1.55; p-
value

.= .1212. There is some (weak) evidence that
the mean punch height is not .500 in. (The rounded
x̄ and s given produce a z that is quite a bit dif-
ferent from what the exact values produce. x̄ =
.005002395 and s = .002604151, computed from
the raw data, produce z = 1.85, and a p-value of
2(.0322) = .0644.) (b) [.49990, .50050] (c) If
uniformity of stamps on the same piece of material
is important, then the standard deviation (spread)
of the distribution of punch heights will be impor-
tant (in addition to the mean).

3. The mean of the punch heights is almost cer-
tainly not exactly equal to .50000000 inches. Given
enough data, a hypothesis test would detect this as
a “statistically significant” difference (and produce
a small p-value). What is practically important is
whether the mean is “close enough” to .500 inches.
The confidence interval in part (b) answers this
more practical question.

4. H0 : µ = 4.70; Ha : µ 6= 4.70 ; z = −3.46; p-
value

.= .0006. There is very strong evidence that
the mean measured diameter differs from nominal.

5. Although there is evidence that the mean is not
equal to nominal, the test does not say anything
about how far the mean is from nominal. It may
be “significantly” different from nominal, but the
difference may be practically unimportant. A con-
fidence interval is what is needed for determining
how far the mean is from nominal.

Section 3

1. The normal distribution is bell-shaped and sym-
metric, with fairly “short” tails. The confidence
interval methods depend on this regularity. If the
distribution is skewed or prone to outliers/extreme
observations, the normal-theory methods will not
properly take this into account. The result is an
interval whose real confidence level is different
from the nominal value (and often lower than the
nominal value).

2. (a) Independence among assemblies; normal dis-
tribution for top-bolt torques. (b) H0: µ = 100;
Ha: µ 6= 100 ; t = 4.4; p-value

.= .001. There is

strong evidence that the mean torque is not 100
ft lb. (c) [104.45, 117.55] (d) Independence
among assemblies; normal distribution for differ-
ences. (e) H0: µd = 0; Ha: µd < 0 (where dif-
ferences are Top – Bottom); t = −2.10 on 14 df;
.025 < p-value < .05. (f) [−13.49, 1.49]

3. (a) [−0.0023, .0031] mm (b) H0: µd = 0; Ha:
µd 6= 0 ; z = .24; p-value = .8104. There is no ev-
idence of a systematic difference between calipers.
(c) The confidence interval in part (a) contains
zero; in fact, zero is near the middle of the inter-
val. This means that zero is a very plausible value
for the mean difference—there is no evidence that
the mean is not equal to zero. This is reflected by
the large p-value in part (b).

4. (a) The data within each sample must be iid nor-
mal, and the two distributions must have the same
variance σ 2. One way to check these assumptions
is to normal plot both data sets on the same axes.
For such small sample sizes, it is difficult to defini-
tively verify the assumptions. But the plots are
roughly linear with no outliers, indicating that the
normal part of the assumption may be reasonable.
The slopes are similar, indicating that the common
variance assumption may be reasonable. (b) La-
bel the Treaded data Sample 1 and the Smooth
data Sample 2. H0 : µ1 − µ2 = 0; Ha : µ1 − µ2 6=
0; t = 2.49; p-value is between .02 and .05. This
is strong evidence of a difference in mean skid
lengths. (c) [2.65, 47.35] (d) [2.3, 47.7]

Section 4

1. (a) [9.60, 37.73] (b) 57.58 (c) H0 :
σ 2

T
σ 2

S
= 1

Ha :
σ 2

T
σ 2

S
6= 1; f = .64 on 5,5 df; p-value > .50

(d) [.36, 1.80]

2. (a) [7.437,∞) (b) [44.662,∞) (c) Top and
bottom bolt torques for a given piece are probably
not sensibly modeled as independent.

Section 5

1. (a) Conservative method: [.562, .758]; .578. Other
method: [.567, .753]; .582. (b) H0 : p = .55; Ha :
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p > .55; z = 2.21; p-value = .0136. (c) Con-
servative method: [−.009, .269]. Other method:
[−.005, .265]. (d) H0 : pS − pL = 0; Ha : pS −
pL 6= 0; z = 1.87; p-value = .0614.

2. 9604

3. Conservative method: [.22, .35]. Other method:
[.23, .34].

4. H0 : p1 − p2 = 0; Ha : p1 − p2 6= 0; z = −.97; p-
value = .3320.

Section 6

1. A consumer about to purchase a single auto would
be most interested in a prediction bound, because
the single auto that the consumer will purchase is
likely to have mileage above the bound. This is not
true for a confidence bound for the mean. That may
be more useful for the EPA official, since this per-
son wants to be sure that the manufacturer is pro-
ducing cars that exceed some minimum average
mileage. The design engineer would be most inter-
ested in a lower tolerance bound for most mileages,
to be sure that a high percentage of the cars pro-
duced are able to cruise for at least 350 miles. A
confidence for the mean or prediction bound does
not answer this question.

2. (a) [132.543, 297.656] (b) [92.455, 337.745]
(c) The tolerance interval is much wider than the
prediction interval. The interval in (b) is meant to
bracket 90% of all observations, while the the one
from (a) is meant only to bracket a single addi-
tional observation. (d) The confidence interval
for mean lifetime is smaller than both the predic-
tion interval and the tolerance interval. It is meant
only to bracket the mean/center of the population,
not additional observation(s). (e) [152.811,∞)

(f) [113.969,∞)

3. (a) [3.42, 6.38]; [30.6, 589.1] (b) [3.87, 5.93];
[48.1, 375.0] (c) The intervals in (a) are wider
than those in (b). This is usually true when apply-
ing tolerance intervals and prediction intervals in
the same situation.

4. 92.6%; 74.9%

Chapter 7

Section 1

1. (a) The plot reveals two outliers. The assumptions
of the one-way normal model appear to be less
than perfectly met in this problem. (Both of the
outliers come from the 8,000 psi condition. This
is an indication that the common σ part of the
one-way normal model may be less than perfect.)
(b) .02057. This measures the magnitude of base-
line variation in any of the five treatments, assum-
ing it is the same for all five treatments; [.01521,
.03277].

2. (a) The plot reveals one outlier/unusual residual
(the 1.010 value from Van #1 produces the residual
−.0094). One should proceed under the one-way
model assumptions only with caution. (b) The
standardized residuals tell the same story told in
part (a). (c) sp = .0036 measures the (suppos-
edly common) variation in tilt angle for repeated
measurement of a particular van; [.0026, .0058].

Section 2

1. (a) .02646; 75% (b) .03742 (c) [−.0724,

.0572] provides no convincing evidence of non-
linearity over the range from 2,000 to 6,000, as it
includes 0.

2. (a) The intervals in numerical order of the four
vans are: [1.0875, 1.0984], [.9608, 9716], [1.0145,

1.0242], [.9968, 1.0076]; at least 96% simulta-
neous confidence. (b) 1 = .0077; 1 = .0073
(c) [.013516, .02408]

3. Before the data are collected,the probability is .05
that an individual 95% confidence interval will be
in error—that it will not contain the quantity that it
is supposed to contain. If several of these individ-
ual intervals are made, then the probability that at
least one of the intervals is in error is greater than
.05. (If each interval has a .05 chance of failing,
then the overall chance of at least one failure is
greater than .05.) When making several intervals,
most people would like the overall or simultane-
ous error probability to be small. In order to make
sure, for example, that the overall error probability
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is .05, the error probability associated with the in-
dividual intervals must be made smaller than .05.
This is equivalent to increasing the individual con-
fidences (above 95%), which makes the intervals
wider.

Section 3

1. (a) .03682; it is larger. (b) .05522; it is larger.

2. (a) k∗
2 = 2.88 so the intervals in numerical order of

the four vans are: [1.0878, 1.0982], [.9610, 9714],
[1.0147, 1.0240], [.9970, 1.0074]. (b) 1 =
.0097; 1 = .0092. These are larger than the earlier
1’s. The confidence level here is a simultaneous
one while the earlier level was an individual one.
The intervals here are doing a more ambitious job
and must therefore be wider.

Section 4

1. (a) Small, since some means differ by more than
the 1 there. (b) SSTr = .285135, MSTr =
.071284, df = 4; SSE = .00423, MSE = .000423,
df = 10; SSTot = .289365, df = 14; f = 168.52
on 4,10 df; p-value < .001. R2 = .985.

2. (a) Small, since some sample means differ by more
than the 1’s there. (b) SSTr = .034134, MSTr =
.011378, df = 3; SSE = .000175, MSE = .000013,
df = 13; SSTot = .034308, df = 16; f = 847 on
3,13 df; p-value < .001.

3. (a) To check that the µi ’s are normal, make a nor-
mal plot of the ȳi ’s. To check that the εi ’s are
normal, make a normal plot of the residuals. (Nor-
mal plotting each sample individually will not
be very helpful because the sample sizes are so
small.) Both plots are roughly linear, giving no ev-
idence that the one-way random effects model as-
sumptions are unreasonable. (b) SSTr = 9310.5,
MSTr = 1862.1, df = 5; SSE = 194.0, MSE =
16.2, df = 12; SSTot = 9504.5, df = 17; f =
115.18 on 5,12 df; p-value < .001. σ̂ = 4.025
measures variation in y from repeated measure-
ments of the same rail; σ̂

τ
= 24.805 measures

the variation in y from differences among rails.
(c) [3.46, 13.38]

4. (a) Unstructured multisample data could also be
thought of as data from one factor with r levels.
In many situations, the specific levels of the fac-
tor included in the study are the levels of interest.
For example, in comparing three drugs, the fac-
tor might be called“Treatment.” It might have four
levels: Drug 1, Drug 2, Drug 3, and Control. The
experimenter is interested in comparing the spe-
cific drugs used in the study to each other and to
the control. Sometimes the specific levels of the
factor are not of interest in and of themselves,
but only because they may represent (perhaps they
are a random sample of) many different possible
levels that could have been used in the study. A
random effects analysis is appropriate in this situ-
ation. For an example, see part (b). (b) If there
are many technicians, and five of these were ran-
domly chosen to be in the study, then interest is
in the variation among all technicians, not just the
five chosen for the study. (c) σ̂ = .00155 in.;
σ̂

τ
= .00071 in.

Section 5

1. (a) Center linex̄ = 21.0, UCLx̄ = 22.73, LCLx̄ =
19.27. Center lineR = 1.693, UCLR = 4.358, no
LCLR . (b) Center lines = .8862, UCLs = 2.276,
no LCLs . (c) 1.3585; 1.3654; sp = 1.32.
(d) Center linex̄ = 21.26, UCLx̄ = 23.61, LCLx̄ =
18.91. Center lineR = 2.3, UCLR = 5.9202, no
LCLR . (e) Center linex̄ = 21.26, UCLx̄ = 23.62,
LCLx̄ = 18.90. Center lines = 1.21, UCLs =
3.10728, no LCLs .

2. (a) R
d2

= 4.052632
2.326 = 1.742318 × .001 in.; s̄

c4
=

1.732632
.9400 = 1.843226 × .001 in. (b) For the R chart

Center LineR = 2.326(1.843226) = 4.287344 ×
.001 in., UCLR = 4.918(1.843226) = 9.064985×
.001 in. and there is no lower control limit. For
the s chart Center Lines = 1.732632 × .001 in.
UCLs = 2.089(1.732632) = 3.619468 × .001 in.
and there is again no lower control limit. Neither
chart indicates that the short-term variability of the
process (as measured by σ ) was unstable. (c) Use
Center Linex̄ = 11.17895 × .001 in. above nom-
inal, LCLx̄ = 11.17895 − 3 1.843226√

5
= 8.706× .001
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in. above nominal and UCLx̄ = 11.17895 +
3 1.843226√

5
= 13.65189 × .001 in. above nominal.

x̄ from sample 16 comes close to the upper con-
trol limit, but overall the process mean seems to
have been stable over the time period. (d) The
x̄’s from samples 9 and 16 seem to have “jumped”
from the previous x̄ . The coil change may be caus-
ing this jump, but it could also be explained by
common cause variation. It may be something
worth investigating. (e) Assuming that the mean
could be adjusted (down), you need to look at
one of the estimates of σ to answer this question
about individual thread lengths. (You should not
use control limits to answer this question!) If µ

could be made equal to zero, then (assuming nor-
mally distributed thread lengths), almost all of the
thread lengths would fall in the interval ±3σ . Us-
ing the estimate of σ based on s̄ from part (a), this
can be approximated by 3(1.843226) = 5.53×
.001 in. It does seem that the equipment is ca-
pable of producing thread lengths within .01 in.
of nominal. If the equipment were not capable
of meeting the given requirements, the company
could invest in better equipment. This would “per-
manently” solve the problem, but it might not
be feasible from a financial standpoint. A sec-
ond option is to inspect the bolts and remove the
ones that are not within .01 in. of nominal. This
might be cheaper than investing in new equip-
ment, but it will do nothing to improve the quality
of the process in the long run. A third option is
to study the process (through experimentation) to
see if there might be some way of reducing the
variability without making a large capital invest-
ment.

3. Control charting is used to monitor a process and
detect changes (lack of stability) in a process. The
focus is on detecting changes in a meaningful pa-
rameter such as µ, σ, p, or λ. Points that plot out of
control are a signal that the process is not stable at
the standard parameter value (for a standards given
chart) or was not stable at any parameter value (for
a retrospective chart). The overall goal is to re-
duce process variability by identifying assignable

causes and taking action to eliminate them. Reduc-
ing variability increases the quality of the process
output.

4. Shewhart control charts do not physically control
a process in the sense of guiding or adjusting it.
They only monitor the process, trying to detect
process instability. There is an entirely different
field dedicated to “engineering control”; this field
uses feedback techniques that manipulate process
variables to guide some response. Shewhart con-
trol charts simply monitor a response, and are not
intended to be used to make “real time” adjust-
ments.

5. Out-of-control points should be investigated. If the
causes of such points can be determined and elim-
inated, this will reduce long-term variation from
the process. There must be an active effort among
those involved with the process to improve the
quality; otherwise, control charts will do nothing
to improve the process.

6. Control limits for an x̄ chart are set so that, un-
der the assumption that the process is stable, it
would be very unusual for an x̄ to plot outside the
control limits. The chart recognizes that there will
be some variation in the x̄’s even if the process
is stable, and prevents overadjustment by allow-
ing the x̄’s to vary “randomly” within the control
limits. If the process mean or standard deviation
changes, x̄’s will be more likely to plot outside of
the control limits, and sooner or later the alarm will
sound. This provides an opportunity to investigate
the cause of the change, and hopefully take steps
to prevent it from happening again. In the long run,
such troubleshooting may improve the process by
making it less variable.

Section 6

1. (a) Center line p̂ = .02, UCLp̂ = .0438, no LCLp̂.
(b) Center line p̂ = .0234, UCLp̂ = .0491, no LCLp̂.

2. Center lineûi
= .138 for all i , UCLûi

= .138 +
3
√

.138
ki

, no LCLûi
for all i .
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3. (a) Center lineûi
= .714 for all i , UCLûi

= .714 +
3
√

.714
ki

, no LCLûi
for all i . The process seems to be

stable. (b) (i) if ki = 1, .0078; if ki = 2, .0033.
(ii) if ki = 1, .0959; if ki = 2, .1133.

4. p̂ = 18
250 = .072, so Center Line p̂i

= .072. The
control limits depend on the sample size ni . For

ni = 20, .072 − 3
√

.072(1−.072)

20 = −.101399 < 0,
so there is no lower control limit, while UCLp̂i

=
.072 + 3

√
.072(1−.072)

20 = .245399. For ni = 30,

.072−3
√

.072(1−.072)

30 = −.06957966 < 0, so there
is no lower control limit, while UCLp̂i

= .072 +
3
√

.072(1−.072)

30 = .2135797. For ni = 40, .072 −
3
√

.072(1−.072)

40 = −.05061158 < 0, so there is no
lower control limit, while UCLp̂i

= .072 +
3
√

.072(1−.072)

40 = .1946116. There is no evidence
that the process fraction nonconforming was un-
stable (changing) over the time period studied.

5. If different data collectors have different ideas of
exactly what a “nonconformance” is, then the data
collected will not be consistent. A stable process
may look unstable (according to the c chart) be-
cause of these inconsistencies.

6. It may indicate that the chart was not applied prop-
erly. For example, if hourly samples of size m = 4
are collected, it may or may not be reasonable to
use a retrospective x̄ chart with m = 4. If the 4
items sampled are from 4 different machines, 3 of
which are stable at some mean and the 4th stable at
a different mean, then the sample ranges and stan-
dard deviations will be inflated. This will make the
control limits on the x̄ chart too wide. Also, the x̄’s
will show very little variation about a center line
somewhere between the two means. This is all a
result of the fact that each sample is really com-
ing from four different processes. Four different
control charts should be used.

Chapter 8

Section 1

1. (a) Error bars: ȳi j ± 23.54. (b) a1 = 21.78, a2 =
−21.78, b1 = −41.61, b2 = 16.06, b3 = 25.56,
ab11 = −1.94, ab12 = 1.39, ab13 = .56, ab21 =
1.94, ab22 = −1.39, ab23 = −.56. Interactions:
abi j ± 9.52. A main effects: ai ± 6.73. B main
effects: bj ± 9.52. Interactions are not detectable,
but main effects for both A and B are. (c) ȳ· j −
ȳ· j ′ ± 20.18

2. (a) sp = 33.25 measures baseline variation in y for
each factor-level combination, assuming it is the
same for all factor-level combinations. (b) Error
bars: ȳi j ± 27.36. (d) a1 = −2.77, a2 = −17.4,
a3 = 20.17, b1 = −13.33, b2 = −1.20, b3 =
14.53, ab11 = .033, ab12 = −5.40, ab13 = 5.37,
ab21 = −2.13, ab22 = −.567, ab23 = 2.70,
ab31 = 2.104, ab32 = 5.97, ab33 = −8.07.
(e) 18.24. No. (f) Use (ai − a′

i ) ± 22.35. (g) Use
(ai − a′

i ) ± 26.88.

Section 2

1. (a) Ê ± .014. B and C main effects, BC inter-
action. (b) sFE = .0314 with 20 df; close to
sp = .0329. (c) Using few effects model: [3.037,
3.091]. Using general method: [3.005, 3.085].

2. (a) Only the main effect for A plots “off the line.”
(b) Since the D main effect is almost as big (in
absolute value) as the main effect for A, you might
choose to include it. For this model, the fitted val-
ues are (in standard order): 16.375, 39.375, 16.375,
39.375, 16.375, 39.375, 16.375, 39.375, −4.125,
18.875, −4.125, 18.875, −4.125, 18.875, −4.125,
18.875. (c) Set A low (unglazed) and D high (no
clean). [0, 9.09].

3. (a) ȳ···· = 3.594, a2 = −.806, b2 = .156, ab22 =
−.219, c2 = −.056, ac22 = −.031, bc22 = .081,
abc222 = .031, d2 = −.056, ad22 = −.156,
bd22 = .006, abd222 = −.119, cd22 = −.031,
acd222 = −.056, bcd222 = −.044, abcd2222 =
.006. (b) It appears that only the main effect for
A is detectably larger than the rest of the effects,
since the point for a2 is far away from the rest of
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the fitted effects. (c) To minimize y, use A(+)
(monks cloth) and B(+) (treatment Y).

Section 3

1. Since A ↔ BCDE, if both are large but opposite
in sign, their estimated sum will be small.

2. (a) 8.23, .369, .256, −.056, .344, −.069, −.081,
−.093, −.406, .181, .269, −.344, −.094, −.156,
−.069, .019. (b) .312. The sums α2 + βγ δε2222,
γ2 + αβδε2222, δ2 + αβγ ε2222, and αβδ222 + γ ε22
are detectable. Simplest explanation: A, C, D main
effects and CE interaction are responsible for these
large sums. (c) A (+), C (+), D (−), and E (−).
The abc combination, which did have the largest
observed bond strength.

3. (b) (1), ad, bd, ab, cd, ac, bc, abcd. Estimated
sums of effects: 3.600, −.850, .100, −.250, −.175,
−.025, −, 075, −.025. (c) The estimate of α2 +
βγ δ222 plots off the line. Still, one might conclude
that this is due to the main effect for A, but the
conclusion here would be a little more tentative.

Section 4

1. The advantage of fractional factorial experiments
is that the same number of factors can be stud-
ied using less experimental runs. This is important
when there are a large number of factors, and/or
experimental runs are expensive. The disadvantage
is that there will be ambiguity in the results; only
sums of effects can be estimated. The advantage
of using a complete factorial experiment is that
all means can be estimated, so all effects can be
estimated.

2. It will be impossible to separate main effects from
two-factor interactions. You would hope that any
interactions are small compared to main effects;
the results of the experiment can then be (tenta-
tively) summarized in terms of main effects. (If all
interactions are really zero, then it is possible to
estimate all of the main effects.) Looking at Ta-
ble 8.35, the best possible resolution is 3 (at most).

3. Those effects (or sums of effects) that are nearly
zero will have corresponding estimates that are
“randomly” scattered about zero. If all of the ef-
fects are nearly zero, then one might expect the

estimates from the Yates algorithm (excluding the
one that includes the grand mean) to be bell-shaped
around zero. A normal plot of these estimates
would then be roughly linear. However, if there
are effects (or sums of effects) that are relatively
far from zero, the corresponding estimates will plot
away from the rest (off the line), and may be con-
sidered more than just random noise. The principle
of “sparsity of effects” says that in most situations,
only a few of the many effects in a factorial exper-
iment are dominant, and their estimates will then
plot off the line on a normal plot.

4. (a) I ↔ ABCDF ↔ ABCEG ↔ DEFG (b) ABDF,
ABEG, CDEFG (c) +,+; −,− (d) That only
A, F, and their interaction are important in describ-
ing y.

5. 3.264

6. (a) I ↔ ABCE ↔ BCDE ↔ ADEF (b) −,−;
+,− (c) .489

Chapter 9

Section 1

1. (a) sLF = 67.01 measures the baseline variation
in Average Molecular Weight for any particular
Pot Temperature, assuming this variation is the
same for all Pot Temperatures. (b) Standard-
ized residuals: 2.0131, −.3719, −.9998, −1.562,
.2715, .2394, .7450, .0004 (c) [22.08, 24.91]
(d) [1761, 1853], [2630, 2770] (e) [1745, 1869],
[2605, 2795] (f) 1705; 2590 (g) 1627; 2503
(h) SSR = 4,676,798, MSR = 4,676,798, df = 1;
SSE = 26,941, MSE = 4490, df = 6; SSTot =
4,703,739, df = 7; f = 1041.58 on 1,6 df; p-value
< .001

2. (a) b0 = 4345.9, b1 = −3160.0, sLF = 26.76
(close to sp = 26.89) (b) Standardized resid-
uals: 1.32, −.48, −.04, −.91, .52, −1.07, 1.94,
−.04, −1.09. (c) [−357.4, −274.64] (d) t =
−14.47 on 7 df, p-value < .001; or f = 209.24
on 1,7 df, p-value < .001. (e) [2744.8, 2787.0]
(f) [2699.2, 2832.6] (g) 2698.5
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Section 2

1. (a) sSF = .04677 measures variation in Elapsed
Time for any particular Jetting Size, assuming
this variation is the same for all Jetting Sizes.
(b) Standardized residuals: −.181, .649, −.794,
−.747, 1.55, −1.26. (c) [81.32, 126.66]; [−3.17,
−1.89]; [.01344, .02245] (d) [14.462, 14.596];
[14.945, 15.145] (e) [14.415, 14.644]; [14.875,
15.215] (f) 14.440; 14.942 (g) 14.323; 14.816
(h) SSR = .20639, MSR = .01319, df = 2; SSE =
.00656, MSE = .00219, df = 3; SSTot = .21295,
df = 5; f = 42.17 on 2,3 df; p-value = .005. H0
means that Elapsed Time is not related to Jet-
ting Size. (i) t = 9.38; p-value = .003. H0 : y ≈
β0 + β1x + 0; i.e., Elapsed Time is related to Jet-
ting Size only linearly (no curvature).

2. (a) sSF = .4851 measures baseline variation in
y for any (x1, x2) combination, assuming this
variation is the same for all (x1, x2) combina-
tions. (b) Standardized residuals: −.041, .348,
1.36, −1.44, −1.00, −.457, 1.92, .348, −.604.
(c) [5.036, 7.060]; [.0775, .2058]; [−.0298,
−.0041] (d) [5.992, 6.622]; [5.933, 6.625]
(e) [5.798, 6.816]; [5.720, 6.838] (f) 5.571;
5.535 (g) 5.017; 4.970 (h) SSR = 5.8854,
MSR = 2.9427, df = 2; SSE = 1.4118, MSE =
.2353, df = 6; SSTot = 7.2972, df = 8; f = 12.51
on 2,6 df; p-value = .007.

Section 3

1. (a) ŷ = 31.40 + 7.430 ln x1 − .08101x2 − .2760
(ln x1)

2 + .00004792x2
2 − .006596x2 ln x1. R2 =

.724. sSF = 1.947. sp = 2.136, which is greater
than sSF, so there is no indication that the model
is inappropriate. (b) Factor-level combinations
have fitted values that differ by as much as .77.
(d) (i) [.128, 2.781]. (ii) [−2.693, 5.601]. (iii)
−2.332.

2. (a) Estimate of µ··· = .67407; estimate of α2 =
.12407; estimate of β2 = −.30926. (b) There

is some hint of a pattern in the plot of Standard-
ized Residuals versus levels of C, indicating that
the amount of additive may be having a small ef-
fect that the model is not accounting for. Other-
wise, the residuals do not provide any evidence
that the model is inadequate. (c) sFE = .09623.
sp = .12247. No; sFE < sp.

Appendix A (selected answers only)

Section 1

1. (a) .1865 (b) .6083

2. (a) .54 (b) .78

3. (a) .505 (b) .998

4. (a) .76 (b) .78 (c) .974

5. (a) .75 (b) .80 (c) .75 (d) Yes, since the
answers to parts (a) and (c) are the same. (e) One
such pair is “ring meets spec.s on first grind” and
“ring is ground twice.”

Section 2

1. r = .99979

2. k = 2

Section 3

1. (a) 1.7310 × 1013 (b) 2.2777 × 1012 (c) .1316

2. (a) .0000081 (b) .03402

3. (a) 1,757,600 (b) .00167 (c) .0167

4. (a) .5 (b) .167

Section 4

1. (a) 20; 15.81 (b) 1 − 3
2 exp

(− t
15

) + 1
2 exp

(− t
5

)
(c) fT (t) = 1

10

(
exp

(− t
15

) − exp
(− t

5

))
(d) ST (t) = 3

2 exp
(

t
15

) − 1
2 exp

(− t
5

)
, hT (t) =

1
5

(
exp (− t

15 )−exp (− t
5 )

3 exp (− t
15 )−exp (− t

5 )

)
. hT (t) is not constant. It

starts at 0, and increases to an asymptote of 1/15.




