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Regression
Analysis—Inference
for Curve- and
Surface-Fitting

The two previous chapters began a study of inference methods for multisample
studies by considering first those which make no explicit use of structure relating
several samples and then discussing some directed at the analysis of factorial struc-
ture. The discussion in this chapter will primarily consider inference methods for
multisample studies where factors involved are inherently quantitative and it is rea-
sonable to believe that some approximate functional relationship holds between the
values of the system/input/independent variables and observed system responses.
That is, this chapter introduces and applies inference methods for the curve- and
surface-fitting contexts discussed in Sections 4.1 and 4.2.

The chapter begins with a discussion of the simplest situation of this type—
namely, where a response variable y is approximately linearly related to a single
quantitative input variable x . In this specific context, it is possible to give explicit
formulas and illustrate in concrete terms what is possible in the way of inference
methods for surface-fitting analyses. The second section then treats the general
problem of statistical inferences in multiple regression (curve- and surface-fitting)
analyses. In the general case, it is not expedient to produce many computational for-
mulas. So the exposition relies instead on summary measures commonly appearing
on multiple regression printouts from statistical packages. A final section further
illustrates the broad utility of the multiple regression methods by applying them to
“response surface,” and then factorial, analyses.

650
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9.1 Inference Methods Related to the
Least Squares Fitting of a Line
(Simple Linear Regression)

This section considers inference methods that are applicable where a response y is
approximately linearly related to an input/system variable x . It begins by introducing
the (normal) simple linear regression model and discussing how to estimate response
variance in this context. Next there is a look at standardized residuals. Then inference
for the rate of change (1y/1x) is considered, along with inference for the average
response at a given x . There follows a discussion of prediction and tolerance intervals
for responses at a given setting of x . Next is an exposition of ANOVA ideas in the
present situation. The section then closes with an illustration of how statistical
software expedites the calculations introduced in the section.

9.1.1 The Simple Linear Regression Model, Corresponding
Variance Estimate, and Standardized Residuals

Chapter 7 introduced the one-way (equal variances, normal distributions) model as
the most common probability basis of inference methods for multisample studies.
It was represented in symbols as

yi j = µi + εi j (9.1)

where the means µ1, µ2, . . . , µr were treated as r unrestricted parameters. In Chap-
ter 8, it was convenient (for example) to rewrite equation (9.1) in two-way con-
texts as

yi jk = µi j + εi jk (= µ
..
+ αi + βj + αβi j + εi jk) (9.2)

where the µi j are still unrestricted, and to consider restrictions/simplifications of
model (9.2) such as

yi jk = µ.. + αi + βj + εi jk (9.3)

Model (9.3) really differs from model (9.2) or (9.1) only in the fact that it postulates
a special form or restriction for the means µi j . Expression (9.3) says that the means
must satisfy a parallelism relationship.

Turning now to the matter of inference based on data pairs (x1, y1), (x2, y2), . . . ,

(xn, yn) exhibiting an approximately linear scatterplot, one once again proceeds by
imposing a restriction on the one-way model (9.1). In words, the model assumptions
will be that there are underlying normal distributions for the response y with a
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common variance σ 2 but means µy|x that change linearly in x . In symbols, it is
typical to write that for i = 1, 2, . . . , n,

The (normal) simple
linear regression

model
yi = β0 + β1xi + εi (9.4)

where the εi are (unobservable) iid normal (0, σ 2) random variables, the xi are known
constants, and β0, β1, and σ 2 are unknown model parameters (fixed constants).
Model (9.4) is commonly known as the (normal) simple linear regression model.
If one thinks of the different values of x in an (x, y) data set as separating it into
various samples of y’s, expression (9.4) is the specialization of model (9.1) where the
(previously unrestricted) means of y satisfy the linear relationshipµy|x = β0 + β1x .
Figure 9.1 is a pictorial representation of the “constant variance, normal, linear (in x)
mean” model.

Inferences about quantities involving those x values represented in the data (like
the mean response at a single x or the difference between mean responses at two
different values of x) will typically be sharper when methods based on model (9.4)
can be used in place of the general methods of Chapter 7. And to the extent that model
(9.4) describes system behavior for values of x not included in the data, a model
like (9.4) provides for inferences involving limited interpolation and extrapolation
on x .

Section 4.1 contains an extensive discussion of the use of least squares in the
fitting of the approximately linear relation

y ≈ β0 + β1x (9.5)

to a set of (x, y) data. Rather than redoing that discussion, it is most sensible simply
to observe that Section 4.1 can be thought of as an exposition of fitting and the
use of residuals in model checking for the simple linear regression model (9.4). In

Distributions of y
for various x

y

x

   y|x =    0 +    1xµ β β

Figure 9.1 Graphical representation of the
simple linear regression model
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particular, associated with the simple linear regression model are the estimates of
β1 and β0

Estimator of β1,
the slope b1 =

∑
(x − x)(y − y)∑
(x − x)2

(9.6)

and

Estimator of β0,
the intercept

b0 = ȳ − b1 x̄ (9.7)

and corresponding fitted values

Fitted values for
simple linear

regression

ŷi = b0 + b1xi (9.8)

and residuals

Residuals for
simple linear

regression

ei = yi − ŷi (9.9)

Further, the residuals (9.9) can be used to make up an estimate of σ 2. As
always, a sum of squared residuals is divided by an appropriate number of degrees
of freedom. That is, there is the following definition of a (simple linear regression
or) line-fitting sample variance.

Definition 1 For a set of data pairs (x1, y1), (x2, y2), . . . , (xn, yn)where least squares fitting
of a line produces fitted values (9.8) and residuals (9.9),

s2
LF =

1

n − 2

∑
(y − ŷ)2 = 1

n − 2

∑
e2 (9.10)

will be called a line-fitting sample variance. Associated with it are ν = n − 2
degrees of freedom and an estimated standard deviation of response, sLF =√

s2
LF.

s2
LF estimates the level of basic background variation, σ 2, whenever the model

(9.4) is an adequate description of the system under study. When it is not, sLF will
tend to overestimate σ . So comparing sLF to sP is another way of investigating
the appropriateness of model (9.4). (sLF much larger than sP suggests the linear
regression model is a poor one.)
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Example 1
(Example 1, Chapter 4,

revisited—page 124 )

Inference in the Ceramic Powder Pressing Study

The main example in this section will be the pressure/density study of Benson,
Locher, and Watkins (used extensively in Section 4.1 to illustrate the descriptive
analysis of (x, y) data). Table 9.1 lists again those n = 15 data pairs (x, y) (first
presented in Table 4.1) representing

x = the pressure setting used (psi)

y = the density obtained (g/cc)

in the dry pressing of a ceramic compound into cylinders, and Figure 9.2 is a
scatterplot of the data.

Recall further from the calculation of R2 in Example 1 of Chapter 4 that the
data of Table 4.1 produce fitted values in Table 4.2 and then∑

(y − ŷ)2 = .005153I

So for the pressure/density data, one has (via formula (9.10)) that

s2
LF =

1

15− 2
(.005153) = .000396 (g/cc)2

so

sLF =
√
.000396 = .0199 g/ccI

If one accepts the appropriateness of model (9.4) in this powder pressing example,
for any fixed pressure the standard deviation of densities associated with many
cylinders made at that pressure would be approximately .02 g/cc.

Table 9.1
Pressing Pressures and Resultant Specimen Densities

x , y, x , y,
Pressure (psi) Density (g/cc) Pressure (psi) Density (g/cc)

2,000 2.486 6,000 2.653
2,000 2.479 8,000 2.724
2,000 2.472 8,000 2.774
4,000 2.558 8,000 2.808
4,000 2.570 10,000 2.861
4,000 2.580 10,000 2.879
6,000 2.646 10,000 2.858
6,000 2.657
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Figure 9.2 Scatterplot of density versus pressing
pressure

Table 9.2
Sample Means and Standard Deviations of Densities for Five
Different Pressing Pressures

x , ȳ, s,
Pressure (psi) Sample Mean Sample Standard Deviation

2,000 2.479 .0070
4,000 2.569 .0110
6,000 2.652 .0056
8,000 2.769 .0423

10,000 2.866 .0114

The original data in this example can be thought of as organized into r = 5
separate samples of size m = 3, one for each of the pressures 2,000 psi, 4,000
psi, 6,000 psi, 8,000 psi, and 10,000 psi. It is instructive to consider what this
thinking leads to for an alternative estimate of σ—namely, sP. Table 9.2 gives ȳ
and s values for the five samples.

The sample standard deviations in Table 9.2 can be employed in the usual
way to calculate sP. That is, exactly as in Definition 1 of Chapter 7

s2
P =

(3− 1)(.0070)2 + (3− 1)(.0110)2 + · · · + (3− 1)(.0114)2

(3− 1)+ (3− 1)+ · · · + (3− 1)

= .000424 (g/cc)2
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Example 1
(continued )

from which

sP =
√

s2
P = .0206 g/cc

Comparing sLF and sP, there is no indication of poor fit carried by these values.

Section 4.1 includes some plotting of the residuals (9.9) for the pressure/density
data (in particular, a normal plot that appears as Figure 4.7). Although the (raw)
residuals (9.9) are most easily calculated, most commercially available regression
programs provide standardized residuals as well as, or even in preference to, the
raw residuals. (At this point, the reader should review the discussion concerning
standardized residuals surrounding Definition 2 of Chapter 7.) In curve- and surface-
fitting analyses, the variances of the residuals depend on the corresponding x’s.
Standardizing before plotting is a way to prevent mistaking a pattern on a residual
plot that is explainable on the basis of these different variances for one that is
indicative of problems with the basic model. Under model (9.4), for a given x with
corresponding response y,

Var(y − ŷ) = σ 2

(
1− 1

n
− (x − x̄)2∑

(x − x̄)2

)
(9.11)

So using formula (9.11) and Definition 7.2, corresponding to the data pair (xi , yi ) is
the standardized residual for simple linear regression

Standardized
residuals for
simple linear

regression

e∗i =
ei

sLF

√
1− 1

n
− (xi − x̄)2∑

(x − x̄)2

(9.12)

The more sophisticated method of examining residuals under model (9.4) is thus to
make plots of the values (9.12) instead of plotting the raw residuals (9.9).

Example 1
(continued )

Consider how the standardized residuals for the pressure/density data set are
related to the raw residuals. Recalling that

∑
(x − x̄)2 = 120,000,000I

and that the xi values in the original data included only the pressures 2,000 psi,
4,000 psi, 6,000 psi, 8,000 psi, and 10,000 psi, it is easy to obtain the necessary
values of the radical in the denominator of expression (9.12). These are collected
in Table 9.3.
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Table 9.3
Calculations for Standardized Residuals
in the Pressure/Density Study

x

√
1− 1

15
− (x − 6,000)2

120,000,000

2,000 .894
4,000 .949
6,000 .966
8,000 .949

10,000 .894

The entries in Table 9.3 show, for example, that one should expect residuals
corresponding to x = 6,000 psi to be (on average) about .966/.894 = 1.08 times
as large as residuals corresponding to x = 10,000 psi. Division of raw residuals
by sLF times the appropriate entry of the second column of Table 9.3 then puts
them all on equal footing, so to speak. Table 9.4 shows both the raw residuals
(taken from Table 4.5) and their standardized counterparts.

In the present case, since the values .894, .949, and .966 are roughly com-
parable, standardization via formula (9.12) doesn’t materially affect conclusions
about model adequacy. For example, Figures 9.3 and 9.4 are normal plots of (re-
spectively) raw residuals and standardized residuals. For all intents and purposes,
they are identical. So any conclusions (like those made in Section 4.1 based on
Figure 4.7) about model adequacy supported by Figure 9.3 are equally supported
by Figure 9.4, and vice versa.

In other situations, however (especially those where a data set contains a
few very extreme x values), standardization can involve more widely varying
denominators for formula (9.12) than those implied by Table 9.3 and thereby
affect the results of a residual analysis.

Table 9.4
Residuals and Standardized Residuals for the Pressure/Density Study

x e Standardized Residual

2,000 .0137, .0067, −.0003 .77, .38, −.02
4,000 −.0117, .0003, .0103 −.62, .02, .55
6,000 −.0210, −.0100, −.0140 −1.09, −.52, −.73
8,000 −.0403, .0097, .0437 −2.13, .51, 2.31

10,000 −.0007, .0173, −.0037 −.04, .97, −.21
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Example 1
(continued )
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Figure 9.3 Normal plot of residuals for a linear fit to
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Figure 9.4 Normal plot of standardized residuals for
a linear fit to the pressure/density data

9.1.2 Inference for the Slope Parameter

Especially in applications of the simple linear regression model (9.4) where x
represents a variable that can be physically manipulated by the engineer, the slope
parameter β1 is of fundamental interest. It is the rate of change of average response
with respect to x , and it governs the impact of a change in x on the system output.
Inference for β1 is fairly simple, because of the distributional properties that b1 (the
slope of the least squares line) inherits from the model. That is, under model (9.4),
b1 has a normal distribution with

Eb1 = β1

and

Var b1 =
σ 2∑
(x − x̄)2

(9.13)
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which in turn imply that

Z = b1 − β1

σ√∑
(x − x̄)2

is standard normal. In a manner similar to many of the arguments in Chapters 6
and 7, this motivates the fact that the quantity

T = b1 − β1

sLF√∑
(x − x̄)2

(9.14)

has a tn−2 distribution. The standard arguments of Chapter 6 applied to expression
(9.14) then show that

H0 : β1 = # (9.15)

can be tested using the test statistic

Test statistic for
H0 : β1 = #

T = b1 − #

sLF√∑
(x − x̄)2

(9.16)

and a tn−2 reference distribution. More importantly, under the simple linear re-
gression model (9.4), a two-sided confidence interval for β1 can be made using
endpoints

Confidence limits
for the slope, β1

b1 ± t
sLF√∑
(x − x̄)2

(9.17)

where the associated confidence is the probability assigned to the interval between
−t and t by the tn−2 distribution. A one-sided interval is made in the usual way,
based on one endpoint from formula (9.17).

Example 1
(continued )

In the context of the powder pressing study, Section 4.1 showed that the slope of
the least squares line through the pressure/density data is

b1 = .0000486̄ (g/cc)/psi
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Example 1
(continued )

Then, for example, a 95% two-sided confidence interval for β1 can be made using
the .975 quantile of the t13 distribution in formula (9.17). That is, one can use
endpoints

.0000486̄± 2.160
.0199√

120,000,000

that is,

.0000486̄± .0000039

that is,

.0000448 (g/cc)/psi and .0000526 (g/cc)/psiI
A confidence interval like this one for β1 can be translated into a confidence

interval for a difference in mean responses for two different values of x . Ac-
cording to model (9.4), two different values of x differing by 1x have mean
responses differing by β11x . One then simply multiplies endpoints of a confi-
dence interval for β1 by 1x to obtain a confidence interval for the difference
in mean responses. For example, since 8,000− 6,000 = 2,000, the difference
between mean densities at 8,000 psi and 6,000 psi levels has a 95% confidence
interval with endpoints

2,000(.0000448) g/cc and 2,000(.0000526) g/cc

that is,

.0896 g/cc and .1052 g/cc

Formula (9.17) allows a kind of precision to be attached to the slope of theConsiderations
in the selection

of x values
least squares line. It is useful to consider how that precision is related to study
characteristics that are potentially under an investigator’s control. Notice that both
formulas (9.13) and (9.17) indicate that the larger

∑
(x − x̄)2 is (i.e., the more spread

out the xi values are), the more precision b1 offers as an estimator of the underlying
slope β1. Thus, as far as the estimation of β1 is concerned, in studies where x
represents the value of a system variable under the control of an experimenter, he or
she should choose settings of x with the largest possible sample variance. (In fact,
if one has n observations to spend and can choose values of x anywhere in some
interval [a, b], taking n

2 of them at x = a and n
2 at x = b produces the best possible

precision for estimating the slope β1.)
However, this advice (to spread the xi ’s out) must be taken with a grain of salt.

The approximately linear relationship (9.4) may hold over only a limited range of
possible x values. Choosing experimental values of x beyond the limits where it is
reasonable to expect formula (9.4) to hold, hoping thereby to obtain a good estimate
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of slope, is of course nonsensical. And it is also important to recognize that precise
estimation of β1 under the assumptions of model (9.4) is not the only consideration
when planning data collection. It is usually also important to be in a position to tell
when the linear form of (9.4) is inappropriate. That dictates that data be collected
at a number of different settings of x , not simply at the smallest and largest values
possible.

9.1.3 Inference for the Mean System Response
for a Particular Value of x

Chapters 7 and 8 repeatedly considered the problem of estimating the mean of y
under a particular one (or combination) of the levels of the factor (or factors) of
interest. In the present context, the analog is the problem of estimating the mean
response for a fixed value of the system variable x ,

µy|x = β0 + β1x (9.18)

The natural data-based approximation of the mean in formula (9.18) is the corre-
sponding y value taken from the least squares line. The notation

Estimator of
µy|x = β0 + β1x ŷ = b0 + b1x (9.19)

will be used for this value on the least squares lines. (This is in spite of the fact that
the value in formula (9.19) may not be a fitted value in the sense that the phrase
has most often been used to this point. x need not be equal to any of x1, x2, . . . , xn
for both expressions (9.18) and (9.19) to make sense.) The simple linear regression
model (9.4) leads to simple distributional properties for ŷ that then produce inference
methods for µy|x .

Under model (9.4), ŷ has a normal distribution with

E ŷ = µy|x = β0 + β1x

and

Var ŷ = σ 2

(
1

n
+ (x − x̄)2∑

(x − x̄)2

)
(9.20)

(In expression (9.20), notation is being abused somewhat. The i subscripts and
indices of summation in

∑
(x − x̄)2 have been suppressed. This summation runs

over the n values xi included in the original data set. On the other hand, in the
(x − x̄)2 term appearing as a numerator in expression (9.20), the x involved is not
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necessarily equal to any of x1, x2, . . . , xn . Rather, it is simply the value of the system
variable at which the mean response is to be estimated.) Then

Z = ŷ − µy|x

σ

√
1

n
+ (x − x̄)2∑

(x − x̄)2

has a standard normal distribution. This in turn motivates the fact that

T = ŷ − µy|x

sLF

√
1

n
+ (x − x̄)2∑

(x − x̄)2

(9.21)

has a tn−2 distribution. The standard arguments of Chapter 6 applied to expression
(9.21) then show that

H0 : µy|x = # (9.22)

can be tested using the test statistic

Test statistic for
H0 : µy|x = #

T = ŷ − #

sLF

√
1

n
+ (x − x̄)2∑

(x − x̄)2

(9.23)

and a tn−2 reference distribution. Further, under the simple linear regression model
(9.4), a two-sided individual confidence interval for µy|x can be made using end-
points

Confidence limits
for the mean repsonse,

µy|x = β0 + β1x
ŷ ± tsLF

√
1

n
+ (x − x̄)2∑

(x − x̄)2
(9.24)

where the associated confidence is the probability assigned to the interval between
−t and t by the tn−2 distribution. A one-sided interval is made in the usual way
based on one endpoint from formula (9.24).

Example 1
(continued )

Returning again to the pressure/density study, consider making individual 95%
confidence intervals for the mean densities of cylinders produced first at 4,000
psi and then at 5,000 psi.
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Treating first the 4,000 psi condition, the corresponding estimate of mean
density is

ŷ = 2.375+ .0000486̄(4,000) = 2.5697 g/cc

Further, from formula (9.24) and the fact that the .975 quantile of the t13 distri-
bution is 2.160, a precision of plus-or-minus

2.160(.0199)

√
1

15
+ (4,000− 6,000)2

120,000,000
= .0136 g/cc

can be attached to the 2.5697 g/cc figure. That is, endpoints of a two-sided 95%
confidence interval for the mean density under the 4,000 psi condition are

2.5561 g/cc and 2.5833 g/ccI
Under the x = 5,000 psi condition, the corresponding estimate of mean

density is

ŷ = 2.375+ .0000486̄(5,000) = 2.6183 g/cc

Using formula (9.24), a precision of plus-or-minus

2.160(.0199)

√
1

15
+ (5,000− 6,000)2

120,000,000
= .0118 g/cc

can be attached to the 2.6183 g/cc figure. That is, endpoints of a two-sided 95%
confidence interval for the mean density under the 5,000 psi condition are

2.6065 g/cc and 2.6301 g/ccI
The reader should compare the plus-or-minus parts of the two confidence

intervals found here. The interval for x = 5,000 psi is shorter and therefore more
informative than the interval for x = 4,000 psi. The origin of this discrepancy
should be clear, at least upon scrutiny of formula (9.24). For the students’ data,
x̄ = 6,000 psi. x = 5,000 psi is closer to x̄ than is x = 4,000 psi, so the (x − x̄)2

term (and thus the interval length) is smaller for x = 5,000 psi than for x =
4,000 psi.

The phenomenon noted in the preceding example—that the length of a confi-
dence interval for µy|x increases as one moves away from x̄—is an important one.
And it has an intuitively plausible implication for the planning of experiments where
an approximately linear relationship between y and x is expected, and x is under
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the investigator’s control. If there is an interval of values of x over which one wants
good precision in estimating mean responses, it is only sensible to center one’s data
collection efforts in that interval.

Proper use of displays (9.22), (9.23), and (9.24) gives inference methods for theInference for
the intercept, β0 parameter β0 in model (9.4). β0 is the y intercept of the linear relationship (9.18). So

by setting x = 0 in displays (9.22), (9.23), and (9.24), tests and confidence intervals
for β0 are obtained. However, unless x = 0 is a feasible value for the input variable
and the region where the linear relationship (9.18) is a sensible description of
physical reality includes x = 0, inference for β0 alone is rarely of practical interest.

The confidence intervals represented by formula (9.24) carry individual associ-
ated confidence levels. Section 7.3 showed that it is possible (using the P-R method)
to give simultaneous confidence intervals for r possibly different means, µi . This
comes about essentially by appropriately increasing the t multiplier used in the plus-
or-minus part of the formula for individual confidence limits. Here it is possible, by
replacing t in formula (9.24) with a larger value, to give simultaneous confidence
intervals for all means µy|x . That is, under model (9.4), simultaneous two-sided
confidence intervals for all mean responses µy|x can be made using respective end-
points

Simultaneous two-
sided confidence

limits for all
means, µy|x

(b0 + b1x)±√2 f sLF

√√√√1

n
+ (x − x̄)2∑

(x − x̄)2
(9.25)

where for positive f , the associated simultaneous confidence is the F2,n−2 probability
assigned to the interval (0, f ).

Of course, the practical meaning of the phrase “for all means µy|x ” is more
like “for all mean responses in an interval where the simple linear regression model
(9.4) is a workable description of the relationship between x and y.” As is always
the case in curve- and surface-fitting situations, extrapolation outside of the range
of x values where one has data (and even to some extent interpolation inside that
range) is risky business. When it is done, it should be supported by subject-matter
expertise to the effect that it is justifiable.

It may be somewhat difficult to grasp the meaning of a simultaneous confidence
figure applicable to all possible intervals of the form (9.25). To this point, the
confidence levels considered have been for finite sets of intervals. Probably the
best way to understand the theoretically infinite set of intervals given by formula
(9.25) is as defining a region in the (x, y)-plane thought likely to contain the line
µy|x = β0 + β1x . Figure 9.5 is a sketch of a typical confidence region represented
by formula (9.25). There is a region indicated about the least squares line whose
vertical extent increases with distance from x̄ and which has the stated confidence
in covering the line describing the relationship between x and µy|x .
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Simultaneous 
confidence region
for all mean responses

y

x

Least
squares
line

Figure 9.5 Region in the (x, y)-plane defined
by simultaneous confidence intervals for all values
of µy|x

Example 1
(continued )

It is instructive to compare what the P-R method of Section 7.3 and formula
(9.25) give for simultaneous 95% confidence intervals for mean cylinder densities
produced under the five conditions actually used by the students in their study.

First, formula (7.28) of Section 7.3 shows that with n − r = 15− 5 = 10
degrees of freedom for sP and r = 5 conditions under study, 95% simultaneous
two-sided confidence limits for all five mean densities are of the form

ȳi ± 3.103
sP√
ni

which in the present context is

ȳi ± 3.103
.0206√

3

that is,

ȳi ± .0369 g/cc

Then, since ν1 = 2 and ν2 = 13 degrees of freedom are involved in the use
of formula (9.25), simultaneous limits of the form

ŷ ±
√

2(3.81) sLF

√
1

15
+ (x − 6,000)2

120,000,000
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Example 1
(continued )

Table 9.5
Simultaneous (and Individual) 95% Confidence Intervals for Mean Cylinder Densities

µy|x µy|x µy|x
x , (P-R Method) (from formula (9.25)) (from formula (9.24))

Pressure Mean Density Mean Density Mean Density

2,000 psi 2.4790± .0369 g/cc 2.4723± .0246 g/cc 2.4723± .0136 g/cc
4,000 psi 2.5693± .0369 g/cc 2.5697± .0174 g/cc 2.5697± .0118 g/cc
6,000 psi 2.6520± .0369 g/cc 2.6670± .0142 g/cc 2.6670± .0111 g/cc
8,000 psi 2.7687± .0369 g/cc 2.7643± .0174 g/cc 2.7643± .0118 g/cc

10,000 psi 2.8660± .0369 g/cc 2.8617± .0246 g/cc 2.8617± .0136 g/cc

are indicated. Table 9.5 shows the five intervals that result from the use of each
of the two simultaneous confidence methods, together with individual intervals
(9.24).

Two points are evident from Table 9.5. First, the intervals that result from
formula (9.25) are somewhat wider than the corresponding individual intervals
given by formula (9.24). But it is also clear that the use of the simple linear
regression model assumptions in preference to the more general one-way as-
sumptions of Chapter 7 can lead to shorter simultaneous confidence intervals and
correspondingly sharper real-world engineering inferences.

9.1.4 Prediction and Tolerance Intervals (Optional )

Inference for µy|x is one kind of answer to the qualitative question, “If I hold
the input variable x at some particular level, what can I expect in terms of a
system response?” It is an answer in terms of mean or long-run average response.
Sometimes an answer in terms of individual responses is of more practical use.
And in such cases it is helpful to know that the simple linear regression model
assumptions (9.4) lead to their own specialized formulas for prediction and tolerance
intervals.

The basic fact that makes possible prediction intervals under assumptions (9.4) is
that if yn+1 is one additional observation, coming from the distribution of responses
corresponding to a particular x , and ŷ is the corresponding fitted value at that x
(based on the original n data pairs), then

T = yn+1 − ŷ

sLF

√
1+ 1

n
+ (x − x̄)2∑

(x − x̄)2
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has a tn−2 distribution. This fact leads in the usual way to the conclusion that under
model (9.4) the two-sided interval with endpoints

Simple linear
regression

prediction limits for
an additional y at a

given x

ŷ ± tsLF

√
1+ 1

n
+ (x − x̄)2∑

(x − x̄)2
(9.26)

can be used as a prediction interval for an additional observation y at a particular
value of the input variable x . The associated prediction confidence is the probability
that the tn−2 distribution assigns to the interval between−t and t . One-sided intervals
are made in the usual way, by employing only one of the endpoints (9.26) and
adjusting the confidence level appropriately.

It is possible not only to derive prediction interval formulas from the simple
linear regression model assumptions but also to develop relatively simple formulas
for approximate one-sided tolerance bounds. That is, the intervals

A one-sided tolerance
interval for the y
distribution at x

(ŷ − τ sLF,∞) (9.27)

and

Another one-sided
tolerance interval for
the y distribution at x

(−∞, ŷ + τ sLF) (9.28)

can be used as one-sided tolerance intervals for a fraction p of the underlying
distribution of responses corresponding to a particular value of the system variable
x , provided τ is appropriately chosen (depending upon the data, p, x , and the desired
confidence level).

In order to write down a reasonably clean formula for τ , the notation

The ratio of√
Var ŷ to σ for simple

linear regression
A =

√
1

n
+ (x − x̄)2∑

(x − x̄)2
(9.29)

will be adopted for the multiplier that is used (e.g., in formula (9.24)) to go from an
estimate of σ to an estimate of the standard deviation of ŷ. Then, for approximate
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γ level confidence in locating a fraction p of the responses y at the x of interest, τ
appropriate for use in interval (9.27) or (9.28) is

Multiplier to use in
interval (9.27) or (9.28) τ =

Qz(p)+ AQz(γ )

√√√√1+ 1

2(n − 2)

(
Q2

z (p)

A2 − Q2
z (γ )

)

1− Q2
z (γ )

2(n − 2)

(9.30)

Example 1
(continued )

To illustrate the use of prediction and tolerance interval formulas in the simple
linear regression context, consider a 90% lower prediction bound for a single
additional density in powder pressing, if a pressure of 4,000 psi is employed.
Then, additionally consider finding a 95% lower tolerance bound for 90% of
many additional cylinder densities if that pressure is used.

Treating first the prediction problem, formula (9.26) shows that an appropri-
ate prediction bound is

2.5697− 1.350(.0199)

√
1+ 1

15
+ (4,000− 6,000)2

120,000,000
= 2.5796− .0282

that is,

2.5514 g/ccI

If, rather than predicting a single additional density for x = 4,000 psi, it is
of interest to locate 90% of additional densities corresponding to a 4,000 psi
pressure, a tolerance bound is in order. First use formula (9.29) and find that

A =
√

1

15
+ (4,000− 6,000)2

120,000,000
= .3162

Next, for 95% confidence, applying formula (9.30),

τ =
1.282+ (.3162)(1.645)

√√√√1+ 1

2(15− 2)

(
(1.282)2

(.3162)2
− (1.645)2

)

1− (1.645)2

2(15− 2)

= 2.149
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So finally, an approximately 95% lower tolerance bound for 90% of densities
produced using a pressure of 4,000 psi is (via formula (9.27))

2.5697− 2.149(.0199) = 2.5697− .0428

that is,

2.5269 g/ccI

The fact that curve-fitting facilitates interpolation and extrapolation makes itCautions about
prediction and

tolerance intervals
in regression

imperative that care be taken in the interpretation of prediction and tolerance in-
tervals. All of the warnings regarding the interpretation of prediction and tolerance
intervals raised in Section 6.6 apply equally to the present situation. But the new
element here (that formally, the intervals can be made for values of x where one
has absolutely no data) requires additional caution. If one is to use formulas (9.26),
(9.27), and (9.28) at a value of x not represented among x1, x2, . . . , xn , it must
be plausible that model (9.4) not only describes system behavior at those x values
where one has data, but at the additional value of x as well. And even when this is
“plausible” the application of formulas (9.26), (9.27), and (9.28) to new values of
x should be treated with a good dose of care. Should one’s (unverified) judgment
prove wrong, the nominal confidence level has unknown practical relevance.

9.1.5 Simple Linear Regression and ANOVA

Section 7.4 illustrates how, for unstructured studies, partition of the total sum of
squares into interpretable pieces provides both (1) intuition and quantification re-
garding the origin of observed variation and also (2) the basis for an F test of “no
differences between mean responses.” It turns out that something similar is possible
in simple linear regression contexts.

In the unstructured context of Section 7.4, it was useful to name the difference
between SSTot and SSE. The corresponding convention for curve- and surface-fitting
situations is stated next in definition form.

Definition 2 In curve- and surface-fitting analyses of multisample studies, the difference

SSR = SSTot − SSE

will be called the regression sum of squares.
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It is not obvious, but the difference referred to in Definition 2 in general has the
form of a sum of squares of appropriate quantities. In the present context of fitting
a line by least squares,

SSR =
n∑

i=1

(ŷi − ȳ)2

Without using the particular terminology of Definition 2, this text has already
made fairly extensive use of SSR = SSTot− SSE. A review of Definition 3 in Chap-
ter 4 (page 130), and Definitions 4 and 6 in Chapter 7 (page 484) will show that in
curve- and surface-fitting contexts,

The coefficient of
determination for

simple linear regression
in sum of squares

notation

R2 = SSR

SSTot
(9.31)

That is, SSR is the numerator of the coefficient of determination defined first in
Definition 3 (Chapter 4). It is commonly thought of as the part of the raw variability
in y that is accounted for in the curve- or surface-fitting process.

SSR and SSE not only provide an appealing partition of SSTot but also form the
raw material for an F test of

H0 : β1 = 0 (9.32)

versus

Ha : β1 6= 0 (9.33)

Under model (9.4), hypothesis (9.32) can be tested using the statistic

An F statistic for
testing H0 : β1 = 0

F = SSR/1

s2
LF

= SSR/1

SSE/(n − 2)
(9.34)

and an F1,n−2 reference distribution, where large observed values of the test statistic
constitute evidence against H0.

Earlier in this section, the general null hypothesis H0 : β1 = # was tested using
the t statistic (9.16). It is thus reasonable to consider the relationship of the F
test indicated in displays (9.32), (9.33), and (9.34) to the earlier t test. The null
hypothesis H0 : β1 = 0 is a special form of hypothesis (9.15), H0 : β1 = #. It is the
most frequently tested version of hypothesis (9.15) because it can (within limits)
be interpreted as the null hypothesis that mean response doesn’t depend on x .
This is because when hypothesis (9.32) is true within the simple linear regression
model (9.4), µy|x = β0 + 0 · x = β0, which doesn’t depend on x . (Actually, a better
interpretation of a test of hypothesis (9.32) is as a test of whether a linear term in
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x adds significantly to one’s ability to model the response y after accounting for an
overall mean response.)

If one then considers testing hypotheses (9.32) and (9.33), it might appear that
the # = 0 version of formula (9.16) and formula (9.34) represent two different testing
methods. But they are equivalent. The statistic (9.34) turns out to be the square of
the # = 0 version of statistic (9.16), and (two-sided) observed significance levels
based on statistic (9.16) and the tn−2 distribution turn out to be the same as observed
significance levels based on statistic (9.34) and the F1,n−2 distribution. So, from one
point of view, the F test specified here is redundant, given the earlier discussion. But
it is introduced here because of its relationship to the ANOVA ideas of Section 7.4,
and because it has an important natural generalization to more complex curve- and
surface-fitting contexts. (This generalization is discussed in Section 9.2 and cannot
be made equivalent to a t test.)

The partition of SSTot into its parts, SSR and SSE, and the calculation of the
statistic (9.34) can be organized in ANOVA table format. Table 9.6 shows the general
format that this book will use in the simple linear regression context.

Table 9.6
General Form of the ANOVA Table for Simple Linear Regression

ANOVA Table (for testing H0 : β1 = 0)
Source SS d f MS F

Regression SSR 1 SSR/1 MSR/MSE
Error SSE n − 2 SSE/(n − 2)

Total SSTot n − 1

Example 1
(continued )

Recall again from the discussion of the pressure/density example in Section 4.1
that

SSTot =
∑

(y − ȳ)2 = .289366

Also, from page 654 recall that

SSE =
∑

(y − ŷ)2 = .005153

Thus,

SSR = SSTot− SSE = .289366− .005153 = .284213

and the specific version of Table 9.6 for the present example is given as Table 9.7.
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Example 1
(continued )

Then the observed level of significance for testing H0 : β1 = 0 is

P[an F1,13 random variable > 717] < .001I
and one has very strong evidence against the possibility that β1 = 0. A linear term
in Pressure is an important contributor to one’s ability to describe the behavior
of Cylinder Density. This is, of course, completely consistent with the earlier
interval-oriented analysis that produced 95% confidence limits for β1 of

.0000448 (g/cc)/psi and .0000526 (g/cc)/psi

that do not bracket 0.
The value of R2 = .9822 (found first in Section 4.1) can also be easily

derived, using the entries of Table 9.7 and the relationship (9.31).

Table 9.7
ANOVA Table for the Pressure/Density Data

ANOVA Table (for testing H0 : β1 = 0)
Source SS d f MS F

Regression .284213 1 .284213 717
Error .005153 13 .000396

Total .289366 14

9.1.6 Simple Linear Regression and Statistical Software

Many of the calculations needed for the methods of this section are made easier
by statistical software packages. None of the methods of this section are so com-
putationally intensive that they absolutely require the use of such software, but it
is worthwhile to consider its use in the simple linear regression context. Learning
where on a typical printout to find the various summary statistics corresponding
to calculations made in this section helps in locating important summary statistics
for the more complicated curve- and surface-fitting analyses of the next section.
Printout 1 is from a MINITAB analysis of the pressure/density data.

WWW

Printout 1 Simple Linear Regression for the Pressure/Density Data (Example 1)

Regression Analysis

The regression equation is
density = 2.38 +0.000049 pressure
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Predictor Coef StDev T P
Constant 2.37500 0.01206 197.01 0.000
pressure 0.00004867 0.00000182 26.78 0.000

S = 0.01991 R-Sq = 98.2% R-Sq(adj) = 98.1%

Analysis of Variance

Source DF SS MS F P
Regression 1 0.28421 0.28421 717.06 0.000
Residual Error 13 0.00515 0.00040
Total 14 0.28937

Obs pressure density Fit StDev Fit Residual St Resid
1 2000 2.48600 2.47233 0.00890 0.01367 0.77
2 2000 2.47900 2.47233 0.00890 0.00667 0.37
3 2000 2.47200 2.47233 0.00890 -0.00033 -0.02
4 4000 2.55800 2.56967 0.00630 -0.01167 -0.62
5 4000 2.57000 2.56967 0.00630 0.00033 0.02
6 4000 2.58000 2.56967 0.00630 0.01033 0.55
7 6000 2.64600 2.66700 0.00514 -0.02100 -1.09
8 6000 2.65700 2.66700 0.00514 -0.01000 -0.52
9 6000 2.65300 2.66700 0.00514 -0.01400 -0.73
10 8000 2.72400 2.76433 0.00630 -0.04033 -2.14R
11 8000 2.77400 2.76433 0.00630 0.00967 0.51
12 8000 2.80800 2.76433 0.00630 0.04367 2.31R
13 10000 2.86100 2.86167 0.00890 -0.00067 -0.04
14 10000 2.87900 2.86167 0.00890 0.01733 0.97
15 10000 2.85800 2.86167 0.00890 -0.00367 -0.21

R denotes an observation with a large standardized residual

Predicted Values

Fit StDev Fit 95.0% CI 95.0% PI
2.61833 0.00545 ( 2.60655, 2.63011) ( 2.57374, 2.66293)

Printout 1 is typical of summaries of regression analyses printed by commer-
cially available statistical packages. The most basic piece of information on the
printout is, of course, the fitted equation. Immediately below it is a table giving (to
more significant digits) the estimated coefficients (b0 and b1), their estimated stan-
dard deviations, and the t ratios (appropriate for testing whether coefficients β are
0) made up as the quotients. The printout includes the values of sLF and R2 and an
ANOVA table much like Table 9.7. For the several observed values of test statistics
printed out (including the observed value of F from formula (9.34)), MINITAB
gives observed levels of significance. The ANOVA table is followed by a table of
values of y, fitted y,

“StDev Fit” = sLF

√
1

n
+ (x − x̄)2∑

(x − x̄)2
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and residual, and standardized residual corresponding to the n data points. MINI-
TAB’s regression program has an option that allows one to request fitted values,
confidence intervals for µy|x , and prediction intervals for x values of interest, and
Printout 1 finishes with this information for the value x = 5,000.

The reader is encouraged to compare the information on Printout 1 with the
various results obtained in Example 1 and verify that everything on the printout
(except the “adjusted R2” value) is indeed familiar.
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1. Return to the situation of Exercise 3 of Section
4.1 and the polymer molecular weight study of R.
Harris.
(a) Find sLF for these data. What does this intend

to measure in the context of the engineering
problem?

(b) Plot both residuals versus x and the standard-
ized residuals versus x . How much difference
is there in the appearance of these two plots?

(c) Give a 90% two-sided confidence interval for
the increase in mean average molecular weight
that accompanies a 1◦C increase in temperature
here.

(d) Give individual 90% two-sided confidence in-
tervals for the mean average molecular weight
at 212◦C and also at 250◦C.

(e) Give simultaneous 90% two-sided confidence
intervals for the two means indicated in part
(d).

(f) Give 90% lower prediction bounds for the next
average molecular weight, first at 212◦C and
then at 250◦C.

(g) Give approximately 95% lower tolerance
bounds for 90% of average molecular weights,
first at 212◦C and then at 250◦C.

(h) Make an ANOVA table for testing H0 : β1 = 0
in the simple linear regression model. What is
the p-value here for a two-sided test of this
hypothesis?

2. Return to the situation of Chapter Exercise 1 of
Chapter 4 and the concrete strength study of Nichol-
son and Bartle.

(a) Find estimates of the parameters β0, β1, and σ
in the simple linear regression model y = β0 +
β1x + ε. How does your estimate of σ based
on the simple linear regression model compare
with the pooled sample standard deviation, sP?

(b) Compute residuals and standardized residuals.
Plot both against x and ŷ and normal-plot them.
How much do the appearances of the plots of
the standardized residuals differ from those of
the raw residuals?

(c) Make a 90% two-sided confidence interval for
the increase in mean compressive strength that
accompanies a .1 increase in the water/cement
ratio. (This is .1β1).

(d) Test the hypothesis that the mean compressive
strength doesn’t depend on the water/cement
ratio. What is the p-value?

(e) Make a 95% two-sided confidence interval for
the mean strength of specimens with the wa-
ter/cement ratio .5 (based on the simple linear
regression model).

(f) Make a 95% two-sided prediction interval for
the strength of an additional specimen with
the water/cement ratio .5 (based on the simple
linear regression model).

(g) Make an approximately 95% lower tolerance
bound for the strengths of 90% of additional
specimens with the water/cement ratio .5
(based on the simple linear regression model).
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9.2 Inference Methods for General Least
Squares Curve- and Surface-Fitting
(Multiple Linear Regression)

The previous section presented formal inference methods available under the (nor-
mal) simple linear regression model. Confidence interval estimation, hypothesis
testing, prediction and tolerance intervals, and ANOVA were all seen to have sim-
ple linear regression versions. This section makes a parallel study of more gen-
eral curve- and surface-fitting contexts. First, the multiple linear regression model
and its corresponding variance estimate and standardized residuals are introduced.
Then, in turn, there are discussions of how multiple linear regression computer
programs can (1) facilitate inference for rate of change parameters in the model,
(2) make possible inference for the mean system response at a given combination
of values for the input/system variables and the making of prediction and toler-
ance intervals, and (3) allow the use of ANOVA methods in multiple regression
contexts.

9.2.1 The Multiple Linear Regression Model, Corresponding
Variance Estimate, and Standardized Residuals

This section considers situations like those treated on a descriptive level in Section
4.2, where for k system variables x1, x2, . . . , xk and a response y, an approximate
relationship like

y ≈ β0 + β1x1 + β2x2 + · · · + βk xk (9.35)

holds. As in Section 4.2, the form (9.35) not only covers those circumstances where
x1, x2, . . . , xk all represent physically different variables but also describes contexts
where some of the variables are functions of others. For example, the relationship

y ≈ β0 + β1x1 + β2x2
1

can be thought of as a k = 2 version of formula (9.35), where x2 is a deterministic
function of x1, x2 = x2

1 .
As in Section 4.2, a double subscript notation will be used for the values of the in-

put variables. Thus, the problem considered is that of inference based on the data vec-
tors (x11, x21, . . . , xk1, y1), (x12, x22, . . . , xk2, y2), . . . , (x1n, x2n, . . . , xkn, yn). As
always, a probability model is needed to support formal inferences for such data,
and the one considered here is an appropriate specialization of the general one-way
normal model of Section 7.1. That is, the standard assumptions of the multiple linear
regression model are that there are underlying normal distributions for the response
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y with a common variance σ 2 but means µy|x1,x2,...,xk
that change linearly with each

of x1, x2, . . . , xk . In symbols, it is typical to write that for i = 1, 2, . . . , n,

The (normal) multiple
linear regression

model

yi = β0 + β1x1i + β2x2i + · · · + βk xki + εi (9.36)

where the εi are (unobservable) iid normal (0, σ 2) random variables, the x1i , x2i , . . . ,

xki are known constants, and β0, β1, β2, . . . , βk and σ 2 are unknown model param-
eters (fixed constants). This is the specialization of the general one-way model

yi j = µi + εi j

to the situation where the means µy|x1,x2,...,xk
satisfy the relationship

µy|x1,x2,...,xk
= β0 + β1x1 + β2x2 + · · · + βk xk (9.37)

If one thinks of formula (9.37) as defining a surface in (k + 1)-dimensional space,
then the model equation (9.36) simply says that responses y differ from correspond-
ing values on that surface by mean 0, variance σ 2 random noise. Figure 9.6 illustrates
this point for the simple k = 2 case (where x1 and x2 are not functionally related).

Inferences about quantities involving those (x1, x2, . . . , xk) combinations repre-
sented in the data, like the mean response at a single (x1, x2, . . . , xk) or the difference
between two such mean responses, will typically be sharper when methods based
on model (9.36) can be used in place of the general methods of Chapter 7. And as
was true for simple linear regression, to the extent that it is sensible to assume that
model (9.36) describes system behavior for values of x1, x2, . . . , xk not included

Surface defined by

    y|x1, x2 =    0 +    1x1 +    2x2

y

x1

x2

Distributions of y
for 2 different
(x1, x2) pairs

   0

βµ β β

β

Figure 9.6 Graphical representation of the multiple linear
regression model y = β0 + β1x1 + β2x2 + ε
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in the data, it provides the basis for inferences involving limited interpolation and
extrapolation on the system variables x1, x2, . . . , xk .

Section 4.2 contains a discussion of using statistical software in the least squares
fitting of the approximate relationship (9.35) to a set of (x1, x2, . . . , xk, y) data.
That discussion can be thought of as covering the fitting and use of residuals in
model checking for the multiple linear regression model (9.36). Section 4.2 did
not produce explicit formulas for b0, b1, b2, . . . , bk , the (least squares) estimates ofEstimators of the

coefficients β in
the multiple linear

regression model

β0, β1, β2, . . . , βk . Instead it relied on the software to produce those estimates. Of
course, once one has estimates of the β’s, corresponding fitted values immediately
become

Fitted values for
the multiple linear

regression model

ŷi = b0 + b1x1i + b2x2i + · · · + bk xki (9.38)

with residuals

Residuals for
the multiple linear

regression model
ei = yi − ŷi (9.39)

The residuals (9.39) can be used to make up an estimate of σ 2. One divides
a sum of squared residuals by an appropriate number of degrees of freedom. That
is, one can make the following definition of a (multiple linear regression or)
surface-fitting sample variance.

Definition 3 For a set of n data vectors (x11, x21, . . . , xk1, y1), (x12, x22, . . . , xk2, y2), . . . ,

(x1n, x2n, . . . , xkn, yn) where least squares fitting produces fitted values given
by formula (9.38) and residuals (9.39),

s2
SF =

1

n − k − 1

∑
(y − ŷ)2 = 1

n − k − 1

∑
e2 (9.40)

will be called a surface-fitting sample variance. Associated with it are ν =
n − k − 1 degrees of freedom and an estimated standard deviation of response,

sSF =
√

s2
SF.

Compare Definitions 1 and 3 and notice that the k = 1 version of s2
SF is just s2

LF
from simple linear regression. sSF estimates the level of basic background variation,
σ , whenever the model (9.36) is an adequate description of the system under study.
When it is not, sSF will tend to overestimate σ. So comparing sSF to sP is another
way of investigating the appropriateness of that description. (sSF much larger than
sP suggests that model (9.36) is a poor one.)
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Example 2
(Example 5, Chapter 4,

revisited—page 150 )

Inference in the Nitrogen Plant Study

The main example in this section will be the nitrogen plant data set given in Table
4.8. Recall that in the discussion of the example, with

x1 = a measure of air flow

x2 = the cooling water inlet temperature

y = a measure of stack loss

the fitted equation

ŷ = −15.409− .069x1 + .528x2 + .007x2
1

appeared to be a sensible data summary. Accordingly, consider the making of
inferences based on the k = 3 version of model (9.36),

yi = β0 + β1x1i + β2x2i + β3x2
1i + εi (9.41)

Printout 2 is from a MINITAB analysis of the data of Table 4.8. Among
many other things, it gives the values of the residuals from the fitted version of
formula (9.41) for all n = 17 data points. It is then possible to apply Definition
3 and produce a surface-fitting estimate of the parameter σ 2 in the model (9.41).
That is,

s2
SF =

1

17− 3− 1

(
(.053)2 + (−.125)2 + · · · + (.265)2 + (2.343)2

)
= 1.26

so a corresponding estimate of σ is

sSF =
√

1.26

= 1.125I

(The units of y—and therefore sSF—are .1% of incoming ammonia escaping
unabsorbed.)

In routine practice it is a waste to do even these calculations, since multiple
regression programs typically output sSF as part of their analysis. The reader
should take time to locate the value sSF = 1.125 on Printout 2. If one accepts
the relevance of model (9.41), for fixed values of airflow and inlet temperature
(and therefore airflow squared), the standard deviation associated with many
days’ stack losses produced under those conditions would then be expected to be
approximately .1125%.
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Printout 2 Multiple Linear Regression for the Stack Loss Data (Example 2)

Regression Analysis

The regression equation is
y = - 15.4 - 0.069 x1 + 0.528 x2 + 0.00682 x1**2

Predictor Coef StDev T P
Constant -15.41 12.60 -1.22 0.243
x1 -0.0691 0.3984 -0.17 0.865
x2 0.5278 0.1501 3.52 0.004
x1**2 0.006818 0.003178 2.15 0.051

S = 1.125 R-Sq = 98.0% R-Sq(adj) = 97.5%

Analysis of Variance

Source DF SS MS F P
Regression 3 799.80 266.60 210.81 0.000
Residual Error 13 16.44 1.26
Total 16 816.24

Source DF Seq SS
x1 1 775.48
x2 1 18.49
x1**2 1 5.82

Obs x1 y Fit StDev Fit Residual St Resid
1 80.0 37.000 36.947 1.121 0.053 0.57 X
2 62.0 18.000 18.125 0.407 -0.125 -0.12
3 62.0 18.000 18.653 0.462 -0.653 -0.64
4 62.0 19.000 19.181 0.553 -0.181 -0.18
5 62.0 20.000 19.181 0.553 0.819 0.84
6 58.0 15.000 15.657 0.513 -0.657 -0.66
7 58.0 14.000 13.018 0.475 0.982 0.96
8 58.0 14.000 13.018 0.475 0.982 0.96
9 58.0 13.000 12.490 0.595 0.510 0.53
10 58.0 11.000 13.018 0.475 -2.018 -1.98
11 58.0 12.000 13.546 0.378 -1.546 -1.46
12 50.0 8.000 7.680 0.493 0.320 0.32
13 50.0 7.000 7.680 0.493 -0.680 -0.67
14 50.0 8.000 8.208 0.499 -0.208 -0.21
15 50.0 8.000 8.208 0.499 -0.208 -0.21
16 50.0 9.000 8.735 0.548 0.265 0.27
17 56.0 15.000 12.657 0.298 2.343 2.16R

R denotes an observation with a large standardized residual
X denotes an observation whose X value gives it large influence.

Predicted Values

Fit StDev Fit 95.0% CI 95.0% PI
15.544 0.383 ( 14.717, 16.372) ( 12.978, 18.111)
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Example 2
(continued )

Among the 17 data points in Table 4.8, there are only 12 different airflow/inlet
temperature combinations (and therefore 12 different (x1, x2, x2

1) vectors). The
original data can be thought of as organized into r = 12 separate samples, one
for each different (x1, x2, x2

1) vector and there is thus an estimate of σ that
doesn’t depend for its validity on the appropriateness of the assumption that
µy|x1,x2

= β0 + β1x1 + β2x2 + β3x2
1 . That is, sP can be computed and compared

it to sSF as a check on the appropriateness of model (9.41). Table 9.8 organizes
the calculation of that pooled estimate of σ .

Table 9.8
Twelve Sample Means and Four Sample Variances
for the Stack Loss Data

x1, x2, y,
Air Inlet Stack

Flow Temperature Loss ȳ s2

50 18 8, 7 7.5 .5
50 19 8, 8 8.0 0.0
50 20 9 9.0 —
56 20 15 15.0 —
58 17 13 13.0 —
58 18 14, 14, 11 13.0 3.0
58 19 12 12.0 —
58 23 15 15.0 —
62 22 18 18.0 —
62 23 18 18.0 —
62 24 19, 20 19.5 .5
80 27 37 37.0 —

Then

s2
P =

1

17− 12
((2− 1)(.5)+ (2− 1)(0.0)+ (3− 1)(3.0)+ (2− 1)(.5))

= 1.40

so

sP =
√

s2
P =
√

1.40 = 1.183I
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The fact that sSF = 1.125 and sP = 1.183 are in substantial agreement is
consistent with the work in Example 5 of Chapter 4, which found the equation

ŷ = −15.409− .069x1 + .528x2 + .007x2
1

to be a good summarization of the nitrogen plant data.

sSF is basic to all of formal statistical inference based on the multiple lin-
ear regression model. But before using it to make statistical intervals and do
significance testing, note also that it is useful for producing standardized resid-
uals for the multiple linear regression model. That is, it is possible to find pos-
itive constants a1, a2, . . . , an (which are each complicated functions of all of
x11, x21, . . . , xk1, x12, x22, . . . , xk2, . . . , x1n, x2n, . . . , xkn) such that the i th residual
ei = yi − ŷi has

Var(yi − ŷi ) = aiσ
2

Then, recalling Definition 2 in Chapter 7 (page 458), corresponding to the data point
(x1i , x2i , . . . , xki , yi ) is the standardized residual for multiple linear regression

Standardized
residuals for

multiple linear
regression

e∗i =
ei

sSF
√

ai

(9.42)

It is not possible to include here a simple formula for the ai that are needed to
compute standardized residuals. (They are of interest only as building blocks in
formula (9.42) anyway.) But it is easy to read the standardized residuals (9.42) off a
typical multiple regression printout and to plot them in the usual ways as means of
checking the apparent appropriateness of a candidate version of model (9.36) fit to
a set of n data points (x1, x2, . . . , xk, y).

Example 2
(continued )

As an illustration of the use of standardized residuals, consider again Printout 2
on page 679. The annotations on that printout locate the columns of residuals and
standardized residuals for model (9.41). Figure 9.7 depicts normal probability
plots, first of the raw residuals and then of the standardized residuals.

There are only the most minor differences between the appearances of the
two plots in Figure 9.7, suggesting that decisions concerning the appropriateness
of model (9.41) based on raw residuals will not be much altered by the more
sophisticated consideration of standardized residuals instead.
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Figure 9.7 Normal plots of residuals and standardized residuals for the stack loss data (Example 2)

9.2.2 Inference for the Parameters β0, β1, β2, . . . , βk

Section 9.1 considered inference for the slope parameter β1 in simple linear regres-
sion, treating it as a rate of change (of average y as a function of x). In the multiple
regression context, if x1, x2, . . . , xk are all physically different system variables, the
coefficients β1, β2, . . . , βk can again be thought of as rates of change of average
response with respect to x1, x2, . . . , xk , respectively. (They are partial derivatives
of µy|x1,x2,...,xk

with respect to the x’s.) On the other hand, when some x’s are

functionally related to others (for instance, if k = 2 and µy|x = β0 + β1x + β2x2),
individual interpretation of the β’s can be less straightforward. In any case, the β’s
do determine the nature of the surface represented by

µy|x1,x2,...,xk
= β0 + β1x1 + β2x2 + · · · + βk xk

and it is possible to do formal inference for β0, β1, . . . , βk individually. In many
instances, important physical interpretations can be found for such inferences. (For
example, beginning with µy|x = β0 + β1x + β2x2, an inference that β2 is positive
says that the mean response is concave up as a function of x and has a minimum
value.)

The key to formal inference for the β’s is that under model (9.36), there are
positive constants d0, d1, d2, . . . , dk (which are each complicated functions of all of
x11, . . . , xk1, x12, . . . , xk2 . . . , x1n, . . . , xkn) such that the least squares coefficients
b0, b1, . . . , bk are normally distributed with

Ebl = βl

and

Var bl = dlσ
2
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This in turn makes it plausible that for l = 0, 1, 2, . . . , k, the quantity

Estimated standard
deviation of bl

sSF

√
dl (9.43)

is an estimate of the standard deviation of bl and that

T = bl − βl

sSF

√
dl

(9.44)

has a tn−k−1 distribution.
There is no simple way to write down formulas for the constants dl , but the

estimated standard deviations of the coefficients, sSF

√
dl , are a typical part of the

output from multiple linear regression programs.
The usual arguments of Chapter 6 applied to expression (9.44) then show that

H0 : βl = # (9.45)

can be tested using the test statistic

Test statistic
for H0 : βl = #

T = bl − #

sSF

√
dl

(9.46)

and a tn−k−1 reference distribution. More importantly, under the multiple linear
regression model (9.36), a two-sided individual confidence interval for βl can be
made using endpoints

Confidence limits
for βl

bl ± tsSF

√
dl (9.47)

where the associated confidence is the probability assigned to the interval between
−t and t by the tn−k−1 distribution. Appropriate use of only one of the endpoints
(9.47) gives a one-sided interval for βl .

Example 2
(continued )

Looking again at Printout 2 (see page 679), note that MINITAB’s multiple re-
gression output includes a table of estimated coefficients (bl ) and (estimated)
standard deviations (sSF

√
dl). These are collected in Table 9.9.
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Example 2
(continued )

Table 9.9
Fitted Coefficients and Estimates of Their Standard Deviations
for the Stack Loss Data

(Estimated) Standard Deviation
Estimated Coefficient of the Estimate

b0 = −15.41 sSF

√
d0 = 12.60

b1 = −.0691 sSF

√
d1 = .3984

b2 = .5278 sSF

√
d2 = .1501

b3 = .006818 sSF

√
d3 = .003178

Then since the upper .05 point of the t13 distribution is 1.771, from formula
(9.47) a two-sided 90% confidence interval for β2 in model (9.41) has endpoints

.5278± 1.771(.1501)I
that is,

.2620 (.1% nitrogen loss/degree) and .7936 (.1% nitrogen loss/degree)

This interval establishes that there is an increase in mean stack loss y with
increased inlet temperature x2 (the interval contains only positive values). It
further gives a way of assessing the likely impact on y of various changes in x2.
For example, if x1 (and therefore x3 = x2

1) is held constant but x2 is increased by
2◦, one can anticipate an increase in mean stack loss of between

.5240 (.1% nitrogen loss) and 1.5873 (.1% nitrogen loss)

As a second example of the use of formula (9.47), note that a 90% two-sided
confidence interval for β3 has endpoints

.006818± 1.771(.003178)

that is,

.0012 and .0124

β3 controls the amount and direction of curvature (in the variable x1) possessed by
the surface specified by µy|x1,x2

= β0 + β1x1 + β2x2 + β3x2
1 . Since the interval

contains only positive values, it shows that at the 90% confidence level, there is
some important concave-up curvature in the airflow variable needed to describe
the stack loss variable. This is consistent with the picture of fitted mean response
given previously in Figure 4.15 (see page 155).
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However, check that if 95% confidence is used in the calculation of the two-
sided interval for β3, the resulting confidence interval contains values on both
sides of 0. If this higher level of confidence is needed, the data in hand are not
adequate to establish definitively the nature of any curvature in mean stack loss
as a function of airflow. Any real curvature appears weak enough in comparison
to the basic background variation that more data are needed to decide whether
the surface is concave up, linear, or concave down in the variable x1.

Very often multiple regression programs output not only the estimated standard
deviations of fitted coefficients (9.43) but also the ratios

t = bl

sSF

√
dl

and associated two-sided p-values for testing

H0 : βl = 0

Review Printout 2 and note that, for example, the two-sided p-value for testing
H0 : β3 = 0 in model (9.41) is slightly larger than .05. This is completely consistent
with the preceding discussion regarding the interpretation of interval estimates
of β3.

9.2.3 Inference for the Mean System Response for a Particular
Set of Values for x1, x2, . . . , xk

Inference methods for the parameters β0, β1, . . . , βk provide insight into the nature
of the relationships between x1, x2, . . . , xk and the mean response y. But other
methods are needed to answer the important engineering question, “What can be
expected in terms of system response if I use a particular combination of levels of the
system variables x1, x2, . . . , xk?” An answer to this question will first be phrased
in terms of inference methods for the mean system response µy|x1,x2,...,xk

.
In a manner similar to what was done in Section 9.1, the notation

Estimator of
µy|x1,x2,...,xk

ŷ = b0 + b1x1 + b2x2 + · · · + bk xk (9.48)

will here be used for the value produced by the least squares equation when a
particular set of numbers x1, x2, . . . , xk is plugged into it. (ŷ may not be a fitted
value in the strict sense of the phrase, as the vector (x1, x2, . . . , xk) may not match
any data vector (x1i , x2i , . . . , xki ) used to produce the least squares coefficients
b0, b1, . . . , bk .) As it turns out, the multiple linear regression model (9.36) leads to
simple distributional properties for ŷ, which then produce inference methods for
µy|x1,x2,...,xk

.



686 Chapter 9 Regression Analysis—Inference for Curve- and Surface-Fitting

Under model (9.36), it is possible to find a positive constant A depending in
a complicated way upon x1, x2, . . . , xk and all of x11, . . . , xk1, x12, . . . , xk2, . . . ,

x1n, . . . , xkn (the locations at which inference is desired and at which the original
data points were collected) so that ŷ has a normal distribution with

E ŷ = µy|x1,x2,...,xk
= β0 + β1x1 + · · · + βk xk

and

A =
√

Var ŷ/σ Var ŷ = σ 2 A2 (9.49)

In view of formula (9.49), it is thus plausible that

Estimated standard
deviation of ŷ

sSF · A (9.50)

can be used as an estimated standard deviation for ŷ and that inference methods for
the mean system response can be based on the fact that

T =
ŷ − µy|x1,x2,...,xk

sSF · A

has a tn−k−1 distribution. That is,

H0 : µy|x1,x2,...,xk
= # (9.51)

can be tested using the test statistic

Test statistic for
H0 : µy|x1,x2,...,xk

= # T = ŷ − #

sSF · A
(9.52)

and a tn−k−1 reference distribution. Further, under the multiple linear regression
model (9.36), a two-sided confidence interval for µy|x1,x2,...,xk

can be made using
endpoints

Confidence limits
for the mean response

µy|x1,x2,...,xk

ŷ ± tsSF · A (9.53)

where the associated confidence is the probability assigned to the interval between
−t and t by the tn−k−1 distribution. One-sided intervals based on formula (9.53) are
made in the usual way.

The practical obstacle to be overcome in the use of these methods is the compu-Finding the
factor A tation of A. Although it is not possible to give a simple formula for A, most multiple

regression programs provide A for (x1, x2, . . . , xk) vectors of interest. MINITAB,
for example, will fairly automatically produce values of sSF · A corresponding to



9.2 Inference Methods for General Least Squares Curve- and Surface-Fitting (Multiple Linear Regression) 687

each data point (x1i , x2i , . . . , xki , yi ), labeled as (the estimated) standard deviation
(of the) fit. And an option makes it possible to obtain similar information for any
user-specified choice of (x1, x2, . . . , xk). (Division of this by sSF then produces A.)

Example 2
(continued )

Consider the problem of estimating the mean stack loss if the nitrogen plant
of Example 5 in Chapter 4 is operated consistently with x1 = 58 and x2 = 19.
(Notice that this means that x3 = x2

1 = 3,364 is involved.) Now the conditions
x1 = 58, x2 = 19, and x3 = 3,364 match perfectly those of data point number
11 on Printout 2 (see page 679). Thus, ŷ and sSF · A for these conditions may
be read directly from the printout as 13.546 and .378, respectively. Then, forI
example, from formula (9.53), a 90% two-sided confidence interval for the mean
stack loss corresponding to an airflow of 58 and water inlet temperature of 19
has endpoints

13.546± 1.771(.378)

that is,

12.88 (.1% nitrogen loss) and 14.22 (.1% nitrogen loss)I
As a second illustration of the use of formula (9.53), suppose that setting

plant operating conditions at an airflow of x1 = 60 and a water inlet temperature
of x2 = 20 is contemplated and it is desireable to have an interval estimate for the
mean stack loss implied by those conditions. Notice that the x1 = 60, x2 = 20,
and x3 = x2

1 = 3,600 vector does not exactly match that of any of the n = 17
data points available. Therefore, some interpolation/extrapolation is required to
make the desired interval. And it will not be possible to simply read appropriate
values of ŷ and sSF · A off Printout 2 as related to one of the data points used to
fit the equation.

Location of the point with coordinates x1 = 60 and x2 = 20 on a scatterplot
of (x1, x2) values for the original n = 17 data points (like Figure 4.19) reveals
that the candidate operating conditions are not wildly different from those used
to develop the fitted equation. So there is hope that the use of formula (9.53)
will provide an inference of some practical relevance. Accordingly, the coordi-
nates x1 = 60, x2 = 20, and x3 = x2

1 = 3,600 were input into MINITAB and a
“prediction” request made, resulting in the final section of Printout 2. Reading
from that final section of the printout, ŷ = 15.544 and sSF · A = .383, so a 90%
two-sided confidence interval for the mean stack loss has endpoints

15.544± 1.771(.383)

that is,

14.86 (.1% nitrogen loss) and 16.22 (.1% nitrogen loss)I
(Of course, endpoints of a 95% interval can be read directly from the printout.)
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Example 2
(continued )

It is impossible to overemphasize the fact that the preceding two intervals are
dependent for their practical relevance on that of model (9.41) for not only those
(x1, x2) pairs in the original data but (in the second case) also for the x1 = 60 and
x2 = 20 set of conditions. Formulas like (9.53) always allow for imprecision due
to statistical fluctuations/background noise in the data. They do not, however,
allow for discrepancies related to the application of a model in a regime over
which it is not appropriate. Formula (9.53) is an important and useful formula.
But it should be used thoughtfully, with no expectation that it will magically do
more than help quantify the precision provided by the data in the context of a
particular set of model assumptions.

Lacking a simple explicit formula for A, it is difficult to be very concrete about
how this quantity varies. In qualitative terms, it does change with the (x1, x2, . . . , xk)

vector under consideration. It is smallest when this vector is near the center of the
cloud of points (x1i , x2i , . . . , xki ) in k-dimensional space corresponding to the n
data points used to fit model (9.36). The fact that it can vary substantially is obvious
from Printout 2. There for the nitrogen plant case, the estimated standard deviation
of ŷ given in display (9.50) varies from .298 to 1.121, indicating that A for data
point 1 is about 3.8 times the size of A for data point 17 ( 1.121

.298 ≈ 3.8). That is, the
precision with which a mean response is determined can vary widely over the region
where it is sensible to use a fitted equation.

Formula (9.53) provides individual confidence intervals for mean responses.
Simultaneous intervals are also easily obtained by a modification of formula (9.53)
similar to the one provided for simple linear regression. That is, under the multiple
linear regression model, simultaneous two-sided confidence intervals for all mean
responses µy|x1,x2,...,xk

can be made using respective endpoints
Simultaneous two-sided
confidence limits for all

mean repsonses
µy|x1,x2,...,xk

ŷ ±√(k + 1) f sSF · A (9.54)

where for positive f , the associated confidence is the Fk+1,n−k−1 probability as-
signed to the interval (0, f ). Formula (9.54) is related to formula (9.53) through
the replacement of the multiplier t by the (larger for a given nominal confidence)
multiplier

√
(k + 1) f . When it is applied only to (x1, x2, . . . , xk) vectors found in

the original n data points, formula (9.54) is an alternative to the P-R method of
simultaneous intervals for means, appropriate to surface-fitting problems. When the
multiple linear regression model is indeed appropriate, formula (9.54) will usually
give shorter simultaneous intervals than the P-R method.

Example 2
(continued )

For making simultaneous 90% confidence intervals for the mean stack losses
at the 12 different sets of plant conditions represented in the original data set,
one can use formula (9.54) with k = 3, f = 2.43 (the .9 quantile of the F4,13
distribution) and the ŷ and corresponding sSF · A values appearing on Printout 2
(see page 679). For example, considering the x1 = 80 and x2 = 27 conditions of



9.2 Inference Methods for General Least Squares Curve- and Surface-Fitting (Multiple Linear Regression) 689

observation 1 on the printout, sSF · A = 1.121 and one of the simultaneous 90%
confidence intervals associated with these conditions has endpoints

36.947±
√
(3+ 1)(2.43)(1.121)

or

33.452 (.1% nitrogen loss) and 40.442 (.1% nitrogen loss)

9.2.4 Prediction and Tolerance Intervals (Optional )

The second kind of answer that statistical theory can provide to the question, “What is
to be expected in terms of system response if one uses a particular (x1, x2, . . . , xk)?”,
has to do with individual responses rather than mean responses. That is, the same
factor A referred to in making confidence intervals for mean responses can be used
to develop prediction and tolerance intervals for surface-fitting situations.

In the first place, under model (9.36), the two-sided interval with endpoints

Multiple regression
prediction limits for

an additional y at
(x1, x2, . . . , xk)

ŷ ± tsSF

√
1+ A2 (9.55)

can be used as a prediction interval for an additional observation at a particular
combination of levels of the variables x1, x2, . . . , xk . The associated prediction
confidence is the probability that the tn−k−1 distribution assigns to the interval
between −t and t . One-sided intervals are made in the usual way, by employing
only one of the endpoints (9.55) and adjusting the confidence level appropriately.

In order to use formula (9.55), sSF · A and sSF can be taken from a multiple
regression printout and A obtained via division. Equivalently, it is possible to use a
small amount of algebra to rewrite formula (9.55) as

An alternative
formula for

prediction limits
ŷ ± t

√
s2

SF + (sSF · A)2 (9.56)

and substitute sSF and sSF · A directly into formula (9.56).
In order to find one-sided tolerance bounds in the surface-fitting context, begin

with the value of A corresponding to a particular (x1, x2, . . . , xk). If a confidence
level of γ is desired in locating a fraction p of the underlying distribution of
responses, compute

Multiplier to use
in making tolerance

intervals in
multiple regression

τ =
Qz(p)+ AQz(γ )

√√√√1+ 1

2(n − k − 1)

(
Q2

z (p)

A2 − Q2
z (γ )

)

1− Q2
z (γ )

2(n − k − 1)

(9.57)
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Then, the interval
A one-sided tolerance

interval for the y
distribution at
(x1, x2, . . . , xk)

(ŷ − τ sSF,∞) (9.58)

or
Another one-sided
tolerance interval

for the y distribution
at (x1, x2, . . . , xk)

(−∞, ŷ + τ sSF) (9.59)

can be used as an approximately γ level one-sided tolerance interval for a fraction
p of the underlying distribution of responses corresponding to (x1, x2, . . . , xk).

Example 2
(continued )

Returning to the nitrogen plant example, consider first the calculation of a 90%
lower prediction bound for a single additional stack loss y, if airflow of x1 = 58
and water inlet temperature of x2 = 19 are used. Then consider also a 95% lower
tolerance bound for 90% of many additional stack loss values if the plant is run
under those conditions.

Treating the prediction interval problem, recall that for x1 = 58 and x2 = 19,
ŷ = 13.546 and sSF · A = .378. Since sSF = 1.125 and the .9 quantile of the t13
distribution is 1.350, formula (9.56) shows that the desired 90% lower prediction
bound for an additional stack loss under such plant operating conditions is

13.546− 1.350
√
(1.125)2 + (.378)2

that is, approximately

11.94 (.1% nitrogen loss)I

To not predict a single additional stack loss, but rather to locate 90% of many
additional stack losses with 95% confidence, expression (9.57) is the place to
begin. Note that for x1 = 58 and x2 = 19,

A = .378/1.125 = .336

so, using expression (9.57),

τ =
1.282+ (.378)(1.645)

√√√√1+ 1

2(17− 3− 1)

(
(1.282)2

(.378)2
− (1.645)2

)

1− (1.645)2

2(17− 3− 1)

= 2.234
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So finally, a 95% lower tolerance bound for 90% of stack losses produced under
operating conditions of x1 = 58 and x2 = 19 is, via display (9.58),

13.546− 2.234(1.125) = 13.546− 2.513

that is,

11.033 (.1% nitrogen loss)I

The warnings raised in the previous section concerning prediction and tolerance
intervals in simple regression all apply equally to the present case of multiple
regression. So do points similar to those made in Example 2 (page 688) in reference
to confidence intervals for the mean system response. Although they are extremely
useful engineering tools, statistical intervals are never any better than the models on
which they are based.

9.2.5 Multiple Regression and ANOVA

Formal inference in curve- and surface-fitting contexts can (and typically should)
be carried out primarily using interval-oriented methods. Nevertheless, testing and
ANOVA methods do have their place. So the discussion now turns to the matter of
what ANOVA ideas provide in multiple regression.

As always, SSTot will stand for
∑
(y − ȳ)2 and SSE for

∑
(y − ŷ)2. Remember

also that Definition 2 introduced the notation SSR for the difference SSTot− SSE.
As remarked following Definition 2, the coefficient of determination can be written
in terms of SSR and SSTot as

R2 = SSTot− SSE

SSTot
= SSR

SSTot

Further, under model (9.36), these sums of squares (SSTot, SSE, and SSR) form the
basis of an F test of the hypothesis

H0 : β1 = β2 = · · · = βk = 0 (9.60)

versus

Ha : not H0 (9.61)

Hypothesis (9.60) can be tested using the statistic

F statistic for testing
H0 : β1 = β2 = · · · = βk = 0 F = SSR/k

SSE/(n − k − 1)
(9.62)
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and an Fk,n−k−1 reference distribution, where large observed values of the test statis-
tic constitute evidence against H0. (The denominator of statistic (9.62) is another
way of writing s2

SF.)
Hypothesis (9.60) in the context of the multiple linear regression model implies

that the mean response doesn’t depend on any of the process variables x1, x2, . . . , xk .
That is, if all of β1 through βk are 0, model statement (9.36) reduces to

yi = β0 + εi

So a test of hypothesis (9.60) is often interpreted as a test of whether the meanInterpreting a test of
H0 : β1 = β2 = · · · = βk = 0 response is related to any of the input variables under consideration. The calculations

leading to statistic (9.62) are most often organized in a table quite similar to the
one discussed in Section 9.1 for testing H0 : β1 = 0 in simple linear regression. The
general form of that table is given as Table 9.10.

Table 9.10
General Form of the ANOVA Table for Testing H0 : β1 = β2 = · · · = βk = 0
in Multiple Regression

ANOVA Table (for testing H0 : β1 = β2 = · · · = βk = 0)
Source SS d f MS F

Regression SSR k SSR/k MSR/MSE
Error SSE n − k − 1 SSE/(n − k − 1)

Total SSTot n − 1

Example 2
(continued )

Once again turning to the analysis of the nitrogen plant data under the model yi =
β0 + β1x1i + β2x2i + β3x2

1i + εi , consider testing H0 : β1 = β2 = β3 = 0—that
is, mean stack loss doesn’t depend on airflow (or its square) or water inlet
temperature. Printout 2 (see page 679) includes an ANOVA table for testing this
hypothesis, which is essentially reproduced here as Table 9.11.

From Table 9.11, the observed value of the F statistic is 210.81, which is to be
compared to F3,13 quantiles in order to produce an observed level of significance.
As indicated in Printout 2, the F3,13 probability to the right of the value 210.81
is 0 (to three decimal places). This is definitive evidence that not all of β1, β2,
and β3 can be 0. Taken as a group, the variables x1, x2, and x3 = x2

1 definitely
enhance one’s ability to predict stack loss.
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Table 9.11
ANOVA Table for Testing H0 : β1 = β2 = β3 = 0 for the Stack Loss
Data

ANOVA Table (for testing H0 : β1 = β2 = β3 = 0)
Source SS d f MS F

Regression (on x1, x2, x2
1 ) 799.80 3 266.60 210.81

Error 16.44 13 1.26

Total 816.24 16

Note also that the value of the coefficient of determination here can be
calculated using sums of squares given in Table 9.11 as

R2 = SSR

SSTot
= 799.80

816.24
= .980

This is the value for R2 advertised long ago in Example 5 in Chapter 4. Also,
the error mean square, MSE = 1.26, is (as expected) exactly the value of s2

SF
calculated earlier in this example.

It is a matter of simple algebra to verify that R2 and the F statistic (9.62) are
equivalent in the sense that

An expression for
the F statistic (9.62)

in terms of R2
F = R2/k

(1− R2)/(n − k − 1)
(9.63)

so the F test of hypothesis (9.60) can be thought of in terms of attaching a p-value
to the statistic R2. This is a valuable development, but it should be remembered
that it is R2 (rather than F) that has the direct interpretation as a measure of what
fraction of raw variability the fitted equation accounts for. F and its associated
p-value take account of the sample size n in a way that R2 doesn’t. They really
measure statistical detectability rather than variation accounted for. This means that
an equation that accounts for a fraction of observed variation that is relatively small
by most standards can produce a very impressive (small) p-value. If this point is not
clear, try using formula (9.63) to find the p-value for a situation where n = 1,000,
k = 4, and R2 = .1.

From Section 4.2 on, R2 values have been used in this book for informal
comparisons of various potential summary equations for a single data set. It turns
out that it is sometimes possible to attach p-values to such comparisons through the
use of the corresponding regression sums of squares and another F test.
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Suppose that there are two different regression models for describing a data
set—the first of the usual form (9.36) for k input variables x1, x2, . . . , xk ,

yi = β0 + β1x1i + β2x2i + · · · + βk xki + εi

and the second being a specialization of the first where some p of the coefficients
β (say, βl1

, βl2
, . . . , βlp

) are all 0 (i.e., a specialization not involving input variables

xl1
, xl2

, . . . , xlp
). The first of these models will be called the full regression model

and the second a reduced regression model. When one informally compares R2

values for two such models, the comparison is essentially between SSR values, since
the two R2 values share the same denominator, SSTot. The two SSR values can be
used to produce an observed level of significance for the comparison.

Under model the full model (9.36), the hypothesis

H0 : βl1
= βl2

= · · · = βlp
= 0 (9.64)

(that the reduced model holds) can be tested against

Ha : not H0 (9.65)

using the test statistic

F statistic for testing
H0 : βl1

= · · · = βlp
= 0

in multiple regression
F = (SSRf − SSRr)/p

SSEf/(n − k − 1)
(9.66)

and an Fp,n−k−1 reference distribution, where large observed values of the test
statistic constitute evidence against H0 in favor of Ha. In expression (9.66), the
“f” and “r” subscripts refer to the full and reduced regressions. The calculation of
statistic (9.66) can be facilitated by expanding the basic ANOVA table for the full
model (Table 9.10). Table 9.12 shows one form this can take.

Table 9.12
Expanded ANOVA Table for Testing H0 : βl1

= βl2
= · · · = βlp

= 0 in Multiple Regression

ANOVA Table (for testing H0 : βl1
= βl2

= · · · = βl p
= 0)

Source SS d f MS F

Regression (full) SSRf k
Regression (reduced) SSRr k − p
Regression (full | reduced) SSRf − SSRr p (SSRf − SSRr)/p MSRf|r/MSEf

Error SSEf n − k − 1 SSEf/(n − k − 1)

Total SSTot n − 1
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Example 2
(continued )

In the nitrogen plant example, consider the comparison of the two possible
descriptions of stack loss

y ≈ β0 + β1x1 (9.67)

(stack loss is approximately a linear function of airflow only) and

y ≈ β0 + β1x1 + β2x2 + β3x2
1 (9.68)

(the description of stack loss that has been used throughout this section). Although
a printout won’t be included here to show it, it is a simple matter to verify that the
fitting of expression (9.67) to the nitrogen plant data produces SSR = 775.48 and
therefore R2 = .950. Fitting expression (9.68), on the other hand, gives SSR =
799.80 and R2 = .980. Since expression (9.67) is the specialization/reduction of
expression (9.68) obtained by dropping the last p = 2 terms, the comparison of
these two SSR (or R2) values can be formalized with a p-value. A test of

H0 : β2 = β3 = 0

can be made in the (full) model (9.68). Table 9.13 organizes the calculation of
the observed value of the statistic (9.66) for this problem. That is,

f = (799.80− 775.48)/2

16.44/13
= 9.7

When compared with tabled F2,13 percentage points, the observed value of
9.7 is seen to produce a p-value between .01 and .001. There is strong evidence
in the nitrogen plant data that an explanation of mean response in terms of
expression (9.68) (pictured, for example, in Figure 4.15) is superior to one in
terms of expression (9.67) (which could be pictured as a single linear mean
response in x1 for all x2).

Table 9.13
ANOVA Table for Testing H0 : β2 = β3 = 0 in Model (9.68)
for the Stack Loss Data

ANOVA Table (for testing H0 : β2 = β3 = 0)
Source SS d f MS F

Regression (x1, x2, x2
1 ) 799.80 3

Regression (x1) 775.48 1
Regression (x2, x2

1 | x1) 24.32 2 12.16 9.7
Error (x1, x2, x2

1) 16.44 13 1.26

Total 816.24 16
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The F statistic (9.66) can be written in terms of R2 values as

Alternative form
of the F statistic

for testing
H0 : βl1

= · · · = βlp
= 0

F = (R2
f − R2

r )/p

(1− R2
f )/(n − k − 1)

(9.69)

so that the test of hypothesis (9.64) is indeed a way of attaching a p-value to the
comparison of two R2’s. However, just as was remarked earlier concerning the testInterpreting full

and reduced R2’s
and the F test

of hypothesis (9.60), it is the R2’s themselves that indicate how much additional
variation a full model accounts for over a reduced model. The observed F value
or associated p-value measures the extent to which that increase is distinguishable
from background noise.

To conclude this section, something needs to be said about the relationshipp tests that single
coefficients are 0

versus a test that p
coefficients are all 0

between the tests of hypotheses (9.45) (with # = 0), mentioned earlier, and the tests
of hypothesis (9.64) based on the F statistic (9.66). When p = 1 (the full model
contains only one more term than the reduced model), observed levels of significance
based on statistic (9.66) are in fact equal to two-sided observed levels of significance
based on # = 0 versions of statistic (9.46). But for cases where p ≥ 2, the tests of
the hypotheses that individual β’s are 0 (one at a time) are not an adequate substitute
for the tests of hypothesis (9.64). For example, in the full model

y = β0 + β1x1 + β2x2 + β3x3 + ε (9.70)

testing

H0 : β2 = 0 (9.71)

and then testing

H0 : β3 = 0 (9.72)

need not be at all equivalent to making a single test of

H0 : β2 = β3 = 0 (9.73)

This fact may at first seem paradoxical. But should the variables x2 and x3 be
reasonably highly correlated in the data set, it is possible to get large p-values
for tests of both hypothesis (9.71) and (9.72) and yet a tiny p-value for a test of
hypothesis (9.73). The message carried by such an outcome is that (due to the fact
that the variables x2 and x3 appear in the data set to be more or less equivalent) in
the presence of x1 and x2, x3 is not needed to model y. And in the presence of x1
and x3, x2 is not needed to model y. But one or the other of the two variables x2 and
x3 is needed to help model y even in the presence of x1. So, the F test of hypothesis
(9.64) is more than just a fancy version of several tests of hypotheses H0 : βl = 0. It
is an important addition to an engineer’s curve- and surface-fitting tool kit.
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Section 2 Exercises ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

1. Return to the situation of Chapter Exercise 2 of
Chapter 4 and the carburetion study of Griffith and
Tesdall. Consider an analysis of these data based
on the model y = β0 + β1x + β2x2 + ε.
(a) Find sSF for these data. What does this intend

to measure in the context of the engineering
problem?

(b) Plot both residuals versus x and the standard-
ized residuals versus x . How much difference
is there in the appearance of these two plots?

(c) Give 90% individual two-sided confidence in-
tervals for each of β0, β1, and β2.

(d) Give individual 90% two-sided confidence in-
tervals for the mean elapsed time with a carbu-
retor jetting size of 70 and then with a jetting
size of 76.

(e) Give simultaneous 90% two-sided confidence
intervals for the two means indicated in
part (d).

(f) Give 90% lower prediction bounds for an ad-
ditional elapsed time with a carburetor jetting
size of 70 and also with a jetting size of 76.

(g) Give approximate 95% lower tolerance bounds
for 90% of additional elapsed times, first with
a carburetor jetting size of 70 and then with a
jetting size of 76.

(h) Make an ANOVA table for testing H0 : β1 =
β2 = 0 in the model y = β0 + β1x + β2x2 +
ε. What is the meaning of this hypothesis in the
context of the study and the quadratic model?
What is the p-value?

(i) Use a t statistic and test the null hypothesis H0 :
β2 = 0. What is the meaning of this hypothesis

in the context of the study and the quadratic
model?

2. Return to the situation of Exercise 2 of Section
4.2, and the chemithermomechanical pulp study of
Miller, Shankar, and Peterson. Consider an analysis
of the data there based on the model y = β0 +
β1x1 + β2x2 + ε.
(a) Find sSF. What does this intend to measure in

the context of the engineering problem?
(b) Plot both residuals and standardized residuals

versus x1, x2, and ŷ. How much difference is
there in the appearance of these pairs of plots?

(c) Give 90% individual two-sided confidence in-
tervals for all of β0, β1, and β2.

(d) Give individual 90% two-sided confidence in-
tervals for the mean specific surface area, first
when x1 = 9.0 and x2 = 60 and then when
x1 = 10.0 and x2 = 70.

(e) Give simultaneous 90% two-sided confidence
intervals for the two means indicated in part
(d).

(f) Give 90% lower prediction bounds for the next
specific surface area, first when x1 = 9.0 and
x2 = 60 and then when x1 = 10.0 and x2 = 70.

(g) Give approximate 95% lower tolerance bounds
for 90% of specific surface areas, first when
x1 = 9.0 and x2 = 60 and then when x1 = 10.0
and x2 = 70.

(h) Make an ANOVA table for testing H0 : β1 =
β2 = 0 in the model y = β0 + β1x1 + β2x2 +
ε. What is the p-value?

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

9.3 Application of Multiple Regression
in Response Surface Problems
and Factorial Analyses

The discussions in Sections 4.1, 4.2, 9.1, and 9.2 have, we hope, given you a growing
appreciation of the wide utility of regression methods in engineering. The purpose
of this final section is to further expand your range of experience with multiple
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regression by illustrating its usefulness in two additional contexts. First there is
an illustration of how surface fitting is used in “response surface” (or response
optimization) problems. Then there is a look at how regression has its applications
even in factorial analyses.

9.3.1 Surface-Fitting and Response Surface Studies

Engineers are often called upon to address the following generic problem. A response
or responses y are known to depend upon system variables x1, x2, . . . , xk . No
simple physical theory is available for describing the dependence. Nevertheless, the
variables x1, x2, . . . , xk need adjustment to get good system behavior (as measured
by the variables y). Multiple regression analysis and some specialized “response
surface” considerations often prove effective in such problems.

For one thing, linear and quadratic functions of x1, x2, . . . , xk are often usefulFitted linear and
quadratic functions
as empirical models

empirical descriptions of a relationship between x1, x2, . . . , xk and y. The material in
Sections 4.2 and 9.2 directly addresses fitting and inference for a linear approximate
relationship like

y ≈ β0 + β1x1 + β2x2 + · · · + βk xk (9.74)

Response surfaces specified by equation (9.74) are “planar” (see again Figure 9.6
in this regard). When such surfaces fail to capture the nature of dependence of
y on x1, x2, . . . , xk because of their “lack of curvature,” quadratic approximate
relationships often prove effective. The general version of a quadratic equation for
y in k variables x has k linear terms, k quadratic terms, and cross product terms
for all pairs of x variables. For example, the general 3-variable quadratic response
surface is specified by

y ≈ β0 + β1x1 + β2x2 + β3x3 + β4x2
1 + β5x2

2 + β6x2
3 + β7x1x2

+ β8x1x3 + β9x2x3 (9.75)

One issue in using the k-variable version of quadratic function (9.75) is that ofGathering adequate
data collecting adequate data to support the enterprise. 2k factorial data are not sufficient.

This is easy to see by considering the k = 1 case. Having data for only two different
values of x1, say x1 = 0 and x1 = 1, would not be adequate to support the fitting of

y ≈ β0 + β1x1 + β2x2
1 (9.76)

There are, as an arbitrary example, many different versions of equation (9.76) with
y = 5 for x1 = 0 and y = 7 for x1 = 1, including

y ≈ 5+ 2x1 + 0x2
1

y ≈ 5− 8x1 + 10x2
1

y ≈ 5+ 10x1 − 8x2
1
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5

6

7

8

1 x1

y

0

y = 5 + 10x1 − 8x1
2

y = 5 + 2x1 y = 5 − 8x1 + 10x1
2

Figure 9.8 Plots of three different quadratic
functions passing through the points
(x1, y) = (0,5) and (x1, y) = (1,7)

These three equations have plots with quite different shapes. The first is linear, the
second is concave up with a minimum at x1 = .4, and the third is concave down
with a maximum at x1 = .625. This is illustrated in Figure 9.8. The point is that
data from at least three different x1 values are needed in order to fit a one-variable
quadratic equation.

What would happen if a regression program were used to fit equation (9.76)
to a set of (x1, y) data having only two different x1 values in it? The program
will typically refuse the user’s request, perhaps fitting instead the simpler equation
y ≈ β0 + β1x1.

Exactly what is needed in the way of data in order to fit a k-variable quadratic
equation is not easy to describe in elementary terms. 3k factorial data are sufficient
but for large k are really much more than are absolutely necessary. Statisticians have
invested substantial effort in identifying patterns of (x1, x2, . . . , xk) combinations
that are both small (in terms of number of different combinations) and effective (in
terms of facilitating precise estimation of the coefficients in a quadratic response
function). See, for example, Section 7.2.2 of Statistical Quality Assurance Methods
for Engineers by Vardeman and Jobe for a discussion of “central composite” plans
often employed to gather data adequate to fit a quadratic. An early successful
application of such a plan is described next.

Example 3 A Central Composite Study for Optimizing Bread Wrapper Seal Strength

The article “Sealing Strength of Wax-Polyethylene Blends” by Brown, Turner,
and Smith (Tappi, 1958) contains an interesting central composite data set. The
effects of the three process variables Seal Temperature, Cooling Bar Temperature,
and % Polyethylene Additive on the seal strength y of a bread wrapper stock were
studied. With the coding of the process variables indicated in Table 9.14, the data
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Example 3
(continued )

Table 9.14
Coding of Three Process Variables in a Seal Strength Study

Factor Variable

A Seal Temperature x1 =
t1 − 255

30
where t1 is in ◦F

B Cooling Bar Temperature x2 =
t2 − 55

9
where t2 is in ◦F

C Polyethylene Content x3 =
c − 1.1

.6
where c is in %

Table 9.15
Seal Strengths Produced under 15 Different Sets
of Process Conditions

Seal Strength,
x1 x2 x3 y (g/in.)

−1 −1 −1 6.6
1 −1 −1 6.9
−1 1 −1 7.9

1 1 −1 6.1
−1 −1 1 9.2

1 −1 1 6.8
−1 1 1 10.4

1 1 1 7.3
0 0 0 10.1
0 0 0 9.9
0 0 0 12.2
0 0 0 9.7
0 0 0 9.7
0 0 0 9.6

−1.682 0 0 9.8
1.682 0 0 5.0

0 −1.682 0 6.9
0 1.682 0 6.3
0 0 −1.682 4.0
0 0 1.682 8.6
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in Table 9.15 were obtained. Notice that there are fewer than 33 = 27 different
(x1, x2, x3) vectors in these data. (The central composite plan involves only 15
different combinations.)

If one fits a first-order (linear) model

y = β0 + β1x1 + β2x2 + β3x3 + ε (9.77)

to the data points listed in Table 9.15, a coefficient of determination of only R2 =
.38 is obtained, along with sSF = 1.79. The pooled sample standard deviation
(coming from the six points with x1 = 0, x2 = 0, and x3 = 0) is quite a bit
smaller than sSF—namely, sP = 1.00. Between the small value of R2 and the
moderate difference between sSF and sP, there is already some indication that
model (9.77) may be a poor description of the data. A residual analysis like those
done in Section 4.2 would further confirm this.

On the other hand, fitting the expression (9.75) to the data in Table 9.15
produces the equation

ŷ = 10.165− 1.104x1 + .0872x2 + 1.020x3 − .7596x2
1 − 1.042x2

2

− 1.148x2
3 − .3500x1x2 − .5000x1x3 + .1500x2x3 (9.78)

with a coefficient of determination of R2 = .86 and sSF = 1.09. At least on the
basis of the two measures R2 and sSF, this quadratic description of seal strength
seems much superior to a first-order description.

For small values of k, the interpretation of a fitted quadratic response functionPlots and
interpreting a

fitted quadratic
can be facilitated through the use of various plots. One possibility is to plot ŷ versus
a particular system variable x , with values of any other system variables held fixed.
This was the method used in Figure 4.15 for the nitrogen plant data, in Figure 4.16
(see page 158) for the lift/drag ratio data of Burris, and in Figure 9.8 of this section
for the hypothetical one-variable quadratics. (It is also worth noting that in light of
the inference material presented in Section 9.2, one can enhance such plots of ŷ by
adding error bars based on confidence limits for the means µy|x1,x2,...,xk

.)
A second kind of plot that can help in understanding a fitted quadratic function is

the contour plot. A contour plot is essentially a topographic map. For a given pair of
system variables (say x1 and x2) one can, for fixed values of all other input variables,
sketch out the loci of points in the (x1, x2)-plane that produce several particular
values of ŷ. Most statistical packages and engineering mathematics packages will
make contour plots.

Example 3
(continued )

Figure 9.9 shows a series of five contour plots made using the fitted equation
(9.78) for seal strength. These correspond to x3 = −2,−1, 0, 1, and 2. The figure
suggests that optimum predicted seal strength may be achievable for x3 between
0 and 1, with x1 between −2 and −1, and x2 between 0 and 1.
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Figure 9.9 A series of contour plots for seal strength

Plotting is helpful in understanding a fitted quadratic primarily for small k. SoAnalytic interpretation
of a fitted quadratic it is important that there are also analytical tools that can be employed. To illustrate

their character, consider the simple case of k = 1. The basic nature of the quadratic
equation

ŷ = b0 + b1x1 + b2x2
1

is governed by b2. For b2 > 0 it describes a parabola opening up. For b2 < 0 it
describes a parabola opening down. And for b2 = 0 it describes a line. Provided
b2 6= 0 the value

x1 = −
b1

2b2

produces the minimum (b2 > 0) or maximum (b2 < 0) value of ŷ. Something like
this story is also true for k > 1.

It is necessary to use some matrix notation to say what happens for k > 1.
Temporarily modify the way the b’s are subscripted as follows. The meaning of
b0 will remain unchanged. b1 through bk will be the coefficients for the k system
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variables x1 through xk . b11 through bkk will be the coefficients for the k squares x2
1

through x2
k . And for each i 6= j , bi j will be the coefficient of the xi xj cross product.

One can define a k × 1 vector b and a k × k matrix B as

Vector of linear
coefficients and

matrix of quadratic
coefficients

b =


b1
b2
...

bk



B =


b11

1
2 b12 · · · 1

2 b1k

1
2 b12 b22 · · · 1

2 b2k
...

...
...

1
2 b1k

1
2 b2k · · · bkk


With

x =


x1
x2
...

xk


Provided the matrix B is nonsingular, the corresponding k-variable quadratic then
has a stationary point (i.e., a point at which first partial derivatives with respect to
x1, x2, . . . , xk are all 0) where

Location of a
stationary point
for a k-variable
fitted quadratic

x = − 1
2 B−1b (9.79)

And depending upon the nature of B, the stationary point will be either a minimum,
a maximum, or a saddle point of the fitted response. (Moving away from a saddle
point in some directions produces an increase in ŷ, while moving away in other
directions produces a decrease.)

It is the eigenvalues of B that are critical in determining the shape of the fitted
quadratic surface. The eigenvalues of B are the k solutions of the equation (in λ)

Equation solved
by the eigenvalues
λ of the matrix B

det(B− λI) = 0 (9.80)

where I is the identity matrix. (Most statistical analysis packages and engineering
mathematics packages will compute eigenvalues quite painlessly.)

When all solutions to equation (9.80) are positive, a fitted quadratic is bowl-
shaped up and has a minimum at the point (9.79). When all solutions to equation
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(9.80) are negative, a fitted quadratic is bowl-shaped down and has a maximum at
the point (9.79). When some solutions to equation (9.80) are positive and some are
negative, the fitted quadratic surface has neither a maximum nor minimum (unless
one restricts attention to some bounded region of x vectors).

Printout 3 Analysis of the Fitted Quadratic for the Bread Wrapper Data
(Example 3)

MTB > Read 3 3 M1.
DATA> -.7596 -.175 -.250
DATA> -.175 -1.042 .075
DATA> -.250 .075 -1.148

3 rows read.
MTB > Read 3 1 M2.
DATA> -1.104
DATA> .0872
DATA> 1.020

3 rows read.
MTB > Eigen M1 C1.
MTB > Print C1.

Data Display

C1
-1.27090 -1.11680 -0.56190

MTB > Invert M1 M3.
MTB > Multiply M3 M2 M4.
MTB > Multiply M4 -.5 M5.
MTB > Print M5.

Data Display

Matrix M5

-1.01104
0.26069
0.68146

Example 3
(continued )

Printout 3 illustrates the use of MINITAB in the analytic investigation of the
nature of the fitted surface (9.78) in the bread wrapper seal strength study. The
printout shows the three eigenvalues of B to be negative. The fitted seal strength
therefore has a maximum. This maximum is predicted to occur at the combination
of values x1 = −1.01, x2 = .26, and x3 = .68. (The MINITAB matrix functions
used to make the printout are under the “Calc/Matrices” menu, and the display
routine is under the “Manip/Display Data” menu.)
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The discussion of response surface studies in this subsection isn’t intended to
be complete. Whole books, like, for example, Box and Draper’s Empirical Model-
Building and Response Surfaces, have been written on the subject. (Section 9.3 of
Vardeman’s Statistics for Engineering Problem Solving contains a more complete
discussion than the present one, is still short of a book-length treatment.) We hope,
however, this brief look at the topic suffices to indicate its importance to engineering
practice.

9.3.2 Regression and Factorial Analyses

Many of the factorial inference methods discussed in this book are applicable only
in balanced-data situations. For example, remember that the use of the reverse Yates
algorithm to fit few-effects 2p factorial models and the methods of interval-oriented
inference for 2p studies under few-effects models discussed in Section 8.2 are limited
to balanced-data applications.

But by accident if not by design, an engineer will eventually face the analysis
of unbalanced factorial data. Happily enough, this can be accomplished through use
of the multiple regression formulas provided in Section 9.2. This subsection shows
how factorial analyses can be thought of in multiple regression terms. It begins with
a discussion of two-way factorial cases and then considers three-way (and higher)
situations.

The basic multiple regression model equation used in Section 9.2,

yi = β0 + β1x1i + β2x2i + · · · + βk xki + εi (9.81)

looks deceptively simple. With proper choice of the inputs x , versions of it can
be used in a wide variety of contexts, including factorial analyses. For purposes
of illustration, consider the case of a complete two-way factorial study with I = 3
levels of factor A and J = 3 levels of factor B. In the usual two-way factorial
notation introduced in Definitions 1 and 2 of Chapter 8, the basic constraints on the
main effects and two-factor interactions are

∑
i αi = 0,

∑
j βj = 0, and

∑
i αβi j =∑

j αβi j = 0. These imply that the I · J = 3 · 3 = 9 different mean responses in
such a study,

µi j = µ.. + αi + βj + αβi j (9.82)

can be written as displayed in Table 9.16.
At first glance, the advantage of writing out these mean responses in terms of

only effects corresponding to the first 2 (= I − 1) levels of A and first 2 (= J − 1)
levels of B is not obvious. But doing so expresses the 9 (= I · J ) different means in
terms of only as many different parameters as there are means, and helps one find a
regression-type analog of expression (9.82).

Notice first that µ
..

appears in each mean response listed and therefore plays
a role much like that of the intercept term β0 in a regression model. Further, the
two A main effects, α1 and α2, appear with positive signs when (respectively) i = 1
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Table 9.16
Mean Responses in a 32 Factorial Study

i , j ,
Level of A Level of B Mean Response

1 1 µ
..
+ α1 + β1 + αβ11

1 2 µ
..
+ α1 + β2 + αβ12

1 3 µ
..
+ α1 − β1 − β2 − αβ11 − αβ12

2 1 µ
..
+ α2 + β1 + αβ21

2 2 µ
..
+ α2 + β2 + αβ22

2 3 µ
..
+ α2 − β1 − β2 − αβ21 − αβ22

3 1 µ
..
− α1 − α2 + β1 − αβ11 − αβ21

3 2 µ
..
− α1 − α2 + β2 − αβ12 − αβ22

3 3 µ
..
− α1 − α2 − β1 − β2 + αβ11 + αβ12 + αβ21 + αβ22

or 2 but with negative signs when i = 3 (= I ). In a similar manner, the first two
B main effects, β1 and β2, appear with positive signs when (respectively) j = 1
or 2 but with negative signs when j = 3 (= J ). If one thinks of the four A and B
main effects used in Table 9.16 in terms of coefficients β in a regression model,
it soon becomes clear how to invent “system variables” x to make the regression
coefficients β appear with correct signs in the expressions for means µi j . That is,
define four dummy variables

xA
1 =

 1 if the response y is from level 1 of A
−1 if the response y is from level 3 of A

0 otherwise

xA
2 =

 1 if the response y is from level 2 of A
−1 if the response y is from level 3 of A

0 otherwise

xB
1 =

 1 if the response y is from level 1 of B
−1 if the response y is from level 3 of B

0 otherwise

xB
2 =

 1 if the response y is from level 2 of B
−1 if the response y is from level 3 of B

0 otherwise

Then, making the correspondences indicated in Table 9.17, µ
..
+ αi + βj can be

written in regression notation as

β0 + β1xA
1 + β2xA

2 + β3xB
1 + β4xB

2



9.3 Application of Multiple Regression in Response Surface Problems and Factorial Analyses 707

Table 9.17
Correspondences between Regression Coefficients and the Grand
Mean and Main Effects in a 32 Factorial Study

Regression Coefficient Corresponding 3× 3 Factorial Effect

β0 µ
..

β1 α1
β2 α2
β3 β1
β4 β2

What is more, since the x’s used here take only the values −1, 0, and 1, so
also do their products. And taken in pairs (one xA variable with one xB variable),
their products produce the correct (−1, 0, or 1) multipliers for the 2-factor inter-
actions αβ11, αβ12, αβ21, and αβ22 appearing in Table 9.16. That is, if one thinks
of the interactions αβi j in terms of regression coefficients β, with the additional
correspondences listed in Table 9.18, the entire expression (9.82) can be written in
regression notation as

µy|xA
1 ,x

A
2 ,x

B
1 ,x

B
2
= β0 + β1xA

1 + β2xA
2 + β3xB

1 + β4xB
2 + β5xA

1 xB
1

+ β6xA
1 xB

2 + β7xA
2 xB

1 + β8xA
2 xB

2 (9.83)

By rewriting the factorial-type expression (9.82) as a regression-type expression
(9.83) it is then obvious how to fit few-effects models and do inference under those
models even for unbalanced data. Nowhere in Section 9.2 was there any requirement
that the data set be balanced. So the methods there can be used (employing properly
constructed x variables and properly interpreting a corresponding regression print-
out) to fit reduced versions of model (9.83) and make confidence, prediction, and
tolerance intervals under those reduced models.

Table 9.18
Correspondence between Regression Coefficients and Interactions
in a 32 Factorial Study

Regression Coefficient Corresponding 3× 3 Factorial Effect

β5 αβ11
β6 αβ12
β7 αβ21
β8 αβ22
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The general I × J two-way factorial version of this story is similar. One defines
I − 1 factor A dummy variables xA

1 , xA
2 , . . . , xA

I−1 according to

I− 1 dummy
variables for

factor A

xA
i =

1 if the response y is from level i of A
−1 if the response y is from level I of A
0 otherwise

(9.84)

and J − 1 factor B dummy variables xB
1 , xB

2 , . . . , xB
J−1 according to

J− 1 dummy
variables for

factor B

xB
j =

1 if the response y is from level j of B
−1 if the response y is from level J of B
0 otherwise

(9.85)

and uses a regression program to do the computations. Estimated regression coeffi-Multiple regression
and two-way

factorial analyses
cients of xA

i or xB
j variables alone are estimated main effects, while those for xA

i xB
j

cross products are estimated 2-factor interactions.

Example 4
(Examples 7, Chapter 4,

and 1, Chapter 8,
revisited—see pages

163, 547 )

A Factorial Analysis of Unbalanced Wood Joint Strength
Data Using a Regression Program

Consider again the wood joint strength study of Kotlers, MacFarland, and Tom-
linson. The discussion in Section 8.1 showed that if only the wood types pine
and oak are considered, a no-interaction description of joint strength for butt,
beveled, and lap joints might be appropriate. The corresponding part of the (orig-
inally 3× 3 factorial) data of Kotlers, MacFarland, and Tomlinson is given here
in Table 9.19.

Table 9.19
Strengths of 11 Wood Joints

B Wood Type

1 (Pine) 2 (Oak)

1 (Butt) 829, 596 1169
A Joint Type 2 (Beveled) 1348, 1207 1518, 1927

3 (Lap) 1000, 859 1295, 1561
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Table 9.20
Joint Strength Data Prepared for a Factorial Analysis Using
a Regression Program

i , j ,
Joint Type Wood Type xA

1 xA
2 xB

1 y

1 1 1 0 1 829, 596
1 2 1 0 −1 1169
2 1 0 1 1 1348, 1207
2 2 0 1 −1 1518, 1927
3 1 −1 −1 1 1000, 859
3 2 −1 −1 −1 1295, 1561

Notice that because these data are unbalanced (due to the unfortunate loss
of one butt/oak response), it is not possible to fit a no-interaction model to these
data by simply adding together fitted effects (defined in Section 4.3) or to use
anything said in Chapter 8 to make inferences based on such a model. But it is
possible to use the dummy variable regression approach based on formulas (9.84)
and (9.85) to do so.

Consider the regression-data-set version of Table 9.19 given in Table 9.20.
Printouts 4 and 5 show the results of fitting the two regression models

y = β0 + β1xA
1 + β2xA

2 + β3xB
1 + β4xA

1 xB
1 + β5xA

2 xB
1 + ε (9.86)

y = β0 + β1xA
1 + β2xA

2 + β3xB
1 + ε (9.87)

to the data of Table 9.20. Printout 4 corresponding to model (9.86) is the full model
orµi j = µ.. + αi + βj + αβi j description of the data. For that regression run, the
reader should verify the correspondences between fitted regression coefficients
b and fitted effects (defined in Section 4.3), listed in Table 9.21. (For example,

Table 9.21
Correspondence between Fitted Regression Coefficients and Fitted Factorial
Effects for the Wood Joint Strength Data

Fitted Regression Coefficient Value Corresponding Fitted Effect

b0 1206.5 ȳ
..

b1 −265.75 a1
b2 293.50 a2
b3 −233.33 b1
b4 5.08 ab11
b5 10.83 ab21
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Example 4
(continued )

ȳ
..
= 1206.5 and ȳ1. = 940.75, so a1 = 940.75− 1206.5 = −265.75, which is

the value of the fitted regression coefficient b1.)
Model (9.86), like the two-way model (8.4) of Section 8.1, represents no

restriction or simplification of the basic one-way model. So least squares estimates
of parameters that are linear combinations of underlying means are simply the
same linear combinations of sample means. Further, the fitted y values are (as
expected) simply the sample means ȳi j .

Printout 5 corresponding to model (9.87) is the µi j = µ.. + αi + βj descrip-
tion of the data. The fitted regression coefficients b for model (9.87) are not
equal to the (full-model) fitted factorial effects defined in Section 4.3. (The b’s
are least squares estimates of the underlying effects for the no-interaction model.
When factorial data are unbalanced, these are not necessarily equal to the quan-
tities defined in Section 4.3. For example, b1 from Printout 5 is −264.48, which
is the least squares estimate of α1 in a no-interaction model but differs from
a1 = −264.75.) In a similar vein, the fitted responses are neither sample means
nor sums of ȳ

..
plus the full-model fitted main effects defined in Section 4.3. (Of

course, since the x variables take only values−1, 0, and 1, the fitted responses are
sums and differences of the least squares estimates of the underlying parameters
µ
..
, α1, α2, β1 in the no-interaction model.)

Inference under model (9.86) is simply inference under the usual one-way
normal model, and all of Sections 7.1 through 7.4 and 8.1 can be used. It is then
reassuring that on Printout 4, sSF = sP = 182.2 and that (for example) for butt
joints and pine wood (levels 1 of both A and B), the estimated standard deviation
for ŷ = ȳ11 is

128.9 = sSF · A = sP√
n11

= 182.2√
2

To illustrate how inference under a no-interaction model would proceed for
the unbalanced 3× 2 factorial joint strength data, consider making a 95% two-
sided confidence interval for the mean strength of butt/pine joints and then a
90% lower prediction bound for the strength of a single joint of the same kind.
Note that for data point 1 (a butt/pine observation) on Printout 5, ŷ = 708.7 and
sSF · A = 94.8, where sSF = 154.7 has seven associated degrees of freedom. So
from formula (9.53) of Section 9.2 (page 686), two-sided 95% confidence limits
for mean butt/pine joint strength are

708.7± 2.365(94.8)

that is,

484.5 psi and 932.9 psiI
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Similarly, using formula (9.56) on page 689, a 90% lower prediction limit for a
single additional butt/pine joint strength is

708.7− 1.415
√
(154.7)2 + (94.8)2 = 452.0 psiI

From these two calculations, it should be clear that other methods from
Section 9.2 could be used here as well. The reader should have no trouble finding
and using residuals and standardized residuals for the no-interaction model based
on formulas (9.39) and (9.42), giving simultaneous confidence intervals for all
six mean responses under the no-interaction model using formula (9.54) or giving
one-sided tolerance bounds for certain joint/wood combinations under the no-
interaction model using formula (9.58) or (9.59).

WWW

Printout 4 Multiple Regression Version of the With-Interactions Factorial Analysis
of Joint Strength (Example 4)

Data Display

Row xa1 xa2 xb1 y

1 1 0 1 829
2 1 0 1 596
3 1 0 -1 1169
4 0 1 1 1348
5 0 1 1 1207
6 0 1 -1 1518
7 0 1 -1 1927
8 -1 -1 1 1000
9 -1 -1 1 859

10 -1 -1 -1 1295
11 -1 -1 -1 1561

Regression Analysis

The regression equation is
y = 1207 - 266 xa1 + 294 xa2 - 233 xb1 + 5.1 xa1*xb1 + 10.8 xa2*xb1

Predictor Coef StDev T P
Constant 1206.50 56.82 21.23 0.000
xa1 -265.75 85.91 -3.09 0.027
xa2 293.50 77.43 3.79 0.013
xb1 -233.33 56.82 -4.11 0.009
xa1*xb1 5.08 85.91 0.06 0.955
xa2*xb1 10.83 77.43 0.14 0.894

S = 182.2 R-Sq = 88.5% R-Sq(adj) = 77.1%



712 Chapter 9 Regression Analysis—Inference for Curve- and Surface-Fitting

Analysis of Variance

Source DF SS MS F P
Regression 5 1283527 256705 7.73 0.021
Residual Error 5 166044 33209
Total 10 1449571

Source DF Seq SS
xa1 1 120144
xa2 1 577927
xb1 1 583908
xa1*xb1 1 897
xa2*xb1 1 650

Obs xa1 y Fit StDev Fit Residual St Resid
1 1.00 829.0 712.5 128.9 116.5 0.90
2 1.00 596.0 712.5 128.9 -116.5 -0.90
3 1.00 1169.0 1169.0 182.2 -0.0 * X
4 0.00 1348.0 1277.5 128.9 70.5 0.55
5 0.00 1207.0 1277.5 128.9 -70.5 -0.55
6 0.00 1518.0 1722.5 128.9 -204.5 -1.59
7 0.00 1927.0 1722.5 128.9 204.5 1.59
8 -1.00 1000.0 929.5 128.9 70.5 0.55
9 -1.00 859.0 929.5 128.9 -70.5 -0.55
10 -1.00 1295.0 1428.0 128.9 -133.0 -1.03
11 -1.00 1561.0 1428.0 128.9 133.0 1.03

X denotes an observation whose X value gives it large influence.

WWW

Printout 5 Multiple Regression Version of the No-Interactions Factorial Analysis
of Joint Strength (Example 4)

Regression Analysis

The regression equation is
y = 1207 - 264 xa1 + 293 xa2 - 234 xb1

Predictor Coef StDev T P
Constant 1207.14 47.38 25.48 0.000
xa1 -264.48 70.62 -3.74 0.007
xa2 292.86 65.11 4.50 0.003
xb1 -233.97 47.38 -4.94 0.002

S = 154.7 R-Sq = 88.4% R-Sq(adj) = 83.5%

Analysis of Variance

Source DF SS MS F P
Regression 3 1281980 427327 17.85 0.001
Residual Error 7 167591 23942
Total 10 1449571

Source DF Seq SS
xa1 1 120144
xa2 1 577927
xb1 1 583908
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Obs xa1 y Fit StDev Fit Residual St Resid
1 1.00 829.0 708.7 94.8 120.3 0.98
2 1.00 596.0 708.7 94.8 -112.7 -0.92
3 1.00 1169.0 1176.6 109.4 -7.6 -0.07
4 0.00 1348.0 1266.0 90.7 82.0 0.65
5 0.00 1207.0 1266.0 90.7 -59.0 -0.47
6 0.00 1518.0 1734.0 90.7 -216.0 -1.72
7 0.00 1927.0 1734.0 90.7 193.0 1.54
8 -1.00 1000.0 944.8 90.7 55.2 0.44
9 -1.00 859.0 944.8 90.7 -85.8 -0.68
10 -1.00 1295.0 1412.7 90.7 -117.7 -0.94
11 -1.00 1561.0 1412.7 90.7 148.3 1.18

The pattern of analysis set out for two-way factorials carries over quite nat-
urally to three-way and higher factorials. To use a multiple regression program
to fit and make inferences based on simplified versions of the p-way factorial
model, proceed as follows. I − 1 dummy variables xA

1 , xA
2 , . . . , xA

I−1 are definedDummy variables
for regression

analysis of p-way
factorials

(as before) to carry information about I levels of factor A, J − 1 dummy variables
xB

1 , xB
2 , . . . , xB

J−1 are defined (as before) to carry information about J levels of factor
B, K − 1 dummy variables xC

1 , xC
2 , . . . , xC

K−1 are defined to carry information about
K levels of factor C, . . . , etc. Products of pairs of these, one each from the groups
representing two different factors, carry information about 2-factor interactions of
the factors. Products of triples of these, one each from the groups representing
three different factors, carry information about 3-factor interactions of the factors.
And so on.

When something short of the largest possible regression model is fitted to
an unbalanced factorial data set, the estimated coefficients b that result are the
least squares estimates of the underlying factorial effects in the few-effects model.
(Usually, these differ somewhat from the (full-model) fitted effects defined in Section
4.3.) All of the regression machinery of Section 9.2 can be applied to create fitted
values, residuals, and standardized residuals; to plot these to do model checking; to
make confidence intervals for mean responses; and to create prediction and tolerance
intervals.

When the regression with dummy variables approach is used as just described,
the fitted coefficients b correspond to fitted effects for the levels 1 through I − 1,
J − 1, K − 1, etc. of the factors. For two-level factorials, this means that the fitted
coefficients are estimated factorial effects for the “all low” treatment combination.
However, because of extensive use of the Yates algorithm in this text, you will
probably think first in terms of the 2p factorial effects for the “all high” treatment
combination.

Two sensible courses of action then suggest themselves for the analysis of
unbalanced 2p factorial data. You can proceed exactly as just indicated, using
dummy variables xA

1 , xB
1 , xC

1 , etc. and various products of the same, taking careAlternative choice
of x variables for

regression analysis
of 2p factorials

to remember to interpret b’s as “all low” fitted effects and subsequently to switch
signs as appropriate to get “all high” fitted effects. The other possibility is to depart
slightly from the program laid out for general p-way factorials in 2p cases: Instead
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of using the variables xA
1 , xB

1 , xC
1 , etc. and their products when doing regression, one

may use the variables

xA
2 = −xA

1 =
{

1 if the response y is from the high level of A
−1 if the response y is from the low level of A

xB
2 = −xB

1 =
{

1 if the response y is from the high level of B
−1 if the response y is from the low level of B

xC
2 = −xC

1 =
{

1 if the response y is from the high level of C
−1 if the response y is from the low level of C

etc. and their products when doing regression. When the variables xA
2 , xB

2 , xC
2 , etc.

are used, the fitted b’s are the estimated “all high” 2p factorial effects.

Example 5
(Example 4, Chapter 8,

revisited—page 569 )

A Factorial Analysis of Unbalanced 23 Power
Requirement Data Using Regression

Return to the situation of the 23 metalworking power requirement study of Miller.
The original data set (given in Table 8.8) is balanced, with the common sample
size being m = 4. For the sake of illustrating how regression with dummy vari-
ables can be used in the analysis of unbalanced higher-way factorial data, consider
artificially unbalancing Miller’s data by supposing that the first data point ap-
pearing in Table 8.8 has gotten lost. The portion of Miller’s data that will be used
here is then given in Table 9.22.

Table 9.22
Dynamometer Readings for 23 Treatment Combinations

Tool Type Bevel Angle Type of Cut y, Dynamometer Reading (mm)

1 15◦ continuous 26.5, 30.5, 27.0
2 15◦ continuous 28.0, 28.5, 28.0, 25.0
1 30◦ continuous 28.5, 28.5, 30.0, 32.5
2 30◦ continuous 29.5, 32.0, 29.0, 28.0
1 15◦ interrupted 28.0, 25.0, 26.5, 26.5
2 15◦ interrupted 24.5, 25.0, 28.0, 26.0
1 30◦ interrupted 27.0, 29.0, 27.5, 27.5
2 30◦ interrupted 27.5, 28.0, 27.0, 26.0
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For this slightly altered data set, the Yates algorithm produces the fitted
effects

a2 = −.2656 ab22 = .0469 abc222 = −.0469
b2 = .8281 ac22 = −.0469
c2 = −.9531 bc22 = −.2031

and sP = 1.51 with ν = 23 associated degrees of freedom. Formula (8.12)
(page 575) of Section 8.2 then shows that (say) two-sided 90% confidence
intervals for effects have plus-and-minus parts

±1.714(1.51)
1

23

√
7

4
+ 1

3
= ±.47

Just as in Example 4 in Chapter 8, where all n = 32 data points were used,
one might thus judge only the B and C main effects to be clearly larger than
background noise.

Printout 6 supports exactly these conclusions. This regression run was made
using all seven of the terms

xA
2 , xB

2 , xC
2 , xA

2 xB
2 , xA

2 xC
2 , xB

2 xC
2 , and xA

2 xB
2 xC

2

(i.e., using the full model in regression terminology and the unrestricted 23

factorial model in the terminology of Section 8.2). On Printout 6, one can identify
the fitted regression coefficients b with the fitted factorial effects in the pairs
indicated in Table 9.23.

Table 9.23
Correspondence Between Fitted Regression Coefficients
and Fitted Factorial Effects for the Regression Run
of Printout 6

Fitted Regression Coefficient Fitted Factorial Effect

b0 ȳ···
b1 a2
b2 b2
b3 c2
b4 ab22
b5 ac22
b6 bc22
b7 abc222
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Example 5
(continued )

Analysis of the data of Table 9.22 based on a full factorial model

yi jkl = µ... + αi + βj + γk + αβi j + αγik + βγjk + αβγi jk + εi jkl

that is,

yi = β0 + β1xA
2i + β2xB

2i + β3xC
2i + β4xA

2i x
B
2i + β5xA

2i x
C
2i + β6xB

2i x
C
2i

+ β7xA
2i x

B
2i x

C
2i + εi

is a logical first step. Based on that step, it seems desirable to fit and draw
inferences based on a “B and C main effects only” description of y. Since the
data in Table 9.22 are unbalanced, the naive use of the reverse Yates algorithm
with the (full-model) fitted effects will not produce appropriate fitted values. ȳ

...
,

b2, and c2 are simply not the least squares estimates of µ
...

, β2, and γ2 for the “B
and C main effects only” model in this unbalanced data situation.

However, what can be done is to fit the reduced regression model

yi = β0 + β2xB
2i + β3xC

2i + εi

to the data. Printout 7 represents the use of this technique. Locate on that printout
the (reduced-model) estimates of the factorial effects µ

...
, β2, and γ2 and note

that they differ somewhat from ȳ
...

, b2, and c2 as defined in Section 4.3 and
displayed on Printout 6. Note also that the four different possible fitted mean
responses, along with their estimated standard deviations, are as given in Table
9.24.

The values in Table 9.24 can be used in the formulas of Section 9.2 to produce
confidence intervals for the four mean responses, prediction intervals, tolerance
intervals, and so on based on the “B and C main effects only” model. All of this
can be done despite the fact that the data of Table 9.22 are unbalanced.

Table 9.24
Fitted Values and Their Estimated Standard Deviations for a “B
and C Main Effects Only” Analysis of the Unbalanced Power
Requirement Data

Bevel Angle xB
2 Type of Cut xC

2 ŷ sSF · A

15◦ −1 continuous −1 27.88 .46
30◦ 1 continuous −1 29.54 .44
15◦ −1 interrupted 1 25.98 .44
30◦ 1 interrupted 1 27.64 .44
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Printout 6 Multiple Regression Version of the With-Interactions Factorial Analysis
of Power Requirement (Example 5)

Regression Analysis

The regression equation is
y = 27.8 - 0.266 xa2 + 0.828 xb2 - 0.953 xc2 + 0.047 xa*xb - 0.047 xa*xc

- 0.203 xb*xc - 0.047 xa*xb*xc

Predictor Coef StDev T P
Constant 27.7656 0.2731 101.68 0.000
xa2 -0.2656 0.2731 -0.97 0.341
xb2 0.8281 0.2731 3.03 0.006
xc2 -0.9531 0.2731 -3.49 0.002
xa*xb 0.0469 0.2731 0.17 0.865
xa*xc -0.0469 0.2731 -0.17 0.865
xb*xc -0.2031 0.2731 -0.74 0.465
xa*xb*xc -0.0469 0.2731 -0.17 0.865

S = 1.514 R-Sq = 51.0% R-Sq(adj) = 36.0%

Analysis of Variance

Source DF SS MS F P
Regression 7 54.748 7.821 3.41 0.012
Residual Error 23 52.687 2.291
Total 30 107.435

Source DF Seq SS
xa2 1 2.202
xb2 1 22.645
xc2 1 28.398
xa*xb 1 0.091
xa*xc 1 0.051
xb*xc 1 1.293
xa*xb*xc 1 0.068

Obs xa2 y Fit StDev Fit Residual St Resid
1 -1.00 26.500 28.000 0.874 -1.500 -1.21
2 -1.00 30.500 28.000 0.874 2.500 2.02R
3 -1.00 27.000 28.000 0.874 -1.000 -0.81
4 1.00 28.000 27.375 0.757 0.625 0.48
5 1.00 28.500 27.375 0.757 1.125 0.86
6 1.00 28.000 27.375 0.757 0.625 0.48
7 1.00 25.000 27.375 0.757 -2.375 -1.81
8 -1.00 28.500 29.875 0.757 -1.375 -1.05
9 -1.00 28.500 29.875 0.757 -1.375 -1.05
10 -1.00 30.000 29.875 0.757 0.125 0.10
11 -1.00 32.500 29.875 0.757 2.625 2.00R
12 1.00 29.500 29.625 0.757 -0.125 -0.10
13 1.00 32.000 29.625 0.757 2.375 1.81
14 1.00 29.000 29.625 0.757 -0.625 -0.48
15 1.00 28.000 29.625 0.757 -1.625 -1.24
16 -1.00 28.000 26.500 0.757 1.500 1.14
17 -1.00 25.000 26.500 0.757 -1.500 -1.14
18 -1.00 26.500 26.500 0.757 -0.000 -0.00
19 -1.00 26.500 26.500 0.757 -0.000 -0.00
20 1.00 24.500 25.875 0.757 -1.375 -1.05
21 1.00 25.000 25.875 0.757 -0.875 -0.67
22 1.00 28.000 25.875 0.757 2.125 1.62
23 1.00 26.000 25.875 0.757 0.125 0.10
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24 -1.00 27.000 27.750 0.757 -0.750 -0.57
25 -1.00 29.000 27.750 0.757 1.250 0.95
26 -1.00 27.500 27.750 0.757 -0.250 -0.19
27 -1.00 27.500 27.750 0.757 -0.250 -0.19
28 1.00 27.500 27.125 0.757 0.375 0.29
29 1.00 28.000 27.125 0.757 0.875 0.67
30 1.00 27.000 27.125 0.757 -0.125 -0.10
31 1.00 26.000 27.125 0.757 -1.125 -0.86

R denotes an observation with a large standardized residual

Printout 7 Multiple Regression Version of a “B and C Main Effects Only” Analysis
of Power Requirement (Example 5)

Regression Analysis

The regression equation is
y = 27.8 + 0.832 xb2 - 0.949 xc2

Predictor Coef StDev T P
Constant 27.7619 0.2553 108.73 0.000
xb2 0.8319 0.2553 3.26 0.003
xc2 -0.9494 0.2553 -3.72 0.001

S = 1.420 R-Sq = 47.4% R-Sq(adj) = 43.7%

Analysis of Variance

Source DF SS MS F P
Regression 2 50.972 25.486 12.64 0.000
Residual Error 28 56.463 2.017
Total 30 107.435

Source DF Seq SS
xb2 1 23.093
xc2 1 27.879

Obs xb2 y Fit StDev Fit Residual St Resid
1 -1.00 26.500 27.879 0.457 -1.379 -1.03
2 -1.00 30.500 27.879 0.457 2.621 1.95
3 -1.00 27.000 27.879 0.457 -0.879 -0.65
4 -1.00 28.000 27.879 0.457 0.121 0.09
5 -1.00 28.500 27.879 0.457 0.621 0.46
6 -1.00 28.000 27.879 0.457 0.121 0.09
7 -1.00 25.000 27.879 0.457 -2.879 -2.14R
8 1.00 28.500 29.543 0.437 -1.043 -0.77
9 1.00 28.500 29.543 0.437 -1.043 -0.77
10 1.00 30.000 29.543 0.437 0.457 0.34
11 1.00 32.500 29.543 0.437 2.957 2.19R
12 1.00 29.500 29.543 0.437 -0.043 -0.03
13 1.00 32.000 29.543 0.437 2.457 1.82
14 1.00 29.000 29.543 0.437 -0.543 -0.40
15 1.00 28.000 29.543 0.437 -1.543 -1.14
16 -1.00 28.000 25.981 0.437 2.019 1.49
17 -1.00 25.000 25.981 0.437 -0.981 -0.73
18 -1.00 26.500 25.981 0.437 0.519 0.38
19 -1.00 26.500 25.981 0.437 0.519 0.38
20 -1.00 24.500 25.981 0.437 -1.481 -1.10
21 -1.00 25.000 25.981 0.437 -0.981 -0.73
22 -1.00 28.000 25.981 0.437 2.019 1.49
23 -1.00 26.000 25.981 0.437 0.019 0.01
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24 1.00 27.000 27.644 0.437 -0.644 -0.48
25 1.00 29.000 27.644 0.437 1.356 1.00
26 1.00 27.500 27.644 0.437 -0.144 -0.11
27 1.00 27.500 27.644 0.437 -0.144 -0.11
28 1.00 27.500 27.644 0.437 -0.144 -0.11
29 1.00 28.000 27.644 0.437 0.356 0.26
30 1.00 27.000 27.644 0.437 -0.644 -0.48
31 1.00 26.000 27.644 0.437 -1.644 -1.22

R denotes an observation with a large standardized residual

Example 5 has been treated as if the lack of balance in the data came about
by misfortune. And the lack of balance in Example 4 did come about in such a
way. But lack of balance in p-way factorial data can also be the result of careful
planning. Consider, for example, a 24 factorial situation where the budget can
support collection of 20 observations but not as many as 32. In such a case, complete
replication of the 16 combinations of two levels of four factors in order to achieve
balance is not possible. But it makes far more sense to replicate four of the 16
combinations (and thus be able to calculate sP and honestly assess the size of
background variation) than to achieve balance by using no replication. By now
it should be obvious how to subsequently go about the analysis of the resulting
partially replicated (and thus unbalanced) factorial data.
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1. Flood and Shankwitz reported the results of a met-
allurgical engineering design project involving the
tempering response of a certain grade of stainless
steel. Slugs of this steel were preprocessed to rea-
sonably uniform hardnesses, which were measured
and recorded. The slugs were then tempered at var-
ious temperatures for various lengths of time. The
hardnesses were then remeasured and the change
in hardness computed. The data in the accompa-
nying tables were obtained in this replicated 4× 4
factorial study.

Time, Temperature, Increase in

x1 (min) x2 (◦F) Hardness, y

5 800 0, 0, −1
5 900 −3, −2, 1

5 1000 −1,−1, 0

5 1100 −4, 1, 3

50 800 3, 4, −1

50 900 −3, −1, 1

50 1000 −4, −1, −3

50 1100 −4, −4, −2

Time, Temperature, Increase in

x1 (min) x2 (◦F) Hardness, y

150 800 4, 2, −2

150 900 −1, −1, −2

150 1000 −4, −5, −7

150 1100 −7, −5, −8

500 800 1, −3, 0

500 900 −2, −8, −2

500 1000 −8, −7, −7

500 1100 −11, −9, −5

(a) Fit the quadratic model

y = β0 + β1 ln(x1)+ β2x2 + β3

(
ln(x1)

)2+
β4x2

2 + β5x2 ln(x1)+ ε

to these data. What fraction of the observed
variability in hardness increase is accounted for
in the fitting of the quadratic response surface?
What is your estimate of the standard deviation
of hardness changes that would be experienced
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at any fixed combination of time and tempera-
ture? How does this estimate compare with sP?
Does there appear to be enough difference be-
tween the two values to cast serious doubt on
the appropriateness of the regression model?

(b) There was some concern on the project group’s
part that the 5-minute time was completely un-
like the other times and should not be consid-
ered in the same analysis as the longer times.
Temporarily delete the 12 slugs treated only 5
minutes from consideration, refit the quadratic
model, and compare fitted values for the 36
slugs tempered longer than 5 minutes for this
regression to those from part (a). How different
are these two sets of values?

Henceforth consider the quadratic model fitted to
all 48 data points.
(c) Make a contour plot showing how y varies with

ln(x1) and x2. In particular, use it to identify the
region of ln(x1) and x2 values where the tem-
pering seems to provide an increase in hard-
ness. Sketch the corresponding region in the
(x1, x2)-plane.

(d) For the x1 = 50 and x2 = 800 set of conditions,
(i) give a 95% two-sided confidence interval
for the mean increase in hardness provided by
tempering.
(ii) give a 95% two-sided prediction interval
for the increase in hardness produced by tem-
pering an additional slug.

(iii) give an approximate 95% lower tolerance
bound for the hardness increases of 90% of
such slugs undergoing tempering.

2. Return to the situation of Chapter Exercise 10 of
Chapter 8 and the chemical product impurity study.
The analysis suggested in that exercise leads to the
conclusion that only the A and B main effects are
detectably nonzero. The data are unbalanced, so it
is not possible to use the reverse Yates algorithm
to fit the “A and B main effects only” model to the
data.
(a) Use the dummy variable regression techniques

to fit the “A and B main effects only” model.
(You should be able to pattern what you do
after Example 5.) How do A and B main
effects estimated on the basis of this few-
effects/simplified description of the pattern of
response compare with what you obtained for
fitted effects using the Yates algorithm?

(b) Compute and plot standardized residuals for
the few-effects model. (Plot against levels of
A, B, and C, against ŷ, and normal-plot them.)
Do any of these plots indicate any problems
with the few-effects model?

(c) How does sFE (which you can read directly off
your printout as sSF) compare with sP in this
situation? Do the two values carry any strong
suggestion of lack of fit?
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1. Return to the situation of Chapter Exercise 3 of
Chapter 4 and the grain growth study of Huda and
Ralph. Consider an analysis of the researchers’ data
based on the model

y = β0 + β1x1 ++β2 ln(x2)+ β3x1 ln(x2)+ ε

(a) Fit this model to the data given in Chapter 4.
Based on this fit, what is your estimate of the
standard deviation of grain size, y, associated
with different specimens treated using a fixed
temperature and time?

(b) Make a plot of the observed y’s versus the cor-
responding ln(x2)’s. On this plot, sketch the lin-
ear fitted response functions (ŷ versus ln(x2))

for x1 = 1443, 1493, and 1543. Notice that the
fit to the researchers’ data is excellent. How-
ever, notice also that the model has four β’s and
was fit based on only nine data points. What
possibility therefore needs to be kept in mind
when making predictions based on this model?
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(c) Make a 95% two-sided confidence interval
for the mean y when a temperature of x1 =
1493◦K and a time of x2 = 120 minutes are
used.

(d) Make a 95% two-sided prediction interval for
an additional grain size, y, when a tempera-
ture of x1 = 1493◦K and a time of x2 = 120
minutes are used.

(e) Find a 95% two-sided confidence interval for
the mean y when a temperature of x1=1500◦K
and a time of x2 = 500 minutes are used. (This
is not a set of conditions in the original data
set. So you will need to inform your regression
program of where you wish to predict.)

(f) What does the hypothesis H0 : β1 = β2 =
β3 = 0 mean in the context of this study and
the model being used in this exercise? Find
the p-value associated with an F test of this
hypothesis.

(g) What does the hypothesis H0 : β3 = 0 mean in
the context of this study and the model being
used in this exercise? Find the p-value associ-
ated with a two-sided t test of this hypothesis.

2. The article “Orthogonal Design for Process Opti-
mization and its Application in Plasma Etching”
by Yin and Jillie (Solid State Technology, 1987)
discusses a 4-factor experiment intended to guide
optimization of a nitride etch process on a single
wafer plasma etcher. Data were collected at only
nine out of 34 = 81 possible combinations of three
levels of each of the four factors (making up a so-
called orthogonal array). The factors involved in
the experimentation were the Power applied to the
cathode x1, the Pressure in the reaction chamber x2,
the spacing or Gap between the anode and the cath-
ode x3, and the Flow of the reactant gas C2F6, x4.
Three different responses were measured, an etch
rate for SiN y1, a uniformity for SiN y2, and a se-
lectivity of the process (for silicon nitride) between
silicon nitride and polysilicon y3. Eight of the nine
different combinations were run once, while one
combination was run three times. The researchers
reported the data given in the accompanying table.

x1 x2 x3 x4 y1 y2 y3

(W) (mTorr) (cm) (sccm) (Å/min) (%) (SiN/poly)

275 450 0.8 125 1075 2.7 1.63

275 500 1.0 160 633 4.9 1.37

275 550 1.2 200 406 4.6 1.10

300 450 1.0 200 860 3.4 1.58

300 500 1.2 125 561 4.6 1.26

275 450 0.8 125 1052 1.7 1.72

300 550 0.8 160 868 4.6 1.65

325 450 1.2 160 669 5.0 1.42

325 500 0.8 200 1138 2.9 1.69

325 550 1.0 125 749 5.6 1.54

275 450 0.8 125 1037 2.6 1.72

The data are listed in the order in which they were
actually collected. Notice that the conditions un-
der which the first, sixth, and eleventh data points
were collected are the same—that is, there is some
replication in this fractional factorial data set.
(a) The fact that the first, sixth, and last data points

were collected under the same set of process
conditions provides some check on the con-
sistency of experimental results across time in
this study. What else might (should) have been
done in this study to try to make sure that time
trends in an extraneous variable don’t get con-
fused with the effects of the experimental vari-
ables (in particular, the effect of x1, as the ex-
periment was run)? (Consider again the ideas
of Section 2.3.)

(b) Fit a linear model in all of x1, x2, x3, and x4
to each of the three response variables. Notice
that although such a model appears to provide
a good fit to the y3 data, the situations for y1
and y2 are not quite so appealing. (Compare
sSF to sP for y1 and note that R2 for the second
variable is relatively low, at least compared to
what one can achieve for y3.)

(c) In search of better-fitting equations for the y2
(or y1) data, one might consider fitting a full
quadratic equation in x1, x2, x3, and x4 to the
data. What happens when you attempt to do
this using a regression package? (The problem
is that the data given here are not adequate to
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distinguish between various possible quadratic
response surfaces in four variables.)

(d) In light of the difficulty experienced in (c),
a natural thing to do might be to try to fit
quadratic surfaces involving only some of all
possible second-order terms. Fit the two mod-
els for y2 including (i) x1, x2, x3, x4, x2

1 , x2
2 ,

x2
3 , and x2

4 terms, and (ii) x1, x2, x4, x2
1 , x2

2 , x2
4 ,

x1x2, and x2x4 terms. How do these two fitted
equations compare in terms of ŷ2 values for
(x1, x2, x3, x4) combinations in the data set?
How do ŷ2 values compare for the two fitted
equations when x1 = 325, x2 = 550, x3 = 1.2,
and x4 = 200? (Notice that although this last
combination is not in the data set, there are
values of the individual variables in the data
set matching these.) What is the practical engi-
neering difficulty faced in a situation like this,
where there is not enough data available to fit
a full quadratic model but it doesn’t seem that
a model linear in the variables is an adequate
description of the response?

Henceforth, confine attention to y3 and consider an
analysis based on a model linear in all of x1, x2, x3,
and x4.
(e) Give a 90% two-sided individual confidence

interval for the increase in mean selectivity ra-
tio that accompanies a 1 watt increase in power.

(f) What appear to be the optimal (large y3) set-
tings of the variables x1, x2, x3, and x4 (within
their respective ranges of experimentation)?
Refer to the coefficients of your fitted equa-
tion from (b).

(g) Give a 90% two-sided confidence interval for
the mean selectivity ratio at the combination of
settings that you identified in (f). What cautions
would you include in a report in which this
interval is to appear? (Under what conditions
is your calculated interval going to have real-
world meaning?)

3. The article “How to Optimize and Control the Wire
Bonding Process: Part II” by Scheaffer and Levine
(Solid State Technology, 1991) discusses the use
of a k = 4 factor central composite design in the
improvement of the operation of the K&S 1484XQ

bonder. The effects of the variables Force, Ultra-
sonic Power, Temperature, and Time on the final
ball bond shear strength were studied. The accom-
panying table gives data like those collected by the
authors. (The original data were not given in the
paper, but enough information was given to pro-
duce these simulated values that have structure like
the original data.)

Force, Power, Temp., Time, Strength,

x1 (gm) x2 (mw) x3
◦C x4 (ms) y (gm)

30 60 175 15 26.2

40 60 175 15 26.3

30 90 175 15 39.8

40 90 175 15 39.7

30 60 225 15 38.6

40 60 225 15 35.5

30 90 225 15 48.8

40 90 225 15 37.8

30 60 175 25 26.6

40 60 175 25 23.4

30 90 175 25 38.6

40 90 175 25 52.1

30 60 225 25 39.5

40 60 225 25 32.3

30 90 225 25 43.0

40 90 225 25 56.0

25 75 200 20 35.2

45 75 200 20 46.9

35 45 200 20 22.7

35 105 200 20 58.7

35 75 150 20 34.5

35 75 250 20 44.0

35 75 200 10 35.7

35 75 200 30 41.8

35 75 200 20 36.5

35 75 200 20 37.6

35 75 200 20 40.3

35 75 200 20 46.0

35 75 200 20 27.8

35 75 200 20 40.3
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(a) Fit both the full quadratic response surface and
the simpler linear response surface to these
data. On the basis of simple examination of
the R2 values, does it appear that the quadratic
surface is enough better as a data summary
to make it worthwhile to suffer the increased
complexity that it brings with it? How do the
sSF values for the two fitted models compare
to sP computed from the final six data points
listed here?

(b) Conduct a formal test (in the full quadratic
model) of the hypothesis that the linear model
y = β0 + β1x1 + β2x2 + β3x3 + β4x4 + ε is
an adequate description of the response. Does
your p-value support your qualitative judg-
ment from part (a)?

(c) In the linear model y = β0 + β1x1 + β2x2 +
β3x3 + β4x4 + ε, give a 90% confidence inter-
val for β2. Interpret this interval in the context
of the original engineering problem. (What is
β2 supposed to measure?) Would you expect
the p-value from a test of H0 : β2 = 0 to be
large or to be small?

(d) Use the linear model and find an approximate
95% lower tolerance bound for 98% of bond
shear strengths at the center point x1 = 35,
x2 = 75, x3 = 200, and x4 = 20.

4. (Testing for “Lack of Fit” to a Regression Model)
In curve- and surface-fitting problems where there
is some replication, this text has used the informal
comparison of sSF (or sLF) to sP as a means of de-
tecting poor fit of a regression model. It is actually
possible to use these values to conduct a formal
significance test for lack of fit. That is, under the
one-way normal model of Chapter 7, it is possible
to test

H0 : µy|x1,x2,...,xk
= β0 + β1x1 + β2x2 + · · · + βk xk

using the test statistic

F =
(n − k − 1)s2

SF − (n − r)s2
P

r − k − 1

s2
P

and an Fr−k−1,n−r reference distribution, where
large values of F count as evidence against H0.
(If sSF is much larger than sP, the difference in the
numerator of F will be large, producing a large
sample value and a small observed level of signifi-
cance.)
(a) It is not possible to use the lack of fit test in

any of Exercise 3 of Section 4.1, Exercise 2
of Section 4.2, or Chapter Exercises 2 or 3 of
Chapter 4. Why?

(b) For the situation of Exercise 2 of Section 9.1,
conduct a formal test of lack of fit of the linear
relationship µy|x = β0 + β1x to the concrete
strength data.

(c) For the situation of Exercise 1 of Section 9.3,
conduct a formal test of lack of fit of the full
quadratic relationship

µy|x1,x2
= β0 + β1 ln(x1)+ β2x2 + β3

(
ln(x1)

)2

+ β4x2
2 + β5x2 ln(x1)

to the hardness increase data.
(d) For the situation of Chapter Exercise 3, con-

duct a formal test of lack of fit of the linear
relationship

µy|x1,x2,x3,x4
= β0 + β1x1 + β2x2

+ β3x3 + β4x4

to the ball bond shear strength data.

5. Return to the situation of Chapter Exercises 18 and
19 of Chapter 4 and the ore refining study of S.
Osoka. In that study, the object was to discover set-
tings of the process variables x1 and x2 that would
simultaneously maximize y1 and minimize y2.
(a) Fit full quadratic response functions for y1 and

y2 to the data given in Chapter 4. Compute
and plot standardized residuals for these two
fitted equations. Comment on the appearance
of these plots and what they indicate about the
appropriateness of the fitted response surfaces.

(b) One useful rule of thumb in response surface
studies (suggested by Box, Hunter, and Hunter
in their book Statistics for Experimenters) is to
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check that for a fitted surface involving a total
of l coefficients b (including b0),

max ŷ −min ŷ > 4

√
l · s2

SF

n

before trying to make decisions based on its na-
ture (bowl-shape up or down, saddle, etc.) or
do even limited interpolation or extrapolation.
This criterion is a comparison of the movement
of the fitted surface across those n data points
in hand, to four times an estimate of the root of
the average variance associated with the n fit-
ted values ŷ. If the criterion is not satisfied, the
interpretation is that the fitted surface is so flat
(relative to the precision with which it is deter-
mined) as to make it impossible to tell with any
certainty the true nature of how mean response
varies as a function of the system variables.

Judge the usefulness of the surfaces fitted in part (a)
against this criterion. Do the response surfaces ap-
pear to be determined adequately to support further
analysis (involving optimization, for example)?
(c) Use the analytic method discussed in Section

9.3 to investigate the nature of the response sur-
faces fitted in part (a). According to the signs
of the eigenvalues, what kinds of surfaces were
fitted to y1 and y2, respectively?

(d) Make contour plots of the fitted y1 and y2 re-
sponse surfaces from (a) on a single set of
(x1, x2)-axes. Use these to help locate (at least
approximately) a point (x1, x2) with maximum
predicted y1, subject to a constraint that pre-
dicted y2 be no larger than 55.

(e) For the point identified in part (d), give 90%
two-sided prediction intervals for the next val-
ues of y1 and y2 that would be produced by
this refining process. Also give an approximate
95% lower tolerance bound for 90% of ad-
ditional pyrite recoveries and an approximate
95% upper tolerance bound for 90% of addi-
tional kaolin recoveries at this combination of
x1 and x2 settings.

6. Return to the concrete strength testing situation of
Chapter Exercise 16 of Chapter 4.
(a) Find estimates of the parameters β0, β1, and

σ in the simple linear regression model y =
β0 + β1x + ε.

(b) Compute standardized residuals and plot them
in the same ways that you were asked to plot
the ordinary residuals in part (g) of the problem
in Chapter 4. How much do the appearances of
the new plots differ from the earlier ones?

(c) Make a 95% two-sided confidence interval for
the increase in mean compressive strength that
accompanies a 5 psi increase in splitting tensile
strength. (Note: This is 5β1.)

(d) Make a 90% two-sided confidence interval for
the mean strength of specimens with splitting
tensile strength 300 psi (based on the simple
linear regression model).

(e) Make a 90% two-sided prediction interval for
the strength of an additional specimen with
splitting tensile strength 300 psi (based on the
simple linear regression model).

(f) Find an approximate 95% lower tolerance
bound for the strengths of 90% of additional
specimens with splitting tensile strength 300
psi (based on the simple linear regression model).

7. Wiltse, Blandin, and Schiesel experimented with
a grain thresher built for an agricultural engineer-
ing design project. They ran efficiency tests on the
cleaning chamber of the machine. This part of the
machine sucks air through threshed material, draw-
ing light (nonseed) material out an exhaust port,
while the heavier seeds fall into a collection tray.
Airflow is governed by the spacing of an air relief
door. The following are the weights, y (in grams),
of the portions of 14 gram samples of pure oat seeds
run through the cleaning chamber that ended up in
the collection tray. Four different door spacings x
were used, and 20 trials were made at each door
spacing.
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.500 in. Spacing

12.00, 12.30, 12.45, 12.45, 12.50, 12.50, 12.50, 12.60, 12.65,

12.70, 12.70, 12.80, 12.90, 12.90, 13.00, 13.00, 13.00, 13.10,

13.20, 13.20

.875 in. Spacing

12.40, 12.80, 12.80, 12.90, 12.90, 12.90, 12.90, 13.00, 13.00,

13.00, 13.00, 13.20, 13.20, 13.20, 13.30, 13.40, 13.40, 13.45,

13.45, 13.70

1.000 in. Spacing

12.00, 12.80, 12.80, 12.90, 12.90, 13.00, 13.00, 13.00, 13.15,

13.20, 13.20, 13.30, 13.40, 13.40, 13.45, 13.50, 13.60, 13.60,

13.60, 13.70

1.250 in. Spacing

12.10, 12.20, 12.25, 12.25, 12.30, 12.30, 12.30, 12.40, 12.50,

12.50, 12.50, 12.60, 12.60, 12.85, 12.90, 12.90, 13.00, 13.10,

13.15, 13.25

Use the quadratic model y = β0 + β1x + β2x2 + ε
and do the following.
(a) Find an estimate of σ in the model above. What

is this supposed to measure? How does your
estimate compare to sP here? What does this
comparison suggest to you?

(b) Use an F statistic and test the null hypothesis
H0 : β1 = β2 = 0. (You may take values off a
printout to do this but show the whole five-step
significance-testing format.) What is the mean-
ing of this hypothesis in the present context?

(c) Use a t statistic and test the null hypothesis
H0 : β2 = 0. (Again, you may take values off a
printout to do this but show the whole five-step
significance-testing format.) What is the mean-
ing of this hypothesis in the present context?

(d) Give a 90% lower confidence bound for the
mean weight of the part of such samples that
would wind up in the collection tray using a
1.000 in. door spacing.

(e) Give a 90% lower prediction bound for the next
weight of the part of such a sample that would
wind up in the collection tray using a 1.000 in.
door spacing.

(f) Give an approximate 95% lower tolerance for
90% of the weights of all such samples that
would wind up in the collection tray using a
1.000 in. door spacing.

8. Return to the armor testing context of Chapter Ex-
ercise 21 of Chapter 4. In what follows, base your
answers on the model y = β0 + β1x1 + β2x2 + ε.
(a) Based on this model, what is your estimate

of the standard deviation of ballistic limit, y,
associated with different specimens of a given
thickness and Brinell hardness?

(b) Find and plot the standardized residuals. (Plot
them versus x1, versus x2, and versus ŷ and
normal-plot them.) Comment on the appear-
ance of your plots.

(c) Make 90% two-sided confidence intervals for
β1 and for β2. Based on the second of these,
what increase in mean ballistic limit would you
expect to accompany a 20-unit increase in the
Brinell hardness number?

(d) Make a 95% two-sided confidence interval for
the mean ballistic limit when a thickness of
x1 = 258 (.001 in.) and a Brinell hardness of
x2 = 391 are involved.

(e) Make a 95% two-sided prediction interval for
an additional ballistic limit when a thickness
of x1 = 258 (.001 in.) and a Brinell hardness
of x2 = 391 are involved.

(f) Find an approximate 95% lower tolerance
bound for 98% of additional ballistic limits
when a thickness of x1 = 258 (.001 in.) and a
Brinell hardness of x2 = 391 are involved.

(g) Find a 95% two-sided confidence interval for
the mean ballistic limit when a thickness of
x1 = 260 (.001 in.) and a Brinell hardness of
x2 = 380 are involved.

(h) What does the hypothesis H0 : β1 = β2 = 0
mean in the context of this study and the model
being used in this exercise? Find the p-value
associated with an F test of this hypothesis.
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(i) What does the hypothesis H0 : β1 = 0 mean
in the context of this study and the model be-
ing used in this exercise? Find the p-value
associated with a two-sided t test of this hy-
pothesis.

9. Return to the PETN density/detonation velocity
data of Chapter Exercise 23 of Chapter 4.
(a) Find estimates of the parameters β0, β1, and

σ in the simple linear regression model y =
β0 + β1x + ε. How does your estimate of σ
compare to sP? What does this comparison
suggest about the reasonableness of the re-
gression model for the data in hand?

(b) Compute standardized residuals and plot
them in the same ways that you plotted the
residuals in part (g) of Chapter Exercise 23
of Chapter 4. How much do the appearances
of the new plots differ from the earlier ones?

(c) Make a 90% two-sided confidence interval
for the increase in mean detonation velocity
that accompanies a 1 g/cc increase in PETN
density.

(d) Make a 90% two-sided confidence interval
for the mean detonation velocity of charges
with PETN density 0.65 g/cc.

(e) Make a 90% two-sided prediction interval for
the next detonation velocity of a charge with
PETN density 0.65 g/cc.

(f) Make an approximate 99% lower tolerance
bound for the detonation velocities of 95% of
charges having a PETN density of 0.65 g/cc.

10. Return to the thread stripping problem of Chapter
Exercise 24 of Chapter 4.
(a) Find estimates of the parameters β0, β1, β2,

and σ in the model y = β0 + β1x + β2x2 +
ε. How does your estimate of σ compare to
sP? What does this comparison suggest about
the reasonableness of the quadratic model for
the data in hand? What is your estimate of σ
supposed to be measuring?

(b) Use an F statistic and test the null hypothe-
sis H0 : β1 = β2 = 0 for the quadratic model.
(You may take values off a printout to help
you do this but show the whole five-step sig-

nificance testing format.) What is the meaning
of this hypothesis in the present context?

(c) Use a t statistic and test the hypothesis H0 :
β2 = 0 in the quadratic model. (Again, show
the whole five-step significance testing for-
mat.) What is the meaning of this hypothesis
in the present context?

(d) Give a 95% two-sided confidence interval for
the mean torque at failure for a thread engage-
ment of 40 (in the units of the problem) using
the quadratic model.

(e) Give a 95% two-sided prediction interval for
an additional torque at failure for a thread
engagement of 40 using the quadratic model.

(f) Give an approximate 99% lower tolerance
bound for 95% of torques at failure for studs
having thread engagements of 40 using the
quadratic model.

11. Return to the situation of Chapter Exercise 28 of
Chapter 4 and the metal cutting experiment of
Mielnick. Consider an analysis of the torque data
based on the model y′1 = β0 + β1x ′1 + β2x ′2 + ε.
(a) Make a 90% two-sided confidence interval

for the coefficient β1.
(b) Make a 90% two-sided confidence interval

for the mean log torque when a .318 in drill
and a feed rate of .005 in./rev are used.

(c) Make a 95% two-sided prediction interval for
an additional log torque when a .318 in drill
and a feed rate of .005 in./rev are used. Expo-
nentiate the endpoints of this interval to get
a prediction interval for a raw torque under
these conditions.

(d) Find a 95% two-sided confidence interval for
the mean log torque for x1 = .300 in and x2 =
.010 in./rev.

12. Return to Chapter Exercise 25 of Chapter 4 and
the tire grip force study.
(a) Find estimates of the parametersβ0, β1, and σ

in the simple linear regression model ln(y) =
β0 + β1x + ε.

(b) Compute standardized residuals and plot
them in the same ways you plotted the resid-
uals in part (h) of Chapter Exercise 25 of
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Chapter 4. How much do the appearances of
the new plots differ from the earlier ones?

(c) Make a 90% two-sided confidence interval
for the increase in mean log grip force that
accompanies an increase in drag of 10% (e.g.,
from 30% drag to 40% drag). Note that this
is 10β1.

(d) Make a 95% two-sided confidence interval
for the mean log grip force of a tire of this
type under 30% drag (based on the simple
linear regression model).

(e) Make a 95% two-sided prediction interval for
the raw grip force of another tire of this design
under 30% drag. (Hint: Begin by making an
interval for log grip force of such a tire.)

(f) Find an approximate 95% lower tolerance
bound for the grip forces of 90% of tires of
this design under 30% drag (based on the sim-
ple linear regression model for ln(y)).

13. Consider again the asphalt permeability data of
Woelfl, Wei, Faulstich, and Litwack given in
Chapter Exercise 26 of Chapter 4. Use the qua-
dratic model y = β0 + β1x + β2x2 + ε and do
the following:
(a) Find an estimate of σ in the quadratic model.

What is this supposed to measure? How does
your estimate compare to sP here? What does
this comparison suggest to you?

(b) Use an F statistic and test the null hypothe-
sis H0 : β1 = β2 = 0 for the quadratic model.
(You may take values off a printout to help
you do this, but show the whole five-step sig-
nificance testing format.) What is the meaning
of this hypothesis in the present context?

(c) Use a t statistic and test the null hypothesis
H0 : β2 = 0 in the quadratic model. Again,
show the whole five-step significance testing
format. What is the meaning of this hypothe-
sis in the present context?

(d) Give a 90% two-sided confidence interval for
the mean permeability of specimens of this
type with a 6.5% asphalt content.

(e) Give a 90% two-sided prediction interval for
the next permeability measured on a specimen
of this type having a 6.5% asphalt content.

(f) Find an approximate 95% lower tolerance
bound for the permeability of 90% of the
specimens of this type having a 6.5% asphalt
content.

14. Consider again the axial breaking strength data
of Koh, Morden, and Ogbourne given in Chapter
Exercise 27 of Chapter 4. At one point in that
exercise, it is argued that perhaps the variable
x3 = x2

1/x2 is the principal determiner of axial
breaking strength, y.
(a) Plot the 36 pairs (x3, y) corresponding to the

data given in Chapter 4. Note that a constant
σ assumption is probably not a good one over
the whole range of x3’s in the students’ data.

In light of the point raised in part (a), for purposes
of simple linear regression analysis, henceforth
restrict attention to those 27 data pairs with x3 >

.004.
(b) Find estimates of the parameters β0, β1, and

σ in the simple linear regression model y =
β0 + β1x3 + ε. How does your estimate of σ
based on the simple linear regression model
compare to sP? What does this comparison
suggest about the reasonableness of the re-
gression model for the data in hand?

(c) Make a 98% two-sided confidence interval for
the mean axial breaking strength of .250 in.
dowels 8 in. in length based on the regression
analysis. How does this interval compare with
the use of formula (6.20) and the four mea-
surements on dowels of this type contained in
the data set?

(d) Make a 98% two-sided prediction interval for
the axial breaking strength of a single addi-
tional .250 in. dowel 8 in. in length. Do the
same if the dowel is only 6 in. in length.

(e) Make an approximate 95% lower tolerance
bound for the breaking strengths of 98% of
.250 in. dowels 8 in. in length.




