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More on Probability
and Model Fitting

The introduction to probability theory in Chapter 5 was relatively brief. There
are, of course, important engineering applications of probability that require more
background in the subject. So this appendix gives a few more details and discusses
some additional uses of the theory that are reasonably elementary, particularly in
the contexts of reliability analysis and life data analysis.

The appendix begins by discussing the formal/axiomatic basis for the math-
ematics of probability and several of the most useful simple consequences of the
basic axioms. It then applies those simple theorems of probability to the prediction
of reliability for series, parallel, and combination series-parallel systems. A brief
section treats principles of counting (permutations and combinations) that are some-
times useful in engineering applications of probability. There follows a section on
special probability concepts used with life-length (or time-to-failure) variables. The
appendix concludes with a discussion of maximum likelihood methods for model
fitting and drawing inferences.
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A.1 More Elementary Probability

Like any other mathematical theory or system, probability theory is built on a few
basic definitions and some “rules of the game” called axioms. Logic is applied to
determine what consequences (or theorems) follow from the definitions and axioms.
These, in turn, can be helpful guides as an engineer seeks to understand and predict
the behavior of physical systems that involve chance.

For the sake of logical completeness, this section gives the formal axiomatic
basis for probability theory and states and then illustrates the use of some simple
theorems that follow from this base. Conditional probability and the independence
of events are then defined, and a simple theorem related to these concepts is stated
and its use illustrated.

728
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A.1.1 Basic Definitions and Axioms

As was illustrated informally in Chapter 5, the practical usefulness of probability
theory is in assigning sensible likelihoods of occurrence to possible happenings in
chance situations. The basic, irreducible, potential results in such a chance situation
are called outcomes belonging to a sample space.

Definition 1 A single potential result of a chance situation is called an outcome. All
outcomes of a chance situation taken together make up a sample space for the
situation. A script capital S is often used to stand for a sample space.

Mathematically, outcomes are points in a universal set that is the sample space.
And notions of simple set theory become relevant. For one thing, subsets of S
containing more than one outcome can be of interest.

Definition 2 A collection of outcomes (a subset of S) is called an event. Capital letters
near the beginning of the alphabet are sometimes used as symbols for events,
as are English phrases describing the events.

Once one has defined events, the standard set-theoretic operations of comple-
mentation, union, and intersection can be applied to them. However, rather than
using the typical “c,” “∪,” and “∩” mathematical notation for these operations, it is
common in probability theory to substitute the use of the words not, or, and and,
respectively.

Definition 3 For event A and event B, subsets of some sample space S,

1. notA is an event consisting of all outcomes not belonging to A;

2. AorB is an event consisting of all outcomes belonging to one, the
other, or both of the two events; and

3. AandB is an event consisting of all outcomes belonging simultane-
ously to the two events.

Example 1 A Redundant Inspection System for Detecting Metal Fatigue Cracks

Consider a redundant inspection system for the detection of fatigue cracks in metal
specimens. Suppose the system involves the making of a fluorescent penetrant
inspection (FPI) and also a (magnetic) eddy current inspection (ECI). When a
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Example 1
(continued )

metal specimen is to be tested using this two-detector system, a potential sample
space consists of four outcomes corresponding to the possible combinations of
what can happen at each detector. That is, a possible sample space is specified in
a kind of set notation as

S = {(FPI signal and ECI signal), (no FPI signal and ECI signal), (A.1)
(FPI signal and no ECI signal), (no FPI signal and no ECI signal)}

and in tabular and pictorial forms as in Table A.1 and Figure A.1. Notice that
Figure A.1 can be treated as a kind of Venn diagram—the big square standing for
S and the four smaller squares making up S standing for events that each consist
of one of the four different possible outcomes.

Using this four-outcome sample space to describe experience with a metal
specimen, one can define several events of potential interest and illustrate the use
of the notation described in Definition 3. That is, let

A = {(FPI signal and ECI signal), (FPI signal and no ECI signal)} (A.2)

B = {(FPI signal and ECI signal), (no FPI signal and ECI signal)} (A.3)

Table A.1
A List of the Possible Outcomes for Two Inspections

Possible Outcome FPI Detection Signal? ECI Detection Signal?

1 yes yes
2 no yes
3 yes no
4 no no

Yes

No

FPI signal

ECI signal

Yes No

Figure A.1 Graphical represen-
tation of four outcomes of two
inspections



A.1 More Elementary Probability 731

Then in words,

A = the FPI detector signals

B = the ECI detector signals

Part 1 of Definition 3 means, for example, that using notations () and (A.2),

notA = {(no FPI signal and ECI signal), (no FPI signal and no ECI signal)}
= the FPI detector doesn’t signal

Part 2 of Definition 3 means, for example, that using notations (A.2) and (A.3),

AorB = {(FPI signal and ECI signal), (FPI signal and no ECI signal),

(no FPI signal and ECI signal)}
= at least one of the two detectors’ signals

And Part 3 of Definition 3 means that again using (A.2) and (A.3), one has

AandB = {(FPI signal and ECI signal)}
= both of the two detectors’ signals

notA, AorB, and AandB are shown in Venn diagram fashion in Figure A.2.

Elementary set theory allows the possibility that a set can be empty—that is,
have no elements. Such a concept is also needed in probability theory.

Definition 4 The empty event is an event containing no outcomes. The symbol ∅ is typically
used to stand for the empty event.

∅ has the interpretation that none of the possible outcomes of a chance situation occur.
The way in which ∅ is most useful in probability is in describing the relationship
between two events that have no outcomes in common, and thus cannot both occur.
There is special terminology for this eventuality (that AandB = ∅).

Definition 5 If event A and event B have no outcomes in common (i.e., AandB = ∅), then
the two events are called disjoint or mutually exclusive.
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Yes

No

FPI signal

ECI signal

Yes No

Yes

No

FPI signal

ECI signal

Yes No

Yes

No

FPI signal

ECI signal

Yes No

Yes

No

FPI signal

ECI signal

Yes No

Yes

No

FPI signal

ECI signal

Yes No

A B

AorB

notA

AandB

Figure A.2 Graphical representations of A, B, notA, AorB, and AandB

Example 1
(continued )

From Figure A.2 it is quite clear that, for example, the event A and the event
notA are disjoint. And the event AandB and the event not(AorB), for example,
are also mutually exclusive events.

Manipulation of events using complementation, union, intersection, etc. is nec-
essary background, but it is hardly the ultimate goal of probability theory. The goal is
assignment of likelihoods to events. In order to guarantee that such assignments are
internally coherent, probabilists have devised what seem to be intuitively sensible
axioms (or rules of operation) for probability models. Assignment of likelihoods
in conformance to those rules guarantees that (at a minimum) the assignment is
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logically consistent. (Whether it is realistic or useful is a separate question.) The
axioms of probability are laid out next.

Definition 6 A system of probabilities is an assignment of numbers (probabilities) P[A]
to events A in such a way that

1. for each event A, 0 ≤ P[A] ≤ 1,

2. P[S] = 1 and P[∅] = 0, and

3. for mutually exclusive events A1, A2, A3, . . . ,

P[A1orA2orA3or . . .] = P[A1] + P[A2] + P[A3] + · · ·

The relationships (1), (2), and (3) are the axioms of probability theory.

Definition 6 is meant to be in agreement with the ways that empirical relative
frequencies behave. Axiom (1) says that, as in the case of relative frequencies, only
probabilities between 0 and 1 make sense. Axiom (2) says that if one interprets a
probability of 1 as sure occurrence and a probability of 0 as no chance of occurrence,
it is certain that one of the outcomes in S will occur. Axiom (3) says that if an event
can be made up of smaller nonoverlapping pieces, the probability assigned to that
event must be equal to the sum of the probabilities assigned to the pieces.

Although it was not introduced in any formal way, the third axiom of probability
was put to good use in Chapter 5. For example, when concluding that for a Poisson
random variable X

P[2 ≤ X ≤ 5] = P[X = 2] + P[X = 3] + P[X = 4] + P[X = 5]

= f (2) + f (3) + f (4) + f (5)

one is really using the third axiom with

A1 = {X = 2}
A2 = {X = 3}
A3 = {X = 4}
A4 = {X = 5}

It is only in very simple situations that one would ever try to make use of
Definition 6 by checking that an entire candidate set of probabilities satisfies the
axioms of probability. It is more common to assign probabilities (totaling to 1) to
individual outcomes and then simply declare that the third axiom of Definition 6
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will be followed in making up any other probabilities. (This strategy guarantees that
subsequent probability assignments will be logically consistent.)

Example 2 A System of Probabilities for Describing
a Single Inspection of a Metal Part

As an extremely simple illustration, consider the result of a single inspection of a
metal part for fatigue cracks using fluoride penetrant technology. With a sample
space

S = {crack signaled, crack not signaled}

there are only four events:

S
{crack signaled}
{no crack signaled}
∅

An assignment of probabilities that can be seen to conform to Definition 6 is

P[S] = 1

P[crack signaled] = .3

P[no crack signaled] = .7

P[∅] = 0

Since they conform to Definition 6, these values make up a mathematically valid
system of probabilities. Whether or not they constitute a realistic or useful model
is a separate question that can really be answered only on the basis of empirical
evidence.

Example 1
(continued )

Returning to the situation of redundant inspection of metal parts using both
fluoride penetrant and eddy current technologies, suppose that via extensive
testing it is possible to verify that for cracks of depth .005 in., the following four
values are sensible:

P[FPI signal and ECI signal] = .48 (A.4)

P[FPI signal and no ECI signal] = .02 (A.5)
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P[no FPI signal and ECI signal] = .32 (A.6)

P[no FPI signal and no ECI signal] = .18 (A.7)

This assignment of probabilities to the basic outcomes in S is illustrated in
Figure A.3. Since these four potential probabilities do total to 1, one can adopt
them together with provision (3) of Definition 6 and have a mathematically
consistent assignment. Then simple addition gives appropriate probabilities for
all other events. For example, with event A and event B as defined earlier (A =
the FPI detector signals and B = the ECI detector signals),

P[A] = P[the FPI detector signals]

= P[FPI signal and ECI signal] + P[FPI signal and no ECI signal]

= .48 + .02

= .50

And further,

P[AorB] = P[at least one of the two detectors signals]

= P[FPI signal and ECI signal] + P[FPI signal and no ECI signal]

+ P[no FPI signal and ECI signal]

= .48 + .02 + .32

= .82

It is clear that to find the two values, one simply adds the numbers that appear in
Figure A.3 in the regions that are shaded in Figure A.2 delimiting the events in
question.

Yes

No

FPI signal

ECI signal

Yes No

.48 .02

.32 .18

Figure A.3 An assignment of
probabilities to four possible
outcomes of two inspections
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A.1.2 Simple Theorems of Probability Theory

The preceding discussion is typical of probability analyses, in that the probabilities
for all possible events are not explicitly written down. Rather, probabilities for some
events, together with logic and the basic rules of the game (the probability axioms),
are used to deduce appropriate values for probabilities of other events that are of
particular interest. This enterprise is often facilitated by the existence of a number
of simple theorems. These are general statements that are logical consequences of
the axioms in Definition 6 and thus govern the assigning of probabilities for all
probability models.

One such simple theorem concerns the relationship between P[A] and P[notA].

Proposition 1 For any event A,

P[notA] = 1 − P[A]

This fact is again one that was used freely in Chapter 5 without explicit reference.
For example, in the context of independent, identical success-failure trials, the
fact that the probability of at least one success (i.e., P[X ≥ 1] for a binomial
random variable X) is 1 minus the probability of 0 successes (i.e., 1 − P[X = 0] =
1 − f (0)) is really a consequence of Proposition 1.

Example 1
(continued )

Upon learning, via the addition of probabilities for individual outcomes given in
displays (A.4) through (A.7), that the assignment

P[A] = P[the FPI detector signals]

= .50

is appropriate, Proposition 1 immediately implies that

P[notA] = P[the FPI detector doesn’t signal]

= 1 − P[A]

= 1 − .50

= .50

is also appropriate. (Of course, if the point here weren’t to illustrate the use
of Proposition 1, this value could just as well have been gotten by adding .32
and .18.)
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A second simple theorem of probability theory is a variation on axiom (3) of
Definition 6 for two events that are not necessarily disjoint. It is sometimes called
the addition rule of probability.

Proposition 2
(The Addition Rule of

Probability )

For any two events, event A and event B,

P[AorB] = P[A] + P[B] − P[AandB] (A.8)

Note that when dealing with mutually exclusive events, the last term in equation (A.8)
is P[∅] = 0. Therefore, equation (A.8) simplifies to a two-event version of part (3)
of Definition 6. When the event A and the event B are not mutually exclusive,
the simple addition P[A] + P[B] (so to speak) counts P[AandB] twice, and the
subtraction in equation (A.8) corrects for this in the computing of P[AorB].

The practical usefulness of an equation like (A.8) is that when furnished with
any three of the four terms appearing in it, the fourth can be gotten by using simple
arithmetic.

Example 3 Describing the Dual Inspection of a Single Cracked Part

Suppose that two different inspectors, both using a fluoride penetrant inspection
technique, are to inspect a metal part actually possessing a crack .007 in. deep.
Suppose further that some relevant probabilities in this context are

P[inspector 1 detects the crack] = .50

P[inspector 2 detects the crack] = .45

P[at least one inspector detects the crack] = .55

Then using equation (A.8),

P[at least one inspector detects the crack] = P[inspector 1 detects the crack]

+ P[inspector 2 detects the crack] − P[both inspectors detect the crack]

Thus,

.55 = .50 + .45 − P[both inspectors detect the crack]

so

P[both inspectors detect the crack] = .40
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Example 3
(continued )

Of course, the .40 value is only as good as the three others used to produce it.
But it is at least logically consistent with the given probabilities, and if they have
practical relevance, so does the .40 value.

A third simple theorem of probability concerns cases where the basic outcomes
in a sample space are judged to be equally likely.

Proposition 3 If the outcomes in a finite sample space S all have the same probability, then
for any event A,

P[A] = the number of outcomes in A

the number of outcomes in S

Proposition 3 shows that if one is clever or fortunate enough to be able to conceive
of a sample space where an equally likely outcomes assignment of probabilities
is sensible, the assessment of probabilities can be reduced to a simple counting
problem. This fact is particularly useful in enumerative contexts (see again Definition
4 in Chapter 1 for this terminology) where one is drawing random samples from a
finite population.

Example 4 Equally Likely Outcomes in a Random Sampling Scenario

Suppose that a storeroom holds, among other things, four integrated circuit chips
of a particular type and that two of these are needed in the fabrication of a
prototype of an advanced electronic instrument. Suppose further that one of these
chips is defective. Consider assigning a probability that both of two chips selected
on the first trip to the storeroom are good chips. One way to find such a value
(there are others) is to use Proposition 3. Naming the three good chips G1, G2,
and G3 and the single defective chip D, one can invent a sample space made up
of ordered pairs, the first entry naming the first chip selected and the second entry
naming the second chip selected. This is given in set notation as follows:

S = {(G1, G2), (G1, G3), (G1, D), (G2, G1), (G2, G3), (G2, D), (G3, G1),

(G3, G2), (G3, D), (D, G1), (D, G2), (D, G3)}

A pictorial representation of S is given in Figure A.4.
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G1

G2

First chip selected

Second chip selected

G1 G2 G3 D

G3

D

Figure A.4 Graphical representation of 12 possible
outcomes when selecting two of four IC chips

Then, noting that the 12 outcomes in this sample space are reasonably thought
of as equally likely and that 6 of them do not have D listed either first or second,
Proposition 3 suggests the assessment

P[two good chips] = 6

12
= .50

A.1.3 Conditional Probability and the Independence of Events

Chapter 5 discussed the notion of independence for random variables. In that dis-
cussion, the idea of assigning probabilities for one variable conditional on the value
of another was essential. The concept of conditional assignment of probabilities of
events is spelled out next.

Definition 7 For event A and event B, provided event B has nonzero probability, the
conditional probability of A given B is

P[A | B] = P[AandB]

P[B]
(A.9)

The ratio (A.9) ought to make reasonable intuitive sense. If, for example,
P[AandB] = .3 and P[B] = .5, one might reason that “B occurs only 50% of
the time, but of those times B occurs, A also occurs .3

.5 = 60% of the time. So .6 is
a sensible assessment of the likelihood of A knowing that indeed B occurs.”
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Example 4
(continued )

Return to the situation of selecting two integrated circuit chips at random from
four residing in a storeroom, one of which is defective. Consider using expres-
sion (A.9) and evaluating

P[the second chip selected is defective | the first chip selected is good]

Simple counting in the 12-outcome sample space leads to the assignments

P[the first chip selected is good] = 9

12
= .75

P[first chip selected is good and second is defective] = 3

12
= .25

So using Definition 7,

P[the second chip selected is defective | the first selected is good] =
3
12
9
12

= 1

3

Of the 9 equally likely outcomes in S for which the first chip selected is good,
there are 3 for which the second chip selected is defective. If one thinks of the 9
outcomes for which the first chip selected is good as a kind of reduced sample
space (brought about by the partial restriction that the first chip selected is good),
then the 3

9 figure above is a perfectly plausible value for the likelihood that the
second chip is defective.

There are sometimes circumstances that make it obvious how a conditional
probability ought to be assigned. For example, in the context of Example 4, one
might argue that it is obvious that

P[the second chip selected is defective | the first selected is good] = 1

3

because if the first is good, when the second is to be selected, the storeroom will
contain three chips, one of which is defective.

When one does have a natural value for P[A | B], the relationship between this
and the probabilities P[AandB] and P[B] can sometimes be exploited to evaluate
one or the other of them. This notion is important enough that the relationship (A.9)
is often rewritten by multiplying both sides by the quantity P[B] and calling the
result the multiplication rule of probability.
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Proposition 4
(The Multiplication Rule

of Probability )

Provided P[B] > 0, so that P[A | B] is defined,

P[AandB] = P[A | B] · P[B] (A.10)

Example 5 The Multiplication Rule of Probability and a Probabilistic Risk Assessment

A probabilistic risk assessment of the solid rocket motor field joints used in
space shuttles prior to the Challenger disaster was made in “Risk Analysis of the
Space Shuttle: Pre-Challenger Prediction of Failure” (Journal of the American
Statistical Association, 1989) by Dalal, Fowlkes, and Hoadley. They estimated
that for each field joint (at 31◦ and 200 psi),

P[primary O-ring erosion] = .95

P[primary O-ring blow-by | primary O-ring erosion] = .29

Combining these two values according to rule (A.10), one then sees that the
authors’ assessment of the failure probability for each primary O-ring was

P[primary O-ring erosion and blow-by] = (.29)(.95) = .28

Typically, the numerical values of P[A | B] and P[A] are different. The dif-
ference can be thought of as reflecting the change in one’s assessed likelihood of
occurrence of A brought about by knowing that B’s occurrence is certain. In cases
where there is no difference, the terminology of independence is used.

Definition 8 If event A and event B are such that

P[A | B] = P[A]

they are said to be independent. Otherwise, they are called dependent.

Example 1
(continued )

Consider again the example of redundant fatigue crack inspection with probabil-
ities given in Figure A.3. Since

P[ECI signal] = .80

P[ECI signal | FPI signal] = .48

.50
= .96

the events {ECI signal} and {FPI signal} are dependent events.
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Example 1
(continued )

Yes

No

FPI signal

ECI signal

Yes No

.4 .1

.4 .1

Figure A.5 A second assignment
of probabilities to four possible
outcomes of two inspections

Of course, different probabilities assigned to individual outcomes in this
example can lead to the conclusion that the two events are independent. For
example, the probabilities in Figure A.5 give

P[ECI signal] = .4 + .4 = .8

P[ECI signal | FPI signal] = .4

.4 + .1
= .8

so with these probabilities, the two events would be independent.

Independence is the mathematical formalization of the qualitative notion of un-The multiplication
rule when A and B

are independent
relatedness. One way in which it is used in engineering applications is in conjunction
with the multiplication rule. If one has values for P[A] and P[B] and judges the
event A and the event B to be unrelated, then independence allows one to replace
P[A | B] with P[A] in formula (A.10) and evaluate P[AandB] as P[A] · P[B].
(This fact was behind the scenes in Section 5.1 when sequences of independent
identical success-failure trials and the binomial and geometric distributions were
discussed.)

Example 5
(continued )

In their probabilistic risk assessment of the pre-Challenger space shuttle solid
rocket motor field joints, Dalal, Fowlkes, and Hoadley arrived at the figure

P[failure] = .023

for a single field joint in a shuttle launch at 31◦F. A shuttle’s two solid rocket
motors have a total of six such field joints, and it is perhaps plausible to think of
their failures as independent events.
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If a model of independence is adopted, it is possible to calculate as follows:

P[ joint 1 and joint 2 are both effective] = P[ joint 1 is effective] ×
P[ joint 2 is effective]

= (1 − .023)(1 − .023)

= .95

And in fact, considering all six joints,

P[at least one joint fails] = 1 − P[all 6 joints are effective]

= 1 − (1 − .023)6

= .13
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1. Return to the situation of Chapter Exercise 30 of
Chapter 5, where measured diameters of a turned
metal part were coded as Green, Yellow, or Red,
depending upon how close they were to a mid-
specification. Suppose that the probabilities that a
given diameter falls into the various zones are .6247
for the Green Zone, .3023 for the Yellow Zone, and
.0730 for the Red Zone. Suppose further (as in the
problem in Chapter 5) that the lathe turning the
parts is checked once per hour according to the fol-
lowing rules: One diameter is measured, and if it is
in the Green Zone, no further action is needed that
hour. If it is in the Red Zone, the process is immedi-
ately stopped. If it is in the Yellow Zone, a second
diameter is measured. If the second diameter is
in the Green Zone, no further action is necessary,
but if it is not, the process is stopped immediately.
Suppose further that the lathe is physically stable,
so that it makes sense to think of successive color
codes as independent.
(a) Show that the probability that the process is

stopped in a given hour is .1865.
(b) Given that the process is stopped, what is the

conditional probability that the first diameter
was in the Yellow Zone?

2. A bin of nuts is mixed, containing 30% 1
2 in. nuts

and 70% 9
16 in. nuts. A bin of bolts has 40% 1

2 in.
bolts and 60% 9

16 in. bolts. Suppose that one bolt
and one nut are selected (independently and at ran-
dom) from the two bins.
(a) What is the probability that the nut and bolt

match?
(b) What is the conditional probability that the nut

is a 9
16 in. nut, given that the nut and bolt match?

3. A physics student is presented with six unmarked
specimens of radioactive material. She knows that
two are of substance A and four are of substance B.
Further, she knows that when tested with a Geiger
counter, substance A will produce an average of
three counts per second, while substance B will
produce an average of four counts per second. (Use
Poisson models for the counts per time period.)
(a) Suppose the student selects a sample at random

and makes a one-second check of radioactiv-
ity. If one count is observed, how should the
student assess the (conditional) probability that
the specimen is of substance A?

(b) Suppose the student selects a sample at random
and makes a ten-second check of radioactivity.
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If ten counts are observed, how should the stu-
dent assess the (conditional) probability that
the specimen is of substance A?

(c) Are your answers to (a) and (b) the same? How
should this be understood?

4. At final inspection of certain integrated circuit
chips, 20% of the chips are in fact defective. An
automatic testing device does the final inspection.
Its characteristics are such that 95% of good chips
test as good. Also, 10% of the defective chips test
as good.
(a) What is the probability that the next chip is

good and tests as good?
(b) What is the probability that the next chip tests

as good?
(c) What is the (conditional) probability that the

next chip that tests as good is in fact good?

5. In the process of producing piston rings, the rings
are subjected to a first grind. Those rings whose
thicknesses remain above an upper specification
are reground. The history of the grinding process
has been that on the first grind,

60% of the rings meet specifications (and are
done processing)

25% of the rings are above the upper specifi-
cation (and are reground)

15% of the rings are below the lower specifi-
cation (and are scrapped)

The history has been that after the second grind,

80% of the reground rings meet specifications

20% of the reground rings are below the lower
specification

A ring enters the grinding process today.
(a) Evaluate P[the ring is ground only once].
(b) Evaluate P[the ring meets specifications].
(c) Evaluate P[the ring is ground only once | the

ring meets specifications].
(d) Are the events {the ring is ground only once}

and {the ring meets specifications} indepen-
dent events? Explain.

(e) Describe any two mutually exclusive events in
this situation.

6. A lot of machine parts is checked piece by piece
for Brinell hardness and diameter, with the result-
ing counts as shown in the accompanying table. A
single part is selected at random from this lot.
(a) What is the probability that it is more than

1.005 in. in diameter?
(b) What is the probability that it is more than

1.005 in. in diameter and has Brinell hardness
of more than 210?

Diameter

1.000 to

< 1.000 in. 1.005 in. > 1.005 in.

Brinell
Hardness

< 190 154 98 48

190–210 94 307 99

> 210 33 72 95

(c) What is the probability that it is more than
1.005 in. in diameter or has Brinell hardness of
more than 210?

(d) What is the conditional probability that it has
a diameter over 1.005 in., given that its Brinell
hardness is over 210?

(e) Are the events {Brinell hardness over 210} and
{diameter over 1.005 in.} independent? Ex-
plain.

(f) Name any two mutually exclusive events in this
situation.

7. Widgets produced in a factory can be classified as
defective, marginal, or good. At present, a machine
is producing about 5% defective, 15% marginal,
and 80% good widgets. An engineer plans the fol-
lowing method of checking on the machine’s ad-
justment: Two widgets will be sampled initially,
and if either is defective, the machine will be im-
mediately adjusted. If both are good, testing will
cease without adjustment. If neither of these first
two possibilities occurs, an additional three wid-
gets will be sampled. If all three of these are good,
or two are good and one is marginal, testing will
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cease without machine adjustment. Otherwise, the
machine will be adjusted.
(a) Evaluate P[only two widgets are sampled and

no adjustment is made].
(b) Evaluate P[only two widgets are sampled].
(c) Evaluate P[no adjustment is made].
(d) Evaluate P[no adjustment is made | only two

widgets are sampled].
(e) Are the events {only two widgets are sam-

pled} and {no adjustment is made} indepen-
dent events? Explain.

(f) Describe any two mutually exclusive events in
this situation.

8. Glass vials of a certain type are conforming, blem-
ished (but usable), or defective. Two large lots of
these vials have the following compositions.

Lot 1: 70% conforming, 20% blemished, and
10% defective

Lot 2: 80% conforming, 10% blemished, and
10% defective

Lot 1 is three times the size of Lot 2 and these two
lots have been mixed in a storeroom. Suppose that
a vial from the storeroom is selected at random to
use in a chemical analysis.
(a) What is the probability that the vial is from Lot

1 and not defective?
(b) What is the probability that the vial is blem-

ished?
(c) What is the conditional probability that the vial

is from Lot 1 given that it is blemished?

9. A digital communications system transmits infor-
mation encoded as strings of 0’s and 1’s. As a means
of reducing transmission errors, each digit in a mes-
sage string is repeated twice. Hence the message
string {0 1 1 0} would (ideally) be transmitted as
{00 11 11 00} and if digits received in a given pair
don’t match, one can be sure that the pair has been
corrupted in transmission. When each individual
digit in a “doubled string” like {00 11 11 00} is
transmitted, there is a probability p of transmis-
sion error. Further, whether or not a particular digit
is correctly transferred is independent of whether
any other one is correctly transferred.

Suppose first that the single pair {00} is transmitted.
(a) Find the probability that the pair is correctly

received.
(b) Find the probability that what is received has

obviously been corrupted.
(c) Find the conditional probability that the pair

is correctly received given that it is not obvi-
ously corrupted.

Suppose now that the “doubled string” {00 00 11 11} is
transmitted and that the string received is not obviously
corrupted.

(d) What is then a reasonable assignment of the
“chance” that the correct message string
(namely {0 0 1 1}) is received? (Hint: Use
your answer to part c).)

10. Figure A.6 is a Venn diagram with some proba-
bilities of events marked on it. In addition to the
values marked on the diagram, it is the case that,
P[B] = .4 and P[C | A] = .8.

.1

.1
.3 .2

.1

A B

C

Figure A.6 Figure for Exercise 10

(a) Finish filling in the probabilities on the di-
agram. That is, evaluate the three probabili-
ties P[AandB and notC], P[Aand notB and
notC] and P[not(AorBorC)] = P[notA and
notB and notC].

(b) Use the probabilities on the diagram (and your
answers to (a)) and evaluate P[AandB].

(c) Use the probabilities on the diagram and eval-
uate P[B | C].

(d) Based on the information provided here, are
the events B, C independent events? Explain.
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A.2 Applications of Simple Probability
to System Reliability Prediction

Sometimes engineering systems are made up of identifiable components or subsys-
tems that operate reasonably autonomously and for which fairly accurate reliability
information is available. In such cases, it is sometimes of interest to try to predict
overall system reliability from the available component reliabilities. This section
considers how the simple probability material from Section A.1 can be used to help
do this for series, parallel, and combination series-parallel systems.

A.2.1 Series Systems

Definition 9 A system consisting of components C1, C2, C3, . . . , Ck is called a series sys-
tem if its proper functioning requires the functioning of all k components.

Figure A.7 is a representation of a series system made up of k = 3 components.
The interpretation to be attached to a diagram like Figure A.7 is that the system will
function provided there is a path from point 1 to point 2 that crosses no failed
component. (It is tempting, but not a good idea, to interpret a system diagram as a
flow diagram or like an electrical circuit schematic. The flow diagram interpretation
is often inappropriate because there need be no sequencing, time progression, com-
munication, or other such relationship between components in a real series system.
The circuit schematic notion often fails to be relevant, and even when it might seem
to be, the independence assumptions typically used in arriving at a system reliability
figure are of questionable practical appropriateness for electrical circuits.)

If it is sensible to model the functioning of the individual system components as
independent, then the overall system reliability is easily deduced from component
reliabilities via simple multiplication. For example, for a two-component series
system,

P[the system functions] = P[C1 functions and C2 functions]

= P[C2 functions | C1 functions] · P[C1 functions]

= P[C2 functions] · P[C1 functions]

C1 C2 C31 2

Figure A.7 Three-component series system
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where the last step depends on the independence assumption. And in general, if the
reliability of component Ci (i.e., P[Ci functions]) is ri , then assuming that the k
components in a series system behave independently, the (series) system reliability
(say, RS), becomes

Series system
reliability for
independent
components

RS = r1 · r2 · r3 · · · · · rk (A.11)

Example 6
(Example 5 revisited )

Space Shuttle Solid Rocket Motor Field Joints as a Series System

The probabilistic risk assessment of Dalal, Fowlkes, and Hoadley put the relia-
bility (at 31◦F) of pre-Challenger solid rocket motor field joints at .977 apiece.
Since the proper functioning of six such joints is necessary for the safe operation
of the solid rocket motors, assuming independence of the joints, the reliability of
the system of joints is then

RS = (.977)(.977)(.977)(.977)(.977)(.977) = .87

as in Example 5. (The .87 figure might well be considered optimistic with regard
to the entire solid rocket motor system, as it doesn’t take into account any potential
problems other than those involving field joints.)

Since typically each ri is less than 1.0, formula (A.11) shows (as intuitively it
should) that system reliability decreases as components are added to a series system.
And system reliability is no better (larger) than the worst (smallest) component
reliability.

A.2.2 Parallel Systems

In contrast to series system structure is parallel system structure.

Definition 10 A system consisting of components C1, C2, C3, . . . , Ck is called a parallel
system if its proper functioning requires only the functioning of at least one
component.

Figure A.8 is a representation of a parallel system made up of k = 3 components.
This diagram is interpreted in a manner similar to Figure A.7 (i.e., the system will
function provided there is a path from point 1 to point 2 that crosses no failed
component).
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C2

C3

C1

1 2

Figure A.8 Three-component parallel
system

The fact that made it easy to develop formula (A.11) for the reliability of a
series system is that for a series system to function, all components must function.
The corresponding fact for a parallel system is that for a parallel system to fail, all
components must fail. So if it is sensible to model the functioning of the individual
components in a parallel system as independent, if ri is the reliability of component
i , and if RP is the (parallel) system reliability,

1 − RP = P[the system fails]

= P[all components fail]

= (1 − r1)(1 − r2)(1 − r3) · · · (1 − rk)

or
Parallel system

reliability for
independent
components

RP = 1 − (1 − r1)(1 − r2)(1 − r3) · · · (1 − rk) (A.12)

Example 7 Parallel Redundancy and Critical Safety Systems

The principle of parallel redundancy is often employed to improve the reliability
of critical safety systems. For example, two physically separate automatic shut-
down subsystems might be called for in the design of a nuclear power plant. The
hope would be that in a rare overheating emergency, at least one of the two would
successfully trigger reactor shutdown.

In such a case, if the shutdown subsystems are truly physically separate
(so that independence could reasonably be used in a model of their emergency
operation), relationship (A.12) might well describe the reliability of the overall
safety system. And if, for example, each subsystem is 90% reliable, the overall
reliability becomes

RP = 1 − (.10)(.10) = 1 − .01 = .99
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Expression (A.12) is perhaps a bit harder to absorb than expression (A.11).
But the formula functions the way one would intuitively expect. System reliability
increases as components are added to a parallel system and is no worse (smaller)
than the best (largest) component reliability.

One useful type of calculation that is sometimes done using expression (A.12)
is to determine how many equally reliable components of a given reliability r are
needed in order to obtain a desired system reliability, RP. Substitution of r for each
ri in formula (A.12) gives

RP = 1 − (1 − r)k

and this can be solved for an approximate number of components required, giving
Approximate number

of components with
individual reliability

r needed to produce
parallel system

reliability RP

k ≈ ln(1 − RP)

ln(1 − r)
(A.13)

Using (for the sake of example) the values r = .80 and RP = .98, expression (A.13)
gives k ≈ 2.4, so rounding up to an integer, 3 components of individual 80% relia-
bility will be required to give a parallel system reliability of at least 98%.

A.2.3 Combination Series-Parallel Systems

Real engineering systems rarely have purely series or purely parallel structure.
However, it is sometimes possible to conceive of system structure as a combination
of these two basic types. When this is the case, formulas (A.11) and (A.12) can
be used to analyze successively larger subsystems until finally an overall reliability
prediction is obtained.

Example 8 Predicting Reliability for a System with a Combination
of Series and Parallel Structure

In order for an electronic mail message from individual A to reach individual
B, the main computers at both A’s site and B’s site must be functioning, and at
least one of three separate switching devices at a communications hub must be
working. If the reliabilities for A’s computer, B’s computer, and each switching
device are (respectively) .95, .99, and .90, a plausible figure for the reliability of
the A-to-B electronic mail system can be determined as follows.

An appropriate system diagram is given in Figure A.9, with CA, CB, C1,
C2, and C3 standing (respectively) for the A site computer, the B site computer,
and the three switching devices. Although this system is neither purely series
nor purely parallel, mentally replacing components C1, C2, and C3 with a single



750 Appendix A More on Probability and Model Fitting

Example 8
(continued )

C2

C3

C1

CA CB

Switching
subsystem

1 2

Figure A.9 System diagram for an electronic mail system

“switching subsystem” block, there would be a purely series structure. So,

C1, C2, and C3 parallel subsystem reliability = 1 − (1 − .90)3 = .999

via formula (A.12). Then using formula (A.11),

System reliability = (.95)(.99)(.999) = .94I
It is clear that the weak link in this communications system is at site A, rather
than at B or at the communications hub.
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1. A series system is to consist of k = 5 independent
components with comparable individual reliabili-
ties. How reliable must each be if the system re-
liability is to be at least .999? Suppose that it is
your job to guarantee components have this kind of
individual reliability. Do you see any difficulty in
empirically demonstrating this level of component
performance? Explain.

2. A parallel system is to consist of k identical inde-
pendent components. Design requirements are that
system reliability be at least .99. Individual com-
ponent reliability is thought to be at least .90. How
large must k be?

3. A combination series-parallel system is to consist
of k = 3 parallel subsystems, themselves in series.

Engineering design requirements are that the en-
tire system have overall reliability at least .99. Two
kinds of components are available. Type A compo-
nents cost $8 apiece and have reliability .98. Type B
components cost $5 apiece and have reliability .90.
(a) If only type A components are used, what will

be the minimum system cost? If only type B
components are used, what will be the mini-
mum system cost?

(b) Find a system design meeting engineering re-
quirements that uses some components of each
type and is cheaper than the best option in
part (a).
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A.3 Counting

Proposition 3 and Example 4 illustrate that using a model for a chance situation
that consists of a finite sample space S with outcomes judged to be equally likely,
the computation of probabilities for events of interest is conceptually a very simple
matter. The number of outcomes in the event are simply counted up and divided by
the total number of outcomes in the whole sample space. However, in most realistic
applications of this simple idea, the process of writing down all outcomes in S and
doing the counting involved would be most tedious indeed, and often completely
impractical. Fortunately, there are some simple principles of counting that can often
be applied to shortcut the process, allowing outcomes to be counted mentally. The
purpose of this section is to present those counting techniques.

This section presents a multiplication principle of counting, the notion of per-
mutations and how to count them, and the idea of combinations and how to count
them, along with a few examples. This material is on the very fringe of what is
appropriate for inclusion in this book. It is not statistics, nor even really probability,
but rather a piece of discrete mathematics that has some engineering implications.
It is included here for two reasons. First is the matter of tradition. Counting has tra-
ditionally been part of most elementary expositions of probability, because games
of chance (cards, coins, and dice) are often assumed to be fair and thus describable
in terms of sample spaces with equally likely outcomes. And for better or worse,
games of chance have been a principal source of examples in elementary probability.
A second and perhaps more appealing reason for including the material is that it
does have engineering applications (regardless of whether they are central to the
particular mission of this text). Ultimately, the reader should take this short section
for what it is: a digression from the book’s main story that can on occasion be quite
helpful in engineering problems.

A.3.1 A Multiplication Principle, Permutations,
and Combinations

The fundamental insight of this section is a multiplication principle that is simply
stated but wide-ranging in its implications. To emphasize the principle, it will be
stated in the form of a proposition.

Proposition 5
(A Multiplication

Principle )

Suppose a complex action can be thought of as composed of r component
actions, the first of which can be performed in n1 different ways, the second
of which can subsequently be performed in n2 different ways, the third of
which can subsequently be performed in n3 different ways, etc. Then the total
number of ways in which the complex action can be performed is

n = n1 · n2 · · · · · nr
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In graphical terms, this proposition is just a statement that a tree diagram that
has n1 first-level nodes, each of which leads to n2 second-level nodes, and so on,
must end up having a total of n1 · n2 · · · · · nr r th-level nodes.

Example 9 The Multiplication Principle and Counting the Number
of Treatment Combinations in a Full Factorial

The familiar calculation of the number of different possible treatment combina-
tions in a full factorial statistical study is an example of the use of Proposition 5.
Consider a 3 × 4 × 2 study in the factors A, B, and C. One may think of the
process of writing down a combination of levels for A, B, and C as consisting
of r = 3 component actions. There are n1 = 3 different ways of choosing a level
for A, subsequently n2 = 4 different ways of choosing a level for B, and then
subsequently n3 = 2 different ways of choosing a level for C. There are thus

n1 · n2 · n3 = 3 · 4 · 2 = 24

different ABC combinations.

Example 10 The Multiplication Principle and Counting the Number of Ways
of Assigning 4 Out of 100 Pistons to Four Cylinders

Suppose that 4 out of a production run of 100 pistons are to be installed in a
particular engine block. Consider the number of possible placements of (dis-
tinguishable) pistons into the four (distinguishable) cylinders. One may think
of the installation process as composed of r = 4 component actions. There are
n1 = 100 different ways of choosing a piston for installation into cylinder 1,
subsequently n2 = 99 different ways of choosing a piston for installation into
cylinder 2, subsequently n3 = 98 different ways of choosing a piston for installa-
tion into cylinder 3, and finally, subsequently n4 = 97 different ways of choosing
a piston for installation into cylinder 4. There are thus

100 · 99 · 98 · 97 = 94,109,400

different ways of placing 4 of 100 (distinguishable) pistons into four (distin-
guishable) cylinders. (Notice that the job of actually making a list of the different
possibilities is not one that is practically doable.)

Example 10 is a generic type of enough importance that there is some special
terminology and notation associated with it. The general problem is that of choosing
an ordering for r out of n distinguishable objects, or equivalently, placing r out
of n distinguishable objects into r distinguishable positions. The application of
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Proposition 5 shows that the number of different ways in which this placement can
be accomplished is

n(n − 1)(n − 2) · · · (n − r + 1) (A.14)

since at each stage of sequentially placing objects into positions, there is one less
object available for placement. The special terminology and notation for this are
next.

Definition 11 If r out of n distinguishable objects are to be placed in an order 1 to r (or
equivalently, placed into r distinguishable positions), each such potential ar-
rangement is called a permutation. The number of such permutations possible
will be symbolized as Pn,r , read “the number of permutations of n things r
at a time.”

In the notation of Definition 11, one has (from expression (A.14) that

Pn,r = n(n − 1)(n − 2) · · · (n − r + 1)

that is,

Formula for the
number of

permutations of
n things r at a time

Pn,r = n!

(n − r)!
(A.15)

Example 10
(continued )

In the special permutation notation, the number of different ways of installing
the four pistons is

P100,4 = 100!

96!

Example 11 Permutations and Counting the Number of Possible
Circular Arrangements of 12 Turbine Blades

The permutation idea of Definition 11 can be used not only in straightforward
ways, as in the previous example, but in slightly more subtle ways as well. To
illustrate, consider a situation where 12 distinguishable turbine blades are to be
placed into a central disk or hub at successive 30◦ angles, as sketched in Figure
A.10. Notice that if one of the slots into which these blades fit is marked on the
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Example 11
(continued )

Figure A.10 Hub with 12
slots for blade installation

front face of the hub (and one therefore thinks of the blade positions as completely
distinguishable), there are

P12,12 = 12 · 11 · 10 · · · · · 2 · 1

different possible arrangements of the blades.
But now also consider the problem of counting all possible (circular) ar-

rangements of the 12 blades if relative position is taken into account but absolute
position is not. (Moving each blade 30◦ counterclockwise after first installing
them would not create an arrangement different from the first, with this under-
standing.) The permutation idea can be used here as well, thinking as follows.
Placing blade 1 anywhere in the hub essentially establishes a point of reference
and makes the remaining 11 positions distinguishable (relative to the point of
reference). One then has 11 distinguishable blades to place in 11 distinguishable
positions. Thus, there must be

P11,11 = 11 · 10 · 9 · · · · · 2 · 1

such circular arrangements of the 12 blades, where only relative position is
considered.

A second generic counting problem is related to the permutation idea and is
particularly relevant in describing simple random sampling. That is the problem of
choosing an unordered collection of r out of n distinguishable objects. The special
terminology and notation associated with this generic problem are as follows.

Definition 12 If an unordered collection of r out of n distinguishable objects is to be made,
each such potential collection is called a combination. The number of such
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combinations possible will be symbolized as
(n

r

)
, read “the number of combi-

nations of n things r at a time.”

There is in Definition 12 a slight conflict in terminology with other usage in this text.
The “combination” in Definition 12 is not the same as the “treatment combination”
terminology used in connection with multifactor statistical studies to describe a
set of conditions under which a sample is taken. (The “treatment combination”
terminology has been used in this very section in Example 9.) But this conflict
rarely causes problems, since the intended meaning of the word combination is
essentially always clear from context.

Appropriate use of Proposition 5 and formula (A.15) makes it possible to
develop a formula for

(n
r

)
as follows. A permutation of r out of n distinguishable

objects can be created through a two-step process. First a combination of r out of
the n objects is selected and then those selected objects are placed in an order. This
thinking suggests that Pn,r can be written as

Pn,r =
(

n

r

)
· Pr,r

But this means that

n!

(n − r)!
=

(
n

r

)
r !

0!

that is,

Formula for the
number of

combinations of
n things r at a time

(
n

r

)
= n!

r ! (n − r)!
(A.16)

The ratio in equation (A.16) ought to look familiar to readers who have studied
Section 5.1. The multiplier of px(1 − p)n−x in the binomial probability function is
of the form

(n
x

)
, counting up the number of ways of placing x successes in a series

of n trials.

Example 12
(Example 10, Chapter 3,

revisited—page 105 )

Combinations and Counting the Numbers of Possible Samples
of Cable Connectors with Prescribed Defect Class Compositions

In the cable connector inspection scenario of Delva, Lynch, and Stephany, 3,000
inspections of connectors produced 2,985 connectors classified as having no de-
fects, 1 connector classified as having only minor defects, and 14 others classified
as having moderately serious, serious, or very serious defects. Suppose that in an
effort to audit the work of the inspectors, a sample of 100 of the 3,000 previously
inspected connectors is to be reinspected.
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Example 12
(continued )

Then notice that directly from expression (A.16), there are in fact(
3000

100

)
= 3000!

100! 2900!

different (unordered) possible samples for reinspection. Further, there are(
2985

100

)
= 2985!

100! 2885!

different possible samples of size 100 made up of only connectors judged to
be defect-free. If (for some reason) the connectors to be reinspected were to be
chosen as a simple random sample of the 3,000, the ratio(

2985

100

)
(

3000

100

)
would then be a sensible figure to use for the probability that the sample is
composed entirely of connectors initially judged to be defect-free.

It is instructive to take this example one step further and combine the use
of Definition 12 and Proposition 5. So consider the problem of counting up the
number of different samples containing 96 connectors initially judged defect-free,
1 judged to have only minor defects, and 3 judged to have moderately serious,
serious, or very serious defects. To solve this problem, the creation of such a
sample can be considered as a three-step process. In the first, 96 nominally defect-
free connectors are chosen from 2,985. In the second, 1 connector nominally
having minor defects only is chosen from 1. And finally, 3 connectors are chosen
from the remaining 14. There are thus(

2985

96

)
·
(

1

1

)
·
(

14

3

)
different possible samples of this rather specialized type.

Example 13 An Application of Counting Principles to the Calculation
of a Probability in a Scenario of Equally Likely Outcomes

As a final example in this section, most of the ideas discussed here can be applied
to the computation of a probability in another situation of equally likely outcomes
where writing out a list of the possible outcomes is impractical.

Consider a hypothetical situation where 15 manufactured devices of a par-
ticular kind are to be sent 5 apiece to three different testing labs. Suppose further
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that 3 of the seemingly identical devices are defective. Consider the probability
that each lab receives 1 defective device, if the assignment of devices to labs is
done at random.

The total number of possible assignments of devices to labs can be computed
by thinking first of choosing 5 of 15 to send to Lab A, then 5 of the remaining 10
to send to Lab B, then sending the remaining 5 to Lab C. There are thus(

15

5

)
·
(

10

5

)
·
(

5

5

)
such possible assignments of devices to labs.

On the other hand, if each lab is to receive 1 defective device, there are
P3,3 ways to assign defective devices to labs and then subsequently

(12
4

) · (8
4

) · (4
4

)
possible ways of completing the three shipments. So ultimately, an appropriate
probability assignment for the event that each lab receives 1 defective device is

P3,3 ·
(

12

4

)
·
(

8

4

)
·
(

4

4

)
(

15

5

)
·
(

10

5

)
·
(

5

5

) = 3 · 2 · 1 · 12! · 8! · 5! · 10! · 5! · 5!

15! · 10! · 4! · 8! · 4! · 4!

= 3 · 2 · 1 · 5 · 5 · 5

15 · 14 · 13

= .27
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1. A lot of 100 machine parts contains 10 with diam-
eters that are out of specifications on the low side,
20 with diameters that are out of specifications on
the high side, and 70 that are in specifications.
(a) How many different possible samples of n =

10 of these parts are there?
(b) How many different possible samples of size

n = 10 are there that each contain exactly 1
part with diameter out of specifications on the
low side, 2 parts with diameters out of spec-
ifications on the high side, and 7 parts with
diameters that are in specifications?

(c) Based on your answers to (a) and (b), what is
the probability that a simple random sample of
n = 10 of these contains exactly 1 part with
diameter out of specifications on the low side,
2 parts with diameters out of specifications on

the high side, and 7 parts with diameters that
are in specifications?

2. The lengths of bolts produced in a factory are
checked with two “go–no go” gauges and the bolts
sorted into piles of short, OK, and long bolts. Sup-
pose that of the bolts produced, about 20% are
short, 30% are long, and 50% are OK.
(a) Find the probability that among the next ten

bolts checked, the first three are too short, the
next three are OK, and the last four are too
long.

(b) Find the probability that among the next ten
bolts checked, there are three that are too short,
three that are OK, and four that are too long.
(Hint: In how many ways it is possible to
choose three of the group to be short, three
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to be OK, and four to be long? Then use your
answer to (a).)

3. User names on a computer system consist of three
letters A through Z, followed by two digits 0
through 9. (Letters and digits may appear more
than once in a name.)
(a) How many user names of this type are there?
(b) Suppose that Joe has user name TPK66, but

unfortunately he’s forgotten it. Joe remembers
only the format of the user names and that the
letters K, P, and T appear in his name. If he
picks a name at random from those consistent
with his memory, what’s the probability that he
selects his own?

(c) If Joe in part (b) also remembers that his digits
match, what’s the probability that he selects his
own user name?

4. A lot contains ten pH meters, three of which are
miscalibrated. A technician selects these meters
one at a time, at random without replacement, and
checks their calibration.
(a) What is the probability that among the first four

meters selected, exactly one is miscalibrated?
(b) What is the probability that the technician dis-

covers his second miscalibrated meter when
checking his fifth one?

5. A student decides to use the random digit function
on her calculator to select a three-digit PIN number
for use with her new ATM card. (Assume that all
numbers 000 through 999 are then equally likely to
be chosen.)
(a) What is the probability that her number uses

only odd digits?

(b) What is the probability that all three digits in
her number are different?

(c) What is the probability that her number uses
three different digits and lists them in either
ascending or descending order?

6. When ready to configure a PC order, a consumer
must choose a Processor Chip, a MotherBoard, a
Drive Controller and a Hard Drive. The choices
are:

Processor Mother- Drive Hard

Chip Board Controller Drive

Fast New Generation Premium Premium Premium

Slow New Generation Standard Standard Standard

Fast Old Generation Economy Economy

Slow Old Generation

(a) Suppose initially that all components are com-
patible with all components. How many differ-
ent configurations are possible?

Suppose henceforth that:
(i) a Premium MotherBoard is needed to run a New
Generation Processor,
(ii) a Premium MotherBoard is needed to run a
Premium Drive Controller, and
(iii) a Premium Drive Controller is needed to run a
Premium Hard Drive.
(b) How many permissible configurations are there

with a Standard MotherBoard?
(c) How many permissible configurations are there

total? Explain carefully.
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A.4 Probabilistic Concepts Useful
in Survival Analysis

Section A.2 is meant to provide only the most elementary insights into how proba-
bility might prove useful in the context of reliability modeling and prediction. The
ideas discussed in that section are of an essentially “static” nature. They are most
appropriate when considering the likelihood of a system performing adequately at
a single point in time—for example, at its installation, or at the end of its warranty
period.
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Reliability engineers also concern themselves with matters possessing a more
dynamic flavor, having to do with the modeling and prediction of life-length variables
associated with engineering systems and their components. It is outside the intended
scope of this text to provide anything like a serious introduction to the large body of
methods available for probability modeling and subsequent formal inference for such
variables. But what will be done here is to provide some material (supplementary
to that found in Section 5.2) that is part of the everyday jargon and intellectual
framework of reliability engineering. This section will consider several descriptions
and constructs related to continuous random variables that, like system or component
life lengths, take only positive values.

A.4.1 Survivorship and Force-of-Mortality Functions

In this section, T will stand for a continuous random variable taking only nonneg-
ative values. The reader may think of T as the time till failure of an engineering
component. In Section 5.2, continuous random variables X (or more properly, their
distributions) were described through their probability densities f (x) and cumula-
tive probability functions F(x). In the present context of lifetime random variables,
there are several other, more popular ways of conveying the information carried by
f (t) or F(t). Two of these devices are introduced next.

Definition 13 The survivorship function for a nonnegative random variable T is the function

S(t) = P[T > t] = 1 − F(t)

The survivorship function is also sometimes known as the reliability function. It
specifies the probability that the component being described survives beyond time t .

Example 14 The Survivorship Function and Diesel Engine Fan Blades

Data on 70 diesel engines of a single type (given in Table 1.1 of Nelson’s Applied
Life Data Analysis) indicate that lifetimes in hours of a certain fan on such engines
could be modeled using an exponential distribution with mean α ≈ 27,800. So
from Definition 17 in Chapter 5, to describe a fan lifetime T , one could use the
density

f (t) =


0 if t < 0

1

27,800
e−t/27,800 if t > 0
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Example 14
(continued )

or the cumulative probability function

F(t) =
{

0 if t ≤ 0

1 − e−t/27,800 if t > 0

or from Definition 13, the survivorship function

S(t) =
{

1 if t ≤ 0

e−t/27,800 if t > 0

The probability of a fan surviving at least 10,000 hours is then

S(10,000) = e−10,000/27,800 = .70

A second way of specifying the distribution of a life-length variable (unlike any-
thing discussed in Section 5.2) is through a function giving a kind of “instantaneous
rate of death of survivors.”

Definition 14 The force-of-mortality function for a nonnegative continuous random vari-
able T is, for t > 0, the function

h(t) = f (t)

S(t)

h(t) is sometimes called the hazard function for T, but such usage tends to perpetu-
ate unfortunate confusion with the entirely different concept of “hazard rate” for re-
pairable systems. (The important difference between the two concepts is admirably
explained in the paper “On the Foundations of Reliability” by W. A. Thompson
(Technometrics, 1981) and in the book Repairable Systems Reliability by Ascher
and Feingold.) This book will thus stick to the term force of mortality.

The force-of-mortality function can be thought of heuristically as

h(t) = f (t)

S(t)
= lim

1→0

P[t < T < t + 1]/1

P[t < T ]
= lim

1→0

P[t < T < t + 1 | t < T ]

1

which is indeed a sort of “death rate of survivors at time t .”

Example 14
(continued )

The force-of-mortality function for the diesel engine fan example is, for t > 0,

h(t) = f (t)

S(t)
=

1
27,800 e−t/27,800

e−t/27,800 = 1

27,800
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The exponential (mean α = 27,800) model for fan life implies a constant
(

1
27,800

)
force of mortality.

The property of the fan-life model shown in the previous example is characteris-
tic of exponential distributions. That is, a distribution has constant force of mortalityConstant force

of mortality is
equivalent to

exponential
distribution

exactly when that distribution is exponential. So having a constant force of mortality
is equivalent to possessing the memoryless property of the exponential distributions
discussed in Section 5.2. If the lifetime of an engineering component is described
using a constant force of mortality, there is no (mathematical) reason to replace such
a component before it fails. The distribution of its remaining life from any point in
time is the same as the distribution of the time till failure of a new component of the
same type.

Potential probability models for lifetime random variables are often classified
according to the nature of their force-of-mortality functions, and these classifi-
cations are taken into account when selecting models for reliability engineering
applications. If h(t) is increasing in t , the corresponding distribution is called
an increasing force-of-mortality (IFM) distribution, and if h(t) is decreasing
in t , the corresponding distribution is called a decreasing force-of-mortality
(DFM) distribution. The reliability engineering implications of an IFM distri-
bution being appropriate for modeling the lifetimes of a particular type of com-
ponent are often that (as a form of preventative maintenance) such components
are retired from service once they reach a particular age, even if they have not
failed.

Example 15 The Weibull Distributions and Their Force-of-Mortality Functions

The Weibull family of distributions discussed in Section 5.2 is commonly used
in reliability engineering contexts. Using formulas (5.26) and (5.27) of Section
5.2 for the Weibull cumulative probability function and probability density, the
Weibull force-of-mortality function for shape parameter β and scale parameter α

is, for t > 0

h(t) = f (t)

S(t)
= f (t)

1 − F(t)
=

β

αβ
tβ−1e−(t/α)β

e−(t/α)β
= βtβ−1

αβ

For β = 1 (the exponential distribution case) this is constant. For β < 1, this is
decreasing in t , and the Weibull distributions with β < 1 are DFM distributions.
For β > 1, this is increasing in t , and the Weibull distributions with β > 1 are
IFM distributions.
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Example 16 Force-of-Mortality Function for a Uniform Distribution

As an artificial but instructive example, consider the use of a uniform distribution
on the interval (0, 1) as a life-length model. With

f (t) =
{

1 if 0 < t < 1

0 otherwise

the survivorship function is

S(t) =


1 if t < 0

1 − t if 0 ≤ t < 1

0 if 1 ≤ t

so

h(t) = 1

1 − t
if 0 < t < 1

0 1

.5

t

f (t)

1.0

0 1

1.0

t

h(t)

2.0

3.0

Figure A.11 Probability density and
force-of-mortality function for a
uniform distribution
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Figure A.11 shows plots of both f (t) and h(t) for the uniform model. h(t) is
clearly increasing for 0 < t < 1 (quite drastically so, in fact, as one approaches
t = 1). And well it should be. Knowing that (according to the uniform model) life
will certainly end by t = 1, nervousness about impending death should skyrocket
as one nears t = 1.

Conventional wisdom in reliability engineering is that many kinds of manufac-
tured devices have life distributions that ought to be described by force-of-mortality
functions qualitatively similar to the hypothetical one sketched in Figure A.12.

t

h(t)

0

Figure A.12 A “bathtub curve”
force-of-mortality function

The shape in Figure A.12 is often referred to as the bathtub curve shape. It
includes an early region of decreasing force of mortality, a long central period of
relatively constant force of mortality, and a late period of rapidly increasing force
of mortality. Devices with lifetimes describable as in Figure A.12 are sometimes
subjected to a burn-in period to eliminate the devices that will fail in the early
period of decreasing force of mortality, and then sold with the recommendation
that they be replaced before the onset of the late period of increasing force of
mortality or wear-out. Although this story is intuitively appealing, the most tractable
models for life length do not, in fact, have force-of-mortality functions with shapes
like that in Figure A.12. For a further discussion of this matter and references to
papers presenting models with bathtub-shaped force-of-mortality functions, refer to
Chapter 2 of Nelson’s Applied Life Data Analysis.

The functions f (t), F(t), S(t), and h(t) all carry the same information about
a life distribution. They simply express it in different terms. Given one of them,
the derivation of the others is (at least in theory) straightforward. Some of the
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relationships that exist among the four different characterizations are collected here
for the reader’s convenience. For t > 0,

Relationships
between F(t), f(t),

S(t), and h(t)

F(t) =
∫ t

0
f (x) dx

f (t) = d

dt
F(t)

S(t) = 1 − F(t)

h(t) = f (t)

S(t)

S(t) = exp

(
−

∫ t

0
h(x) dx

)

f (t) = h(t) exp

(
−

∫ t

0
h(x) dx

)
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1. An engineer begins a series of presentations to his
corporate management with a working bulb in his
slide projector and (an inferior-quality) Brand W
replacement bulb in his briefcase. Suppose that the
random variables

X = the number of hours of service given by
the bulb in the projector

Y = the number of hours of service given by
the spare bulb

may be modeled as independent exponential ran-
dom variables with respective means 15 and 5. The
number of hours that the engineer may operate
without disaster is X + Y .
(a) Find the mean and standard deviation of X + Y

using Proposition 1 in Chapter 5.
(b) Find, for t > 0, P[X + Y ≤ t].
(c) Use your answer to (b) and find the probability

density for T = X + Y .
(d) Find the survivorship and force-of-mortality

functions for T . What is the nature of the force-

of-mortality function? Is it constant like those
of X and Y ?

2. A common modeling device in reliability applica-
tions is to assume that the (natural) logarithm of a
lifetime variable, T , has a normal distribution. That
is, one might suppose that for some parameters µ

and σ , if t > 0

F(t) = P[T ≤ t] = 8

(
ln t − µ

σ

)
Consider the µ = 0 and σ = 1 version of this.
(a) Plot F(t) versus t.
(b) Plot S(t) versus t.
(c) Compute and plot f (t) versus t .
(d) Compute and plot h(t) versus t.
(e) Is this distribution for T an IFM distribution,

a DFM distribution, or neither? What implica-
tion does your answer have for in-service re-
placement of devices possessing this lifetime
distribution?



A.5 Maximum Likelihood Fitting of Probability Models and Related Inference Methods 765

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

A.5 Maximum Likelihood Fitting of Probability
Models and Related Inference Methods

The model-fitting and inference methods discussed in this text are, for the most
part, methods for independent, normally distributed observations. This is in spite
of the fact that there are strong hints in Chapter 5 and this appendix that other
kinds of probability models often prove useful in engineering problem solving.
(For example, binomial, geometric, Poisson, exponential, and Weibull distribu-
tions have been discussed, and parts of Sections A.1 and A.2 should suggest that
probability models not even necessarily involving these standard distributions will
often be helpful.) It thus seems wise to present at least a brief introduction to
some principles of probability-model fitting and inference that can be applied
more generally than to only scenarios involving independent, normal observa-
tions. This will be done to give at least the flavor of what is possible, as well
as an idea of some kinds of things likely to be found in the engineering statistics
literature.

This section considers the use of likelihood functions in the fitting of para-
metric probability models and in large-sample inference for the model parameters.
It begins by discussing the idea of a likelihood function and maximum likelihood
model fitting for discrete data. Similar discussions are then conducted for con-
tinuous and mixed data. Finally, there is a discussion of how for large samples,
approximate confidence regions and tests can often be developed using likelihood
functions.

A.5.1 Likelihood Functions for Discrete Data
and Maximum Likelihood Model Fitting

To begin, consider scenarios where the outcome of a chance situation can be de-
scribed in terms of a data vector of jointly discrete random variables (or a single
discrete random variable) Y, whose probability function f depends on some (un-
known) vector of parameters (or single parameter) 2. To make the dependence of
f on 2 explicit, this section will use the notation

f2( y)

for the (joint) probability function of Y.
Chapter 5 made heavy use of particular parametric probability functions, pri-

marily thinking of them as functions of y. In this section, it will be very helpful to
shift perspective. With data Y = y in hand, think of

A discrete data
likelihood function f2( y) (A.17)
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or (often more conveniently) its natural logarithm

A discrete data
log likelihood

function
L(2) = ln

(
f2( y)

)
(A.18)

as functions of2, specifying for various possible vectors of parameters “how likely”
it would be to observe the particular data in hand. With this perspective, the function
(A.17) is often called the likelihood function and function (A.18) the log likelihood
function for the problem under consideration.

Example 17
(Example 4, Chapter 5,

revisited—page 235 )

The Log Likelihood Function for the Number Conforming
in a Sample of Hexamine Pellets

In the pelletizing machine example used in Chapter 5 and earlier, it is possible to
argue that under stable conditions,

X = the number of conforming pellets produced in a batch of 100 pellets

might well be modeled using a binomial distribution with n = 100 and p some
unknown parameter. The corresponding probability function is thus

f (x) =


100!

x! (100 − x)!
px (1 − p)100−x x = 0, 1, . . . , 100

0 otherwise

Should one observe X = 66 conforming pellets be observed in a batch, the
material just introduced says that the function of p

L(p) = ln( f (66)) = ln(100!) − ln(66!) − ln(34!)

+ 66 ln(p) + 34 ln(1 − p) (A.19)

is an appropriate log likelihood function. Figure A.13 is a sketch of L(p) for
this problem. Notice that (in an intuitively appealing fashion) the value of p
maximizing L(p) is

p̂ = 66

100
= .66I

That is, p = .66 makes the chance of observing the particular data in hand
(X = 66) as large as possible.
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−15

p

L( p)

−10

−5

.5 .6 .7 .8

0

p = .66

Figure A.13 Plot of the log likelihood function
based on 66 conforming tablets out of 100

Example 18 The Log Likelihood Function for n Independent Poisson Observations

As a second, somewhat more abstract, example of the idea of a likelihood function,
suppose that X1, X2, . . . , Xn are independent Poisson random variables, Xi with
mean kiλ for k1, k2, . . . , kn known constants, and λ an unknown parameter. Such
a model might, for example, be appropriate in a quality monitoring context, where
at time i , ki standard-size units of product are inspected, Xi defects are observed,
and λ is a constant mean defects per unit.

The joint probability function for X1, X2, . . . , Xn is

f (x1, x2, . . . , xn) =


n∏

i=1

e−ki λ(kiλ)xi

xi !
for each xi a nonnegative integer

0 otherwise

The log likelihood function in the present context is thus

L(λ) = −λ

n∑
i=1

ki +
n∑

i=1

xi ln(ki ) +
n∑

i=1

xi ln(λ) −
n∑

i=1

ln(xi !) (A.20)

The likelihood functions in Examples 17 and 18 are for individual (univariate)
parameters. The next example involves two parameters.
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Example 19 A Log Likelihood Function Based on Pre-Challenger
Space Shuttle O-Ring Failure Data

Table A.2 contains pre-Challenger data on field joint primary O-ring failures
on 23 (out of 24) space shuttle flights. (On one flight, the rocket motors were
lost at sea, so no data are available.) The failure counts x1, x2, . . . , x23 are the
numbers (out of 6 possible) of primary O-rings showing evidence of erosion or
blow-by in postflight inspections of the solid rocket motors, and t1, t2, . . . , t23 are
the corresponding temperatures at the times of launch.

Table A.2
Pre-Challenger Field Joint Primary O-Ring Failure Data

x ,
Number of Field Joint t ,

Flight Date Primary O-Ring Incidents Temperature at Launch (◦F)

4/12/81 0 66

11/12/81 1 70

3/22/82 0 69

11/11/82 0 68

4/4/83 0 67

6/18/83 0 72

8/30/83 0 73

11/28/83 0 70

2/3/84 1 57

4/6/84 1 63

8/30/84 1 70

10/5/84 0 78

11/8/84 0 67

1/24/85 2 53

4/12/85 0 67

4/29/85 0 75

6/17/85 0 70

7/29/85 0 81

8/27/85 0 76

10/3/85 0 79

10/30/85 2 75

11/26/85 0 76

1/12/86 1 58
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In “Risk Analysis of the Space Shuttle: Pre-Challenger Prediction of Failure”
(Journal of the American Statistical Association, 1989), Dalal, Fowlkes, and
Hoadley considered several analyses of the data in Table A.2 (and other pre-
Challenger shuttle failure data). In one of their analyses of the data given here,
Dalal, Fowlkes, and Hoadley used a likelihood approach based on the observations

yi =
{

1 if xi ≥ 1

0 if xi = 0

that indicate which flights experienced primary O-ring incidents. (They also
considered a likelihood approach based on the counts xi themselves. But here
only the slightly simpler analysis based on the yi ’s will be discussed.) The
authors modeled Y1, Y2, . . . , Y23 as a priori independent variables and treated the
probability of at least one O-ring incident on flight i ,

pi = P[Yi = 1] = P[Xi ≥ 1]

as a function of (temperature) ti . The particular form of dependence of pi on ti
used by the authors was a “linear (in t) log odds” form

ln

(
p

1 − p

)
= α + βt (A.21)

for α and β some unknown parameters. Equation (A.21) can be solved for p to
produce the function of t

p(t) = 1

1 + e−(α+βt)
(A.22)

From either equation (A.21) or (A.22), it is possible to see that if β > 0, the
probability of at least one O-ring incident is increasing in t (low-temperature
launches are best). On the other hand, if β < 0, p is decreasing in t (high-
temperature launches are best).

The joint probability function for Y1, Y2, . . . , Y23 employed by Dalal,
Fowlkes, and Hoadley was then

f (y1, y2, . . . , y23) =


23∏

i=1

p(ti )
yi

(
1 − p(ti )

)1−yi for each yi = 0 or 1

0 otherwise
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Example 19
(continued )
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L(  ,    ) = −14.2α β

α

β

Figure A.14 Contour plot of the Dalal, Fowlkes, and
Hoadley log likelihood function

The log likelihood function is then (using equations (A.21) and (A.22))

L(α, β) =
23∑

i=1

yi ln

(
p(ti )

1 − p(ti )

)
+

23∑
i=1

ln
(
1 − p(ti )

)
=

23∑
i=1

yi (α + βti ) +
23∑

i=1

ln

(
e−(α+βti )

1 + e−(α+βti )

)
= 7α + β(70 + 57 + 63 + 70 + 53 + 75 + 58)

+ ln

(
e−(α+66β)

1 + e−(α+66β)

)
+ ln

(
e−(α+70β)

1 + e−(α+70β)

)

+ · · · + ln

(
e−(α+58β)

1 + e−(α+58β)

)
(A.23)

where the sum abbreviated in equation (A.23) is over all 23 ti ’s. Figure A.14 is a
contour plot of L(α, β) given in equation (A.23).

It is interesting (and sadly, of great engineering importance) that the region
of (α, β) pairs making the data of Table A.2 most likely is in the β < 0 part of
the (α, β)-plane—that is, where p(t) is decreasing in t (i.e., increases as t falls).
(Remember that the tragic Challenger launch was made at t = 31◦.)

The binomial and Poisson examples of discrete-data likelihoods given thus
far have arisen from situations that are most naturally thought of as intrinsically
discrete. However, the details of how engineering data are collected sometimes
lead to the production of essentially discrete data from intrinsically continuous
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variables. For example, consider a life test of some electrical components, where
a technician begins a test by connecting 50 devices to a power source, goes away,
and then returns every ten hours to note which devices are still functioning. The
details of data collection produce only discrete data (which ten-hour period produces
failure) from the intrinsically continuous life lengths of the 50 devices. The next
example shows how the likelihood idea might be used in another situation where
the underlying phenomenon is continuous.

Example 20 A Log Likelihood Function for a Crudely Gauged Normally
Distributed Dimension of Five Machined Metal Parts

In many contexts where industrial process monitoring involves relatively stable
processes and relatively crude gauging, intrinsically continuous product char-
acteristics are measured and recorded as essentially discrete data. For example,
Table A.3 gives values (in units of .0001 in. over nominal) of a critical dimension
measured on a sample of n = 5 consecutive metal parts produced by a CNC
lathe.

It might make sense to model underlying values of this critical dimension as
normal, with some (unknown) mean µ and some (unknown) standard deviation
σ , but nonetheless to want to explicitly recognize the discreteness of the recorded
data. One way of doing so in this context is to think of the observed values
as arising (after coding) from rounding normally distributed dimensions to the
nearest integer. For a single metal part, this would mean that for any integer y,

P[the value recorded is y] = P[the actual dimension is between
y − .5 and y + .5]

= 8

(
y + .5 − µ

σ

)
− 8

(
y − .5 − µ

σ

)
(A.24)

Table A.3
Measurements of a Critical
Dimension on Five Metal Parts
Produced on a CNC Lathe

Part Measured Dimension, y

1 4
2 3
3 3
4 2
5 3
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Example 20
(continued )
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Figure A.15 Contour plot of the “rounded
normal data” log likelihood for the data of
Table A.3

So treating n = 5 consecutive recorded dimensions as independent, equation
(A.24) leads to the joint probability function

f (y1, y2, . . . , y5) =
5∏

i=1

{
8

(
yi + .5 − µ

σ

)
− 8

(
yi − .5 − µ

σ

)}

and log likelihood function for the data in Table A.3

L(µ, σ ) = ln

(
8

(
2 + .5 − µ

σ

)
− 8

(
2 − .5 − µ

σ

))
+ 3 ln

(
8

(
3 + .5 − µ

σ

)
− 8

(
3 − .5 − µ

σ

))
+ ln

(
8

(
4 + .5 − µ

σ

)
− 8

(
4 − .5 − µ

σ

))


(A.25)

Figure A.15 is a contour plot of L(µ, σ ).

Consideration of a likelihood function f2( y) or its log version L(2) can be
thought of as a way of assessing how compatible various probability models indexed
by 2 are with the data in hand, Y = y. Different parameter vectors 2 having the
same value of L(2) can be viewed as equally compatible with data in hand. A
value of2maximizing L(2) might then be considered to be as compatible with the
observed data as is possible. This value is often termed the maximum likelihood
estimate of the parameter vector 2. Finding maximum likelihood estimates of
parameters is a very common method of fitting probability models to data. In
simple situations, calculus can sometimes be employed to see how to maximize
L(2), but in most nonstandard situations, numerical or graphical methods are
required.
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Example 17
(continued )

In the pelletizing example, simple investigation of Figure A.13 shows

p̂ = 66

100

to maximize L(p) given in display (A.19) and thus to be the maximum likelihood
estimate of p. The reader is encouraged to verify that by differentiating L(p)

with respect to p, setting the result equal to 0, and solving for p, this maximizing
value can also be found analytically.

Example 18
(continued )

Differentiating the log likelihood (A.20) with respect to λ, one obtains

d

dλ
L(λ) = −

n∑
i=1

ki + 1

λ

n∑
i=1

xi

Setting this derivative equal to 0 and solving for λ produces

λ =
∑n

i=1 xi∑n
i=1 ki

= û

which is the total number of defects observed divided by the total number of units
inspected. Since the second derivative of L(λ) is easily seen to be negative for all
λ, û is the unique maximizer of L(λ)—that is, the maximum likelihood estimate
of λ.

Example 19
(continued )

Careful examination of contour plots like Figure A.14, or use of a numerical
search method for the (α, β) pair maximizing L(α, β), produces maximum like-
lihood estimates

α̂ = 15.043I
β̂ = −.2322I

based on the pre-Challenger data. Figure A.16 is a plot of p(t) given in display
(A.22) for these values of α and β. Notice the disconcerting fact that the cor-
responding estimate of p(31) (the probability of at least one O-ring failure in a
31◦ launch) exceeds .99. (t = 31 is clearly a huge extrapolation away from any t
values in Table A.2, but even so, this kind of analysis conducted before the Chal-
lenger launch could well have helped cast legitimate doubt on the advisability of
a low-temperature launch.)
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Example 19
(continued )
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Figure A.16 Plot of fitted probability of at
least one O-ring failure as a function of shuttle
launch temperature

Example 20
(continued )

Examination of the contour plot in Figure A.15 shows maximum likelihood
estimates of µ and σ based on the rounded normal data model and the data in
Table A.3 to be approximately

µ̂ = 3.0

σ̂ = .55

It is worth noting that for these data, s = .71, which is noticeably larger than
σ̂ . This illustrates a well-established piece of statistical folklore. It is fairly well
known that to ignore rounding of intrinsically continuous data will typically
have the effect of inappropriately inflating the apparent spread of the underlying
distribution.

A.5.2 Likelihood Functions for Continuous and Mixed Data
and Maximum Likelihood Model Fitting

The likelihood function ideas discussed thus far depend on treating the2 probability
of discrete data in hand, Y = y, as a function of2. When analyzing data using con-
tinuous distributions, a slight logical snag is therefore encountered: If a continuous
model is employed, the probability associated with observing any particular exact
realization y is always 0, for every 2.
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To understand how to employ likelihood methods in continuous models, it is
then useful to consider the probability of observing a value of Y “near” y as a
function of 2. That is, suppose that

f2( y)

is a joint probability density for Y depending on an unknown parameter vector 2.
Then in rough terms, if 1 is a small positive number and y = (y1, y2, . . . , yn),

P[each Yi is within 1
2 of yi ] ≈ f2( y)1n (A.26)

But in expression (A.26), 1n doesn’t depend on 2—that is, the approximate prob-
ability is proportional to the function of 2, f2( y). It is therefore plausible to use
the joint density with data plugged in,

A continuous data
likelihood function f2( y) (A.27)

as a likelihood function and to use its logarithm,

A continuous data
log likelihood

function

L(2) = ln( f2( y)) (A.28)

as a log likelihood for data modeled as jointly continuous. (Formulas (A.27)
and (A.28) are formally identical to formulas (A.17) and (A.18), but they in-
volve a different type of data.) Contemplation of formula (A.27) or (A.28) can
be thought of as a way of assessing the consonance of different parameter vec-
tors, 2, with continuous data, y. And as for the discrete case, a vector 2 max-
imizing L(2) is often termed a maximum likelihood estimate of the parameter
vector.

Example 21 Maximum Likelihood Estimation Based on iid Exponential Data

The exponential distribution is a popular model for life-length variables. The
following are hypothetical life lengths (in hours) for n = 4 nominally identical
electrical components, which will be assumed to have been a priori adequately
described as iid exponential variables with mean α,

75.4, 39.4, 3.7, 4.5 (A.29)
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Example 21
(continued )
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    = 30.75
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α

Figure A.17 Plot of a log likelihood based on four
iid exponential observations

If Y1, Y2, Y3, and Y4 are iid exponential variables with means α, an appropriate
joint probability density is

f ( y) =


4∏

i=1

1

α
e−yi /α for each yi > 0

0 otherwise

So with the data of display (A.29) in hand, the log likelihood function becomes

L(α) = −4 ln(α) − 1

α
(75.4 + 39.4 + 3.7 + 4.5) (A.30)

It is easy to verify (using calculus and/or simply looking at the plot of L(α) in
Figure A.17) that L(α) is maximized for

α̂ = 30.75 = 75.4 + 39.4 + 3.7 + 4.5

4
= ȳ

This fact is a particular instance of the general result that the maximum likelihood
estimate of an exponential mean is the sample average of the observations.

Example 21 is fairly simple, in that only one parameter is involved and calculus
can be used to find an explicit formula for the maximum likelihood estimator. TheMaximum

likelihood
and normal

observations

reader might be interested in working through the somewhat more complicated
(two-parameter) situation involving n iid normal random variables with means µ

and standard deviations σ . Two-variable calculus can be used to show that maximum
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likelihood estimates of the parameters based on observations x1, x2, . . . , xn turn out
to be, respectively,

µ̂ = x̄

σ̂ =
√

n − 1

n
s

The next example concerns an important continuous situation where no explicit
formulas for maximum likelihood estimates seem to exist.

Example 22 Maximum Likelihood Estimation Based on iid Weibull
Steel Specimen Failure Times

The data in Table A.4 are n = 10 ordered failure times for hardened steel speci-
mens that were subjected to a particular rolling fatigue test. These data appeared
originally in the paper of J. I. McCool, “Confidence Limits for Weibull Regres-
sion With Censored Data” (IEEE Transactions on Reliability, 1980). The Weibull
probability plot of these data in Figure A.18 suggests the appropriateness of fit-
ting a Weibull model to them (and indicates that β near 2 and α near .25 may be
appropriate parameters for such a fitted model).

Notice that the joint density function of n = 10 iid Weibull random variables
Y1, Y2, . . . , Y10 with parameters α and β is

f ( y) =


10∏

i=1

β

αβ
yβ−1

i e−(yi /α)β for each yi > 0

0 otherwise

So using the data of Table A.4, the log likelihood

L(α, β) = 10 ln(β) − 10β ln(α) + (β − 1)(ln(.073) + ln(.098) + · · · + ln(.456))

− 1

αβ
((.073)β + (.098)β + · · · + (.456)β)

= 10 ln(β) − 10β ln(α) − 16.267(β − 1) − 1

αβ
((.073)β + (.098)β

+ · · · + (.456)β)

is indicated. Figure A.19 shows a contour plot of L(α, β) and indicates that
maximum likelihood estimates of α and β are indeed in the vicinity of β̂ = 2.0
and α̂ = .26.



778 Appendix A More on Probability and Model Fitting

Example 22
(continued )

Table A.4
Ten Ordered Failure Times of Steel Specimens

.073, .098, .117, .135, .175, .262, .270, .350, .386, .456
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Figure A.18 Weibull probability plot of McCool’s steel
specimen failure times
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Figure A.19 Contour plot of a Weibull
log likelihood for McCool’s steel specimen
failure times
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Analytical attempts to locate the maximum likelihood estimates for this kind
of iid Weibull data situation are only partially fruitful. Setting partial derivatives
of L(α, β) equal to 0, followed by some algebra, does lead to the two equations

β =
(∑

yβ

i ln(yi )∑
yβ

i

−
∑

ln(yi )

n

)−1

α =
(∑

yβ

i

n

)1/β

which maximum likelihood estimates must satisfy, but these must be solved
numerically.

Discrete and continuous likelihood methods have thus far been discussed sep-
arately. However, particularly in life-data analysis contexts, statistical engineering
studies occasionally yield data that are mixed—in the sense that some parts are
discrete, while other parts are continuous. If it is sensible to think of the two parts
as independent, a combination of things already said here can lead to an appropri-
ate likelihood function and then, for example, to maximum likelihood parameter
estimates.

That is, suppose that one has available discrete data, Y1 = y1, and continuous
data, Y2 = y2, which can be thought of as independently generated—Y1 from a
discrete joint distribution with joint probability function

f (1)

2 ( y1)

and Y2 from a continuous joint distribution with joint probability density

f (2)

2 ( y2)

Then a sensible likelihood function becomes

A mixed-data
likelihood function f (1)

2 ( y1) · f (2)

2 ( y2) (A.31)

with corresponding log likelihood

A mixed-data
log likelihood

function
L(2) = ln

(
f (1)

2 ( y1)
)

+ ln
(

f (2)

2 ( y2)
)

(A.32)

Armed with equation (A.31) or (A.32), assessments of the compatibility of different
parameter vectors 2 with the data in hand and maximum likelihood model fitting
can proceed just as for purely discrete or purely continuous cases.
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Example 23 Maximum Likelihood Estimation of a Mean Insulating
Fluid Breakdown Time Using Censored Data

Table 2.1 of Nelson’s Applied Life Data Analysis gives some data on times to
breakdown (in seconds) of an insulating fluid at several different voltages. The
results of n = 12 tests made at 30 kV are repeated below in Table A.5. The last
two entries in Table A.5 mean that two tests were terminated at (respectively)
29,200 seconds and 86,100 seconds without failures having been observed. In
common statistical jargon, these last two data values are censored (at the times
29,200 and 86,100, respectively).

Nelson remarks in his book that exponential distributions are often used
to model life length for such fluids. Therefore, consider fitting an exponential
distribution with mean α to the data of Table A.5. Notice that the first ten pieces
of data in Table A.5 are continuous “exact” failure times, while the last two are
essentially discrete pieces of information. Considering first the discrete part of
the overall likelihood, the probability that two independent exponential variables
exceed 29,200 and 86,100, respectively, is

f (1)
α ( y1) = e−29,200/α · e−86,100/α

Then considering the continuous part of the likelihood, the joint density of ten
independent exponential variables with mean α is

f (2)
α ( y2) =


1

α10 e−∑
yi /α for each yi > 0

0 otherwise

Putting these two pieces together via equation (A.32), the log likelihood function
appropriate here is

L(α) = −10 ln(α) − 1

α
(50 + 134 + 187 + · · · +

+ 15,800 + 29,200 + 86,100)

= −10 ln α − 1

α
(144,673) (A.33)

Table A.5
12 Insulating Fluid Breakdown Times

50, 134, 187, 882, 1450, 1470, 2290, 2930, 4180, 15800, > 29200, > 86100
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This function of α is easily seen via elementary calculus to be maximized at

α̂ = 144,673

10
= 14,467.3 secI

which has the intuitively appealing interpretation of the ratio of the total time on
test to the number of failures observed during testing.

A.5.3 Likelihood-Based Large-Sample Inference Methods

One of the appealing things about the likelihood function idea is that in many
situations, it is possible to base large-sample significance testing and confidence
region methods on the likelihood function. Intuitively, it would seem that those
parameter vectors 2 “most compatible” with the data in hand ought to form a
sensible confidence set for 2. And in significance-testing terms, if a hypothesized
value of2 (say,20) has a corresponding value of the likelihood function far smaller
than the maximum possible, that circumstance ought to produce a small p-value—
that is, strong evidence against H0 : 2 = 20.

To make this thinking precise, let

The maximum of
the log-likelihood

function

L∗ = max
2

L(2)

that is, L∗ is the largest possible value of the log likelihood. (If 2̂ is a maximum
likelihood estimate of 2, then L∗ = L(2̂).) An intuitively appealing way to make
a confidence set for the parameter vector 2 is to use the set of all 2’s with log
likelihood not too far below L∗,

A likelihood-
based confidence

set for 2

{
2 | L(2) > L∗ − c

}
(A.34)

for an appropriate number c. And a plausible way of deriving a p-value for testing

H0 : 2 = 20 (A.35)

is by trying to identify a sensible probability distribution for

L∗ − L(20) (A.36)

when H0 holds, and using the upper-tail probability beyond an observed value of
variable (A.36) as a p-value.

The practical gaps in this thinking are two: how to choose c in display (A.34)
to get a desired confidence level and what kind of distribution to use to describe
variable (A.36) under hypothesis (A.35). There are no general exact answers to these
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questions, but statistical theory does provide at least some indication of approximate
answers that are often adequate for practical purposes when large samples are
involved. That is, statistical theory suggests that in many large-sample situations, if
2 is of dimension k, choosing

Constant producing
(large sample)
approximate γ

level confidence for{
2 | L(2) > L∗ − c

}
c = 1

2U (A.37)

for U the γ quantile of the χ2
k distribution, produces a confidence set (A.34) of

confidence level roughly γ . And similar reasoning suggests that in many large-
sample situations, if 2 is of dimension k, the hypothesis (A.35) can be tested using
the test statistic

A test statistic
for H0 : 2 = 20

with an
approximately χ2

k
reference distribution

2
(
L∗ − L(20)

)
(A.38)

and a χ2
k approximate reference distribution, where large values of the test statistic

(A.38) count as evidence against H0.

Example 23
(continued )

Consider the problem of setting confidence limits on the mean time till break-
down of Nelson’s insulating fluid tested at 30 kV. In this problem, 2 is k = 1-
dimensional. So, for example, making use of the facts that the .9 quantile of
the χ2

1 distribution is 2.706 and that the maximum likelihood estimate of α is
14,467.3, displays (A.33), (A.34), and (A.37) suggest that those α with

L(α) > −10 ln(14,467.3) − 1

14,467.3
(144,673) − 1

2
(2.706)

that is,

−10 ln(α) − 1

α
(144,673) > −107.15I

form an approximate 90% confidence set for α. Figure A.20 shows a plot of the
log likelihood (A.33) cut at the level −107.15 and the corresponding interval of
α’s. Numerical solution of the equation

−10 ln(α) − 1

α
(144,673) = −107.15

shows the interval for mean time till breakdown to extend from 8,963 sec to
25,572 sec.)
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Figure A.20 Plot of the log likelihood for Nelson’s insulating fluid
breakdown time data and approximate confidence limits for α

The n = 12 pieces of data in Table A.5 do not constitute an especially large
sample, so the 90% approximate confidence level associated with the interval
(8,963, 25,572) should be treated as very approximate. But even so, this interval
does give one some feeling about the precision with which α is known based on
the data of Table A.5. There is clearly substantial uncertainty associated with the
estimate α̂ = 14,467.3.

It is not a trivial matter to verify that the χ2
k approximations suggested here

are adequate for a particular nonstandard probability model. In engineering sit-Cautions concerning
the large-sample
likelihood-based

inference methods

uations where fairly exact confidence levels and/or p-values are critical, readers
should seek genuinely expert statistical advice before placing too much faith in the
χ2

k approximations. But for purposes of engineering problem solving requiring a
rough, working quantification of uncertainty associated with parameter estimates,
the use of the χ2

k approximation is certainly preferable to operating without any such
quantification.

The insulating fluid example involved only a single parameter. As an example of
a k = 2-parameter application, consider once again the space shuttle O-ring failure
example.

Example 19
(continued )

Again use the log likelihood (A.23) and the fact that maximum likelihood esti-
mates of α and β in equation (A.21) or (A.22) are α̂ = 15.043 and β̂ = −.2322.
These produce corresponding log likelihood −10.158. This, together with the
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Example 19
(continued )
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Figure A.21 Likelihood-based approximate
confidence region for the parameters of the O-ring
failure model

fact that the .9 quantile of the χ2
2 distribution is 4.605, gives one (from displays

(A.34) and (A.37)), that the set of (α, β) pairs with

L(α, β) > −10.158 − 1

2
(4.605)

that is,

L(α, β) > −12.4605I
constitutes an approximate 90% confidence region for (α, β). This set of possible
parameter vectors is shown in the plot in Figure A.21. Notice that one message
conveyed by the contour plot is that β is pretty clearly negative. Low-temperature
launches are more prone to O-ring failure than moderate- to high-temperature
launches.

The approximate inference methods represented in displays (A.34) through
(A.38) concern the entire parameter vector2 in cases where it is multidimensional.
It is reasonably common, however, to desire inferences only for particular parameters
individually. (For example, in the case of the O-rings, it is the parameter β that
determines whether p(t) is increasing, constant, or decreasing in t , and for many
purposes β is of primary interest.) It is thus worth mentioning that the likelihood
ideas discussed here can be adapted to provide inference methods for a part of a
parameter vector 2 of individual interest. An exposition of these adaptations will
not be attempted here, but be aware of their existence. For details, refer to more
complete expositions of likelihood methods (such as that in Meeker and Escobar’s
Statistical Methods for Reliability Data text).




