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Regression
Analysis—Inference
for Curve- and
Surface-Fitting

-rhe two previous chapters began a study of inference methods for multisample
studies by considering first those which make no explicit use of structure relating
several samples and then discussing some directed at the analysis of factorial struc-
ture. The discussion in this chapter will primarily consider inference methods for
multisample studies where factors involved are inherently quantitative and it is rea-
sonable to believe that some approximate functional relationship holds between the
values of the system/input/independent variables and observed system responses.
That is, this chapter introduces and applies inference methods for the curve- and
surface-fitting contexts discussed in Sections 4.1 and 4.2.

The chapter begins with a discussion of the simplest situation of this type—
namely, where a response variable y is approximately linearly related to a single
quantitative input variable x. In this specific context, it is possible to give explicit
formulas and illustrate in concrete terms what is possible in the way of inference
methods for surface-fitting analyses. The second section then treats the genera
problem of statistical inferences in multiple regression (curve- and surface-fitting)
analyses. Inthe general case, it is not expedient to produce many computational for-
mulas. So the exposition reliesinstead on summary measures commonly appearing
on multiple regression printouts from statistical packages. A final section further
illustrates the broad utility of the multiple regression methods by applying them to
“response surface,” and then factorial, analyses.
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Inference Methods Related to the
Least Squares Fitting of a Line
(Simple Linear Regression)

9.1

9.1.1

This section considers inference methods that are applicable where aresponse y is
approximately linearly related to aninput/system variable x. It begins by introducing
the (normal) simplelinear regression model and discussing how to estimate response
varianceinthiscontext. Next thereisal ook at standardized residuas. Theninference
for the rate of change (Ay/AX) is considered, along with inference for the average
responseat agiven x. Therefollowsadiscussion of prediction and toleranceintervals
for responses at a given setting of x. Next is an exposition of ANOVA ideas in the
present situation. The section then closes with an illustration of how statistical
software expedites the calculations introduced in the section.

The Simple Linear Regression Model, Corresponding
Variance Estimate, and Standardized Residuals

Chapter 7 introduced the one-way (equal variances, normal distributions) model as
the most common probability basis of inference methods for multisample studies.
It was represented in symbols as

wherethemeans u,, it,, .. ., i, Weretreated asr unrestricted parameters. In Chap-
ter 8, it was convenient (for example) to rewrite equation (9.1) in two-way con-
texts as

Yijk = Kij + €k (=n_+o+ B +ab + € (9.2)

where the ;; are still unrestricted, and to consider restrictions/simplifications of
model (9.2) such as

yijk:'u.._‘_ai—i_'sj—i_eijk (93)

Model (9.3) really differsfrom model (9.2) or (9.1) only in the fact that it postul ates
aspecia form or restriction for the means Wi - Expression (9.3) saysthat the means
must satisfy a parallelism relationship.

Turning now to the matter of inference based on datapairs (X, y;), (X5, ¥,), - - .,
(X, ¥,) exhibiting an approximately linear scatterplot, one once again proceeds by
imposing arestriction on the one-way model (9.1). In words, the model assumptions
will be that there are underlying normal distributions for the response y with a
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The (normal) simple
linear regression
model

common variance o2 but means Iyix that change linearly in x. In symbols, it is
typical towritethat fori = 1,2,...,n,

Y, = By + BX + € (9.9

wherethee; are (unobservable) iid normal (0, o?) randomvariables, thex, areknown
congtants, and g, B,, and o2 are unknown model parameters (fixed constants).
Model (9.4) iscommonly known asthe (normal) simplelinear regression model.
If one thinks of the different values of x in an (X, y) data set as separating it into
varioussamplesof y's, expression (9.4) isthe specialization of model (9.1) wherethe
(previously unrestricted) meansof y satisfy thelinear relationship u,, = 8, + B;x.
Figure9.1isapictorial representation of the* constant variance, normal, linear (in x)
mean” model.

I nferences about quantitiesinvolving those x valuesrepresented in the data (like
the mean response at a single x or the difference between mean responses at two
different values of x) will typically be sharper when methods based on model (9.4)
can beusedin place of the general methods of Chapter 7. Andto the extent that model
(9.4) describes system behavior for values of x not included in the data, a model
like (9.4) provides for inferences involving limited interpolation and extrapolation
on X.

Section 4.1 contains an extensive discussion of the use of least squares in the
fitting of the approximately linear relation

y ~ By + BiX (9.5)

toaset of (x, y) data. Rather than redoing that discussion, it is most sensible simply
to observe that Section 4.1 can be thought of as an exposition of fitting and the
use of residuals in model checking for the simple linear regression model (9.4). In

Distributions of y
for various x

X

Figure 9.1 Graphical representation of the
simple linear regression model
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Estimator of g,,
the slope

Estimator of f8,,
the intercept

Fitted values for
simple linear
regression

Residuals for
simple linear
regression

Definition 1

particular, associated with the simple linear regression model are the estimates of
B, and B,

o _ 22X =00 -y

= S (96)
and
‘ by =y — b,X ©.7)
and corresponding fitted values
¥, = by + b (9.8
and residuals
§=Y%—9 (©9)

Further, the residuals (9.9) can be used to make up an estimate of o2. As
always, a sum of squared residualsis divided by an appropriate number of degrees
of freedom. That is, there is the following definition of a (simplelinear regression
or) line-fitting sample variance.

For aset of datapairs (x;, y,), (X,, ¥,). - - ., (X, ¥,,) Wwhereleast squaresfitting
of aline produces fitted values (9.8) and residuals (9.9),

> _ 1 ERSCINE
Sr=—5 2 V=9P=——> ¢ (9.10)

will becalled aline-fitting samplevariance. Associated withitarey = n — 2
degrees of freedom and an estimated standard deviation of response, s =
2

SF-

s’ estimates the level of basic background variation, o2, whenever the model
(9.4) is an adequate description of the system under study. When it is not, s - will
tend to overestimate . So comparing s - to s; is another way of investigating
the appropriateness of model (9.4). (s ¢ much larger than s, suggests the linear
regression model is a poor one.)
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Example 1
(Example 1, Chapter 4,
revisited—paqge 124)

>

>

Inference in the Ceramic Powder Pressing Study

The main example in this section will be the pressure/density study of Benson,
Locher, and Watkins (used extensively in Section 4.1 to illustrate the descriptive
analysis of (X, y) data). Table 9.1 lists again those n = 15 data pairs (X, y) (first
presented in Table 4.1) representing

x = the pressure setting used (psi)
y = the density obtained (g/cc)

in the dry pressing of a ceramic compound into cylinders, and Figure 9.2 is a
scatterplot of the data.

Recall further from the calculation of R? in Example 1 of Chapter 4 that the
data of Table 4.1 produce fitted valuesin Table 4.2 and then

> (y - $)? = .005153

So for the pressure/density data, one has (viaformula (9.10)) that

1
——(.005153) = .000396 (g/cc)?

2
SF=15_2

S r = v.000396 = .0199 g/cc
If oneacceptsthe appropriateness of model (9.4) inthispowder pressing example,

for any fixed pressure the standard deviation of densities associated with many
cylinders made at that pressure would be approximately .02 g/cc.

Table 9.1
Pressing Pressures and Resultant Specimen Densities
X, yi X, y1

Pressure (psi)  Density (g/cc)  Pressure (psi)  Density (g/cc)
2,000 2.486 6,000 2.653
2,000 2479 8,000 2.724
2,000 2472 8,000 2.774
4,000 2.558 8,000 2.808
4,000 2570 10,000 2.861
4,000 2.580 10,000 2.879
6,000 2.646 10,000 2.858

6,000 2.657
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Figure 9.2 Scatterplot of density versus pressing
pressure

Table 9.2
Sample Means and Standard Deviations of Densities for Five
Different Pressing Pressures

X, Y, S,
Pressure (psi) SampleMean  Sample Standard Deviation

2,000 2479 .0070
4,000 2.569 .0110
6,000 2.652 .0056
8,000 2.769 .0423
10,000 2.866 .0114

The original datain this example can be thought of as organizedintor =5
separate samples of size m = 3, one for each of the pressures 2,000 psi, 4,000
psi, 6,000 psi, 8,000 psi, and 10,000 psi. It is instructive to consider what this
thinking leads to for an alternative estimate of o—namely, s... Table 9.2 gives y
and s values for the five samples.

The sample standard deviations in Table 9.2 can be employed in the usual
way to calculate s,. That is, exactly asin Definition 1 of Chapter 7

2= (83— 1)(.0070)? + (3 — 1)(.0110)% + - - - + (3 — 1)(.0114)?
B-1)+B-D+---+@B-1
= .000424 (g/cc)?
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Example 1
(continued)

Standardized
residuals for
simple linear
regression

Example 1
(continued)

from which

S = \/% = .0206 g/cc
Comparing s ¢ and s;,, there is no indication of poor fit carried by these values.

Section 4.1 includes some plotting of the residuals (9.9) for the pressure/density
data (in particular, a normal plot that appears as Figure 4.7). Although the (raw)
residuals (9.9) are most easily calculated, most commercialy available regression
programs provide standardized residuals as well as, or even in preference to, the
raw residuas. (At this point, the reader should review the discussion concerning
standardized residual s surrounding Definition 2 of Chapter 7.) In curve- and surface-
fitting analyses, the variances of the residuals depend on the corresponding X’s.
Standardizing before plotting is away to prevent mistaking a pattern on a residual
plot that is explainable on the basis of these different variances for one that is
indicative of problems with the basic model. Under model (9.4), for a given x with
corresponding response y,

2
Var(y — §) = o? (1 1 M) (9.11)

So using formula (9.11) and Definition 7.2, corresponding to the datapair (x;, ;) is
the standardized residual for simple linear regression

&

1_E_L)_()Z
Sk N Y (x— %)

The more sophisticated method of examining residuals under model (9.4) isthusto
make plots of the values (9.12) instead of plotting the raw residuals (9.9).

& = (9.12)

Consider how the standardized residuals for the pressure/density data set are
related to the raw residuals. Recalling that

> Z(x — X)? = 120,000,000

and that the x; valuesin the original data included only the pressures 2,000 psi,
4,000 psi, 6,000 psi, 8,000 psi, and 10,000 psi, it is easy to obtain the necessary
values of theradical in the denominator of expression (9.12). These are collected
in Table 9.3.
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Table 9.3
Calculations for Standardized Residuals
in the Pressure/Density Study

y L 1 (x — 6,000)°
15 120,000,000

2,000 .894
4,000 .949
6,000 .966
8,000 .949
10,000 .894

The entriesin Table 9.3 show, for example, that one should expect residuals
corresponding to x = 6,000 psi to be (on average) about .966,/.894 = 1.08 times
aslarge as residuals corresponding to x = 10,000 psi. Division of raw residuals
by s,  times the appropriate entry of the second column of Table 9.3 then puts
them all on equal footing, so to speak. Table 9.4 shows both the raw residuals
(taken from Table 4.5) and their standardized counterparts.

In the present case, since the values .894, .949, and .966 are roughly com-
parable, standardization viaformula (9.12) doesn’t materially affect conclusions
about model adequacy. For example, Figures 9.3 and 9.4 are normal plots of (re-
spectively) raw residuals and standardized residuals. For all intents and purposes,
they are identical. So any conclusions (like those made in Section 4.1 based on
Figure 4.7) about model adequacy supported by Figure 9.3 are equally supported
by Figure 9.4, and vice versa.

In other situations, however (especially those where a data set contains a
few very extreme x values), standardization can involve more widely varying
denominators for formula (9.12) than those implied by Table 9.3 and thereby
affect the results of aresidual analysis.

Table 9.4
Residuals and Standardized Residuals for the Pressure/Density Study
X e Standardized Residual
2,000 .0137,.0067, —.0003 77, .38, —.02
4,000 —.0117,.0003,.0103 —.62,.02, .55
6,000 —.0210, —.0100, —.0140 —1.09, —.52, —.73
8,000 —.0403, .0097, .0437 —2.13,.51,231

10,000 —.0007,.0173, —.0037 —.04,.97,-21
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Example 1
(continued)

9.1.2
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Figure 9.3 Normal plot of residuals for a linear fit to
the pressure/density data
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Figure 9.4 Normal plot of standardized residuals for

a linear fit to the pressure/density data

Inference for the Slope Parameter

Especially in applications of the simple linear regression model (9.4) where x
represents a variable that can be physically manipulated by the engineer, the slope
parameter B, isof fundamental interest. Itistherate of change of aver ageresponse
with respect to x, and it governs the impact of a changein x on the system output.
Inference for B, isfairly simple, because of the distributional propertiesthat b, (the
slope of the least squares line) inherits from the model. That is, under model (9.4),
b, has anormal distribution with

Eb, = 8,

and

Varb, = (9.13)

Y (X — X)?
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Test statistic for
Hy: B, =#

Confidence limits
for the slope, B,

Example 1
(continued)

which in turn imply that

bl_ﬂl

o

V(X = %)?

is standard normal. In a manner similar to many of the arguments in Chapters 6
and 7, this motivates the fact that the quantity

Z =

b, — B,
Sk

V(X — %)

hasat, , distribution. The standard arguments of Chapter 6 applied to expression
(9.14) then show that

T= (9.14)

Ho: B, = # (9.15)

can be tested using the test statistic

To_P# (9.16)
SLF

V22X —%)?

and at,_, reference distribution. More importantly, under the simple linear re-
gression model (9.4), a two-sided confidence interval for g, can be made using
endpoints

b, & f—AF (9.17)

DX =%

where the associated confidence is the probability assigned to the interval between
—tandt by thet, , distribution. A one-sided interval is made in the usual way,
based on one endpoint from formula (9.17).

In the context of the powder pressing study, Section 4.1 showed that the slope of
the least squares line through the pressure/density datais

b, = .0000486 (g/cc)/psi
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Example 1
(continued)

Considerations
in the selection
of x values

Then, for example, a95% two-sided confidenceinterval for g, can be made using
the .975 quantile of the t,, distribution in formula (9.17). That is, one can use
endpoints

.0000486 + 2.160\/%3000
that is,
.0000486 + .0000039
that is,
> .0000448 (g/cc)/psi and .0000526 (g/cc)/psi

A confidence interval like this one for g, can be translated into a confidence
interval for a difference in mean responses for two different values of x. Ac-
cording to model (9.4), two different values of x differing by Ax have mean
responses differing by B, AX. One then simply multiplies endpoints of a confi-
dence interval for g, by Ax to obtain a confidence interval for the difference
in mean responses. For example, since 8,000 — 6,000 = 2,000, the difference
between mean densities at 8,000 psi and 6,000 psi levels has a 95% confidence
interval with endpoints

2,000(.0000448) g/cc and 2,000(.0000526) g/cc

thatis,

.0896 g/cc and .1052 g/cc

Formula (9.17) alows a kind of precision to be attached to the slope of the
least squares line. It is useful to consider how that precision is related to study
characteristics that are potentially under an investigator’s control. Notice that both
formulas(9.13) and (9.17) indicatethat thelarger 3" (x — X)?is(i.e., themore spread
out the x; values are), the more precision b, offers as an estimator of the underlying
slope B,. Thus, as far as the estimation of g, is concerned, in studies where x
represents the value of a system variable under the control of an experimenter, he or
she should choose settings of x with the largest possible sample variance. (In fact,
if one has n observations to spend and can choose values of x anywhere in some
interval [a, b], taking 5 of themat x = aand 5 at x = b produces the best possible
precision for estimating the slope ;)

However, this advice (to spread the x;’s out) must be taken with agrain of salt.
The approximately linear relationship (9.4) may hold over only a limited range of
possible x values. Choosing experimental values of x beyond the limits whereit is
reasonable to expect formula (9.4) to hold, hoping thereby to obtain agood estimate
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Estimator of

Hyix

= By + B X

of slope, is of course nonsensical. And it is aso important to recognize that precise
estimation of 8, under the assumptions of model (9.4) is not the only consideration
when planning data collection. It is usually aso important to be in aposition to tell
when the linear form of (9.4) is inappropriate. That dictates that data be collected
at anumber of different settings of x, not smply at the smallest and largest values
possible.

Inference for the Mean System Response
for a Particular Value of x

Chapters 7 and 8 repeatedly considered the problem of estimating the mean of y
under a particular one (or combination) of the levels of the factor (or factors) of
interest. In the present context, the analog is the problem of estimating the mean
response for afixed value of the system variable x,

Iy = Bo+ BiX (9.18)

The natural data-based approximation of the mean in formula (9.18) is the corre-
sponding y value taken from the least squares line. The notation

§ = by + b x (9.19)

will be used for this value on the least squareslines. (Thisisin spite of the fact that
the value in formula (9.19) may not be a fitted value in the sense that the phrase
has most often been used to this point. x need not be equal to any of x;, X,, ..., X,
for both expressions (9.18) and (9.19) to make sense.) The simple linear regression
model (9.4) leadsto simpledistributional propertiesfor ¥ that then produceinference
methods for 1o, .

Under model (9.4), § has anormal distribution with

and

N 1 — %)?
Var § = o2 (ﬁ + %) (9.20)

(In expression (9.20), notation is being abused somewhat. The i subscripts and
indices of summation in Y (x — X)? have been suppressed. This summation runs
over the n values x;, included in the origina data set. On the other hand, in the
(X — X)? term appearing as a numerator in expression (9.20), the x involved is not
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Test statistic for

Hy: Py = #

Confidence limits
for the mean repsonse,
Ky = By + BiX

Example 1
(continued)

necessarily equal toany of x;, X,, ..., X,. Rather, itissimply the value of the system
variable at which the mean response is to be estimated.) Then

7 — y_My\X
(X — X)?
n Y x—x?

T= Y Hyix (9.21)
1, x=%°
SFy g (X — %)

hasat, , distribution. The standard arguments of Chapter 6 applied to expression
(9.21) then show that

Ho: 1ty = # (9.22)

can be tested using the test statistic

T= y—# (9.23)
1 (x—x)?
Seyn T (X — %)

and at,_, reference distribution. Further, under the simple linear regression model
(9.4), atwo-sided individua confidence interval for yx CaN be made using end-

where the associated confidence is the probability assigned to the interval between
—t and t by thet,_, distribution. A one-sided interval is made in the usual way
based on one endpoint from formula (9.24).

Returning again to the pressure/density study, consider making individual 95%
confidence intervals for the mean densities of cylinders produced first at 4,000
psi and then at 5,000 psi.
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Treating first the 4,000 psi condition, the corresponding estimate of mean
density is

§ = 2.375 + .0000486(4,000) = 2.5697 g/cc

Further, from formula (9.24) and the fact that the .975 quantile of the t,, distri-
bution is 2.160, a precision of plus-or-minus

1 (4,000 — 6,000)2
2.160C.0199)/ 75 + —155 500,000

=.0136 g/cc

can be attached to the 2.5697 g/cc figure. That is, endpoints of atwo-sided 95%
confidence interval for the mean density under the 4,000 psi condition are

> 25561 g/cc and 2.5833g/cc

Under the x = 5,000 psi condition, the corresponding estimate of mean
density is

§ = 2.375 + .0000486(5,000) = 2.6183 g/cc

Using formula (9.24), aprecision of plus-or-minus

1 (5,000 — 6,000)?

15T 0000000 - OteYce

2.160( .0199)\/

can be attached to the 2.6183 g/cc figure. That is, endpoints of a two-sided 95%
confidence interval for the mean density under the 5,000 psi condition are

> 2.6065g/cc and 2.6301g/cc

The reader should compare the plus-or-minus parts of the two confidence
intervalsfound here. Theinterval for x = 5,000 psi is shorter and therefore more
informative than the interval for x = 4,000 psi. The origin of this discrepancy
should be clear, at least upon scrutiny of formula (9.24). For the students' data,
X = 6,000 psi. x = 5,000 psi iscloser to X thanisx = 4,000 psi, so the (x — X)?
term (and thus the interval length) is smaller for x = 5,000 psi than for x =
4,000 psi.

The phenomenon noted in the preceding example—that the length of a confi-
dence interval for .., increases as one moves away from X—is an important one.
Andit hasanintuitively plausibleimplication for the planning of experimentswhere
an approximately linear relationship between y and x is expected, and x is under
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Inference for
the intercept, g,

Simultaneous two-
sided confidence
limits for all
means, i,

the investigator’s control. If thereisan interval of values of x over which one wants
good precision in estimating mean responses, it isonly sensible to center one's data
collection effortsin that interval.

Proper use of displays (9.22), (9.23), and (9.24) givesinference methodsfor the
parameter B, in model (9.4). B, isthey intercept of thelinear relationship (9.18). So
by setting x = Oindisplays(9.22), (9.23), and (9.24), tests and confidence intervals
for B, are obtained. However, unless x = O is afeasible vaue for the input variable
and the region where the linear relationship (9.18) is a sensible description of
physical reality includes x = 0, inference for g, aloneisrarely of practical interest.

The confidence intervals represented by formula (9.24) carry individual associ-
ated confidence levels. Section 7.3 showed that it is possible (using the P-R method)
to give simultaneous confidence intervals for r possibly different means, ;. This
comes about essentially by appropriately increasing thet multiplier usedin the plus-
or-minus part of the formulafor individual confidence limits. Hereit is possible, by
replacing t in formula (9.24) with a larger value, to give simultaneous confidence
intervals for all means . That is, under model (9.4), simultaneous two-sided
confidence intervals for all mean responses My CAN be made using respective end-
points

x=%?%

Z(x — X)?

(b, +b X):I:\/_SLFJ 1 (9.25)

wherefor positive f, theassociated simultaneousconfidenceisthe F, , _, probability
assigned to theinterval (0, f).

Of course, the practical meaning of the phrase “for all means 1,,," is more
like “for all mean responsesin an interval where the simple linear regression model
(9.4) is aworkable description of the relationship between x and y.” Asis aways
the case in curve- and surface-fitting situations, extrapolation outside of the range
of x values where one has data (and even to some extent interpolation inside that
range) is risky business. When it is done, it should be supported by subject-matter
expertise to the effect that it isjustifiable.

It may be somewhat difficult to grasp the meaning of a simultaneous confidence
figure applicable to all possible intervals of the form (9.25). To this point, the
confidence levels considered have been for finite sets of intervals. Probably the
best way to understand the theoretically infinite set of intervals given by formula
(9 25) is as defining aregion in the (x, y)-plane thought likely to contain the line

= B, + B,x. Figure 9.5 is a sketch of atypical confidence region represented
by formula (9.25). There is a region indicated about the least squares line whose
vertical extent increases with distance from X and which has the stated confidence
in covering the line describing the relationship between x and Hyix-
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Example 1
(continued)

Simultaneous
confidence region
for all mean responses

Figure 9.5 Region in the (x, y)-plane defined
by simultaneous confidence intervals for all values

of iy,

It is instructive to compare what the P-R method of Section 7.3 and formula
(9.25) givefor simultaneous 95% confidenceintervalsfor mean cylinder densities
produced under the five conditions actually used by the students in their study.

First, formula (7.28) of Section 7.3 shows that withn—r =15—-5=10
degrees of freedom for s, and r = 5 conditions under study, 95% simultaneous
two-sided confidence limits for all five mean densities are of the form

y, +3.103- P
n;
which in the present context is

.0206
y; £3.103——
V3
that is,

y; £ .0369 g/cc

Then, since v; = 2 and v, = 13 degrees of freedom are involved in the use
of formula (9.25), simultaneous limits of the form

A 1 (x— 6,000
g +./2(3.81) SLF\/E + 120,000,000
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Example 1
(continued)

9.14

Table 9.5
Simultaneous (and Individual) 95% Confidence Intervals for Mean Cylinder Densities
Fyix Fyix Hyix
X, (P-R Method) (from formula (9.25)) (from formula (9.24))
Pressure Mean Density Mean Density Mean Density

2,000 psi 2.4790 £ .0369 g/cc 2.4723 £ .0246 g/cc  2.4723 £+ .0136 g/cc
4,000 psi 2.5693 4 .0369 g/cc 2.5697 £+ .0174 g/cc  2.5697 £+ .0118 g/cc
6,000 psi 2.6520 £ .0369 g/cc 2.6670 £ .0142 g/cc  2.6670 £ .0111 g/cc
8,000 psi 2.7687 £+ .0369 g/cc 2.7643 £ .0174 g/cc 2.7643 £+ .0118 g/cc
10,000 psi 2.8660 + .0369 g/cc 2.8617 £+ .0246 g/cc  2.8617 £ .0136 g/cc

are indicated. Table 9.5 shows the five intervals that result from the use of each
of the two simultaneous confidence methods, together with individual intervals
(9.24).

Two points are evident from Table 9.5. Firgt, the intervals that result from
formula (9.25) are somewhat wider than the corresponding individual intervals
given by formula (9.24). But it is also clear that the use of the smple linear
regression model assumptions in preference to the more general one-way as-
sumptions of Chapter 7 can lead to shorter simultaneous confidence intervals and
correspondingly sharper real-world engineering inferences.

Prediction and Tolerance Intervals (Optional )

Inference for Py is one kind of answer to the qualitative question, “If | hold
the input variable x at some particular level, what can | expect in terms of a
system response?’ It is an answer in terms of mean or long-run average response.
Sometimes an answer in terms of individual responses is of more practical use.
And in such cases it is helpful to know that the simple linear regression model
assumptions (9.4) lead to their own specialized formulasfor prediction and tolerance
intervals.

Thebasicfact that makes possible prediction interval sunder assumptions(9.4) is
that if y,, , isone additional observation, coming from the distribution of responses
corresponding to a particular x, and ¥ is the corresponding fitted value at that x
(based on the original n data pairs), then

Y1 — 9

1 (x—=X)?
ﬁ_F\/l-l-ﬁ—l-—Z(X_)_()z

T =
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Simple linear
regression
prediction limits for
an additional y at a
given x

A one-sided tolerance
interval for the y
distribution at x

Another one-sided
tolerance interval for
the y distribution at x

The ratio of
VVary to o for simple
linear regression
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hasat, , distribution. Thisfact leadsin the usual way to the conclusion that under
model (9.4) the two-sided interval with endpoints

(X — X)?

. 1
yitsLF\/1+ﬁ+

can be used as a prediction interval for an additional observation y at a particular
value of theinput variable x. The associated prediction confidenceis the probability
that thet,, _,, distribution assignsto theinterval between —t andt. One-sidedintervals
are made in the usual way, by employing only one of the endpoints (9.26) and
adjusting the confidence level appropriately.

It is possible not only to derive prediction interval formulas from the simple
linear regression model assumptions but also to develop relatively simple formulas
for approximate one-sided tolerance bounds. That is, the intervals

(Y — S 00) (9.27)

and

(=00, § + 15 (9.28)

can be used as one-sided tolerance intervals for a fraction p of the underlying
distribution of responses corresponding to a particular value of the system variable
X, provided t isappropriately chosen (depending upon thedata, p, x, and thedesired
confidence level).

In order to write down areasonably clean formulafor , the notation

am fhy OB
Vn Yx-x?

will be adopted for the multiplier that isused (e.g., in formula (9.24)) to go from an
estimate of o to an estimate of the standard deviation of §. Then, for approximate

(9.29)
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Multiplier to use in
interval (9.27) or (9.28)

Example 1
(continued)

y level confidencein locating afraction p of the responses y at the x of interest, T
appropriate for usein interval (9.27) or (9.28) is

1 QAP
Q,(p) + AQZ(V)J 1+ 50=% ( = QW
= 9.30
! R 639
2(n—2)

To illustrate the use of prediction and tolerance interval formulas in the simple
linear regression context, consider a 90% lower prediction bound for a single
additional density in powder pressing, if a pressure of 4,000 psi is employed.
Then, additionally consider finding a 95% lower tolerance bound for 90% of
many additional cylinder densities if that pressure is used.

Treating first the prediction problem, formula (9.26) shows that an appropri-
ate prediction bound is

1 (4,000 — 6,000)°
2.5697 — 1.350(.01 14+ — = 2.5796 — .0282
569 350(.0 99)\/ T 120,000,000 5796 — .028

that is,
> 2.5514 g/cc

If, rather than predicting a single additional density for x = 4,000 psi, it is
of interest to locate 90% of additional densities corresponding to a 4,000 psi
pressure, atolerance bound isin order. First use formula (9.29) and find that

1 (4,000 — 6,000)°

A=\15 120,000,000

= .3162

Next, for 95% confidence, applying formula (9.30),

1 (1.282)? _ )
1.282 + (.3162)(1.645)J 1+ 2152 (('3162)2 (1.645) )

T =

5 = 2.149
(1.645)

-~ 2(15-2)
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Cautions about
prediction and
tolerance intervals
in regression

9.1.5

Definition 2

So finaly, an approximately 95% lower tolerance bound for 90% of densities
produced using a pressure of 4,000 psi is (viaformula (9.27))

2.5697 — 2.149(.0199) = 2.5697 — .0428

that is,

> 2.5269 g/cc

The fact that curve-fitting facilitates interpolation and extrapolation makes it
imperative that care be taken in the interpretation of prediction and tolerance in-
tervals. All of the warnings regarding the interpretation of prediction and tolerance
intervals raised in Section 6.6 apply equally to the present situation. But the new
element here (that formally, the intervals can be made for values of x where one
has absolutely no data) requires additional caution. If oneisto use formulas (9.26),
(9.27), and (9.28) at a value of x not represented among X;, X,, ..., X, it must
be plausible that model (9.4) not only describes system behavior at those x values
where one has data, but at the additional value of x aswell. And even when thisis
“plausible’ the application of formulas (9.26), (9.27), and (9.28) to new values of
x should be treated with a good dose of care. Should one's (unverified) judgment
prove wrong, the nominal confidence level has unknown practical relevance.

Simple Linear Regression and ANOVA

Section 7.4 illustrates how, for unstructured studies, partition of the total sum of
squares into interpretable pieces provides both (1) intuition and quantification re-
garding the origin of observed variation and also (2) the basis for an F test of “no
differences between mean responses.” It turns out that something similar is possible
in simple linear regression contexts.

In the unstructured context of Section 7.4, it was useful to name the difference
between SSTot and SSE. The corresponding convention for curve- and surface-fitting
situations is stated next in definition form.

In curve- and surface-fitting analyses of multisample studies, the difference

SR = SSlot — SSE

will be called the regression sum of squares.
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The coefficient of
determination for
simple linear regression
in sum of squares
notation

An F statistic for
testing H,: g, =0

Itisnot obvious, but the difference referred to in Definition 2 in general hasthe
form of a sum of squares of appropriate quantities. In the present context of fitting
aline by least squares,

n
SR=) (¥, - y)?
i=1
Without using the particular terminology of Definition 2, this text has already
made fairly extensive use of SSR = SSTot — SSE. A review of Definition 3 in Chap-

ter 4 (page 130), and Definitions 4 and 6 in Chapter 7 (page 484) will show that in
curve- and surface-fitting contexts,

SR
RP= —— 9.31
SSTot ( )

That is, SR is the numerator of the coefficient of determination defined first in
Definition 3 (Chapter 4). It iscommonly thought of asthe part of the raw variability
iny that is accounted for in the curve- or surface-fitting process.

SSR and SSE not only provide an appealing partition of SSTot but also form the
raw material for an F test of

Hy: B, =0 (9.32)
versus
H,: B, #0 (9.33)

Under model (9.4), hypothesis (9.32) can be tested using the statistic

E_ SR/1 . SWR/1
- s  SSE/(n-2

(9.34)

andan F, ,_, reference distribution, where large observed values of the test statistic
congtitute evidence against H,.

Earlier in this section, the general null hypothesisH,: 8, = # wastested using
the t statistic (9.16). It is thus reasonable to consider the relationship of the F
test indicated in displays (9.32), (9.33), and (9.34) to the earlier t test. The null
hypothesisH,,: 8, = O is aspecia form of hypothesis (9.15), H,: 8, = #. It isthe
most frequently tested version of hypothesis (9.15) because it can (within limits)
be interpreted as the null hypothesis that mean response doesn't depend on x.
This is because when hypothesis (9.32) is true within the simple linear regression
model (9.4), Ryx =By +0-x =By, which doesn’t depend on x. (Actually, a better
interpretation of atest of hypothesis (9.32) is as a test of whether a linear term in
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Example 1
(continued)

X adds significantly to one’s ability to model the response y after accounting for an
overall mean response.)

If one then considers testing hypotheses (9.32) and (9.33), it might appear that
the# = Oversion of formula(9.16) and formula(9.34) represent two different testing
methods. But they are equivalent. The statistic (9.34) turns out to be the square of
the # = 0 version of statistic (9.16), and (two-sided) observed significance levels
based on statistic (9.16) and thet, _, distribution turn out to be the same as observed
significance levels based on statistic (9.34) and the F, |, _, distribution. So, from one
point of view, the F test specified hereisredundant, given the earlier discussion. But
it isintroduced here because of its relationship to the ANOVA ideas of Section 7.4,
and because it has an important natural generalization to more complex curve- and
surface-fitting contexts. (This generalization is discussed in Section 9.2 and cannot
be made equivalent to at test.)

The partition of SSTot into its parts, SSR and SSE, and the calculation of the
statistic (9.34) can beorganizedin ANOVA tableformat. Table 9.6 showsthe general
format that this book will usein the simple linear regression context.

Table 9.6
General Form of the ANOVA Table for Simple Linear Regression

ANOVA Table (for testingH,: 8, = 0)

Source S df MS F
Regression SSR 1 SSR/1 MSR/MSE
Error SSE n—2 SSE/(n—2)

Total SSTot n-1

Recall again from the discussion of the pressure/density example in Section 4.1
that

SSTot = ) (y — ¥)* = .289366
Also, from page 654 recall that

SE=) (y-9)°=.005153
Thus,

SSR = SSTot — SSE = .289366 — .005153 = .284213

and the specific version of Table 9.6 for the present exampleisgiven as Table 9.7.
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Example 1
(continued)

Then the observed level of significance for testing H,: 8, = Ois

> P[an F, ;5 random variable > 717] < .001

and one hasvery strong evidence against the possibility that 8, = 0. A linear term
in Pressure is an important contributor to one’s ability to describe the behavior
of Cylinder Density. This is, of course, completely consistent with the earlier
interval-oriented analysis that produced 95% confidence limits for g, of

.0000448 (g/cc)/ps and .0000526 (g/cc)/psi

that do not bracket O.

The value of R? =.9822 (found first in Section 4.1) can aso be easily
derived, using the entries of Table 9.7 and the relationship (9.31).

Table 9.7

ANOVA Table for the Pressure/Density Data

ANOVA Table (for testingH,: g, = 0)

Source

Regression
Error

MS F
284213 717
.000396

Total

9.1.6 Simple Linear Regression and Statistical Software

Many of the calculations needed for the methods of this section are made easier
by statistical software packages. None of the methods of this section are so com-
putationally intensive that they absolutely require the use of such software, but it
is worthwhile to consider its use in the smple linear regression context. Learning
where on a typical printout to find the various summary statistics corresponding
to calculations made in this section helps in locating important summary statistics
for the more complicated curve- and surface-fitting analyses of the next section.
Printout 1 isfrom aMINITAB analysis of the pressure/density data.

Printout 1 Simple Linear Regression for the Pressure/Density Data (Example 1)

Regression Analysis

The regression equation is

density = 2.38 +0.000049 pressure



9.1 Inference Methods Related to the Least Squares Fitting of a Line (Simple Linear Regression)

Predictor

Coef

Constant 2.37500
pressure  0.00004867 0.00000182

S =0.01991

Analysis of Variance

Source

Regression

Residual Error

Total

Obs  pressure
1 2000
2 2000
3 2000
4 4000
5 4000
6 4000
7 6000
8 6000
9 6000
10 8000
11 8000
12 8000
13 10000
14 10000
15 10000

DF

1
13
14

density
.48600
.47900
.47200
.55800
.57000
.58000
.64600
.65700
.65300
.72400
77400
.80800
.86100
.87900
.85800

PO NN RN NN NN NN NN NN

StDev
0.01206

R-Sq = 98.2%

SS
0.28421
0.00515
0.28937

NN NNMN N NN

R denotes an observation with a

Predicted Values

Fit StDev Fit
2.61833 0.00545

( 2.60655, 2.63011)

R-Sq(adj) = 98.1%

Fit

.47233
.47233
47233
.56967
.56967
.56967
.66700
.66700
.66700
.76433
.76433
.76433
.86167
.86167
.86167

197.01
26.78

0.000
0.000

MS F p

0.28421 717.06 0.000

0.00040

StDev Fit Residual St Resid

0.00890 0.01367 0.77
0.00890 0.00667 0.37
0.00890 -0.00033 -0.02
0.00630 -0.01167 -0.62
0.00630 0.00033 0.02
0.00630 0.01033 0.55
0.00514 -0.02100 -1.09
0.00514 -0.01000 -0.52
0.00514 -0.01400 -0.73
0.00630 -0.04033 -2.14R
0.00630 0.00967 0.51
0.00630 0.04367 2.31R
0.00890 -0.00067 -0.04
0.00890 0.01733 0.97
0.00890 -0.00367 -0.21

Targe standardized residual

95.0% CI

95.0% PI
( 2.57374, 2.66293)
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Printout 1 is typical of summaries of regression analyses printed by commer-
cidly available statistical packages. The most basic piece of information on the
printout is, of course, the fitted equation. Immediately below it is atable giving (to
more significant digits) the estimated coefficients (b, and b,), their estimated stan-
dard deviations, and the t ratios (appropriate for testing whether coefficients g are
0) made up as the quotients. The printout includes the values of s, - and R? and an
ANOVA table much like Table 9.7. For the several observed values of test statistics
printed out (including the observed value of F from formula (9.34)), MINITAB
gives observed levels of significance. The ANOVA table is followed by a table of
values of v, fitted y,

“StDev Fit" = § ¢
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Section 1 Exercises

1. Return to the situation of Exercise 3 of Section

Chapter 9 Regression Analysis—Inference for Curve- and Surface-Fitting

and residual, and standardized residua corresponding to the n data points. MINI-
TAB’s regression program has an option that alows one to request fitted values,
confidence intervals for Iy @nd prediction intervals for x values of interest, and
Printout 1 finishes with this information for the value x = 5, 000.

The reader is encouraged to compare the information on Printout 1 with the
various results obtained in Example 1 and verify that everything on the printout
(except the “adjusted R?” value) isindeed familiar.

4.1 and the polymer molecular weight study of R.

Harris.

(@) Find s  for these data. What does this intend
to measure in the context of the engineering
problem?

(b) Plot both residuals versus x and the standard-
ized residuals versus x. How much difference
istherein the appearance of these two plots?

(c) Give a 90% two-sided confidence interval for
theincrease in mean average molecular weight
that accompaniesal°Cincreasein temperature
here.

(d) Giveindividual 90% two-sided confidence in-
tervals for the mean average molecular weight
at 212°C and also at 250°C.

(e) Give simultaneous 90% two-sided confidence
intervals for the two means indicated in part
(d).

(f) Give90% lower prediction boundsfor the next
average molecular weight, first at 212°C and
then at 250°C.

(g) Give approximately 95% lower tolerance
bounds for 90% of average molecular weights,
first at 212°C and then at 250°C.

(h) Make an ANOVA tablefor testingH,: g, =0
in the simple linear regression model. What is
the p-value here for a two-sided test of this
hypothesis?

. Return to the situation of Chapter Exercise 1 of

Chapter 4 and the concrete strength study of Nichol-

son and Bartle.

(@) Find estimates of the parameters 8, 8;, and o
inthesimplelinear regression model y = g, +
B1X + €. How does your estimate of o based
on the simplelinear regression model compare
with the pooled sample standard deviation, s,?

(b) Compute residuals and standardized residuals.
Plot both against x and ¥ and normal-pl ot them.
How much do the appearances of the plots of
the standardized residual s differ from those of
the raw residual s?

(c) Make a90% two-sided confidence interval for
the increase in mean compressive strength that
accompanies a.l increasein the water/cement
ratio. (Thisis.18,).

(d) Test the hypothesis that the mean compressive
strength doesn’t depend on the water/cement
ratio. What is the p-value?

(e) Make a95% two-sided confidence interval for
the mean strength of specimens with the wa-
ter/cement ratio .5 (based on the ssimple linear
regression model).

(f) Make a 95% two-sided prediction interval for
the strength of an additional specimen with
the water/cement ratio .5 (based on the simple
linear regression model).

(g) Make an approximately 95% lower tolerance
bound for the strengths of 90% of additional
specimens with the water/cement ratio .5
(based on the simple linear regression model).
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9.2 Inference Methods for General Least
Squares Curve- and Surface-Fitting
(Multiple Linear Regression)

9.2.1

The previous section presented formal inference methods available under the (nor-
mal) smple linear regression model. Confidence interval estimation, hypothesis
testing, prediction and tolerance intervals, and ANOVA were al seen to have sim-
ple linear regression versions. This section makes a parallel study of more gen-
eral curve- and surface-fitting contexts. First, the multiple linear regression model
and its corresponding variance estimate and standardized residuals are introduced.
Then, in turn, there are discussions of how multiple linear regression computer
programs can (1) facilitate inference for rate of change parameters in the model,
(2) make possible inference for the mean system response at a given combination
of values for the input/system variables and the making of prediction and toler-
ance intervals, and (3) allow the use of ANOVA methods in multiple regression
contexts.

The Multiple Linear Regression Model, Corresponding
Variance Estimate, and Standardized Residuals

This section considers situations like those treated on a descriptive level in Section
4.2, where for k system variables x,, X,, ..., X, and aresponse y, an approximate
relationship like

holds. Asin Section 4.2, the form (9.35) not only covers those circumstances where
X1, X, ..., X, al represent physically different variables but also describes contexts
where some of the variables are functions of others. For example, the relationship

Y~ B+ BiXy + BXE

can be thought of asak = 2 version of formula (9.35), where x, is a deterministic
function of x,, X, = X2.

Asin Section 4.2, adoubl e subscript notation will be used for thevalues of thein-
put variables. Thus, the problem considered isthat of inference based onthe datavec-
tors (Xq1, Xops + - Xieps Y1)» (Xgos Xops o v s Ko Yol s v oo (Xgps Xops + o5 Xpps Yo)- AS
always, a probability model is needed to support formal inferences for such data,
and the one considered here is an appropriate specialization of the general one-way
normal model of Section 7.1. That is, the standard assumptions of the multiplelinear
regression model are that there are underlying normal distributions for the response
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The (normal) multiple
linear regression
model

y with acommon variance o2 but means Hyix, x,....x, that change linearly with each
of X;, X,, ..., X Insymbols, itistypical towritethat fori =1,2,...,n,

Yi = Bo+ BiXy + BXy -+ BXy t € (9.36)

wherethee; are (unobservable)iidnormal (0, o%) randomvariables, thex,;, X, , - - -,
X,; are known constants, and B, ;. B, - - - , B, ad o2 are unknown model param-
eters (fixed constants). Thisisthe specialization of the general one-way model

Yij = K T €

to the situation where the means Myl .o, satisfy the relationship

,,,,,

Iyl .ot = Bo T BaXy + BoXo 4 4 Xy (9.37)

If one thinks of formula (9.37) as defining a surface in (k + 1)-dimensional space,
then the model equation (9.36) simply saysthat responses y differ from correspond-
ing valueson that surface by mean 0, variance o 2 random noise. Figure 9.6 illustrates
this point for the simple k = 2 case (where x; and x, are not functionally related).
Inferencesabout quantitiesinvolving those (x,, X,, . . ., X, ) combinationsrepre-
sented inthedata, likethemeanresponseat asingle (x,, X,, ..., X,) or thedifference
between two such mean responses, will typically be sharper when methods based
on model (9.36) can be used in place of the general methods of Chapter 7. And as
was true for simple linear regression, to the extent that it is sensible to assume that
model (9.36) describes system behavior for values of x;, x,, ..., X, not included

Bo

_—— Surface defined by
Hylx, x,= Bo+ BiX1+ BaXp

Dy e R i

4 Distributions of y
for 2 different
(X1, X2) pairs

-k
Mo

X2

Figure 9.6 Graphical representation of the multiple linear
regression model y = B, 4 B,x, + B,x, + €
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Estimators of the
coefficients B in
the multiple linear
regression mode/

Fitted values for
the multiple linear
regression model

Residuals for
the multiple linear
regression model

Definition 3

in the data, it provides the basis for inferences involving limited interpolation and
extrapolation on the system variables X, X,, ..., X,.

Section 4.2 contains adiscussion of using statistical softwarein theleast squares
fitting of the approximate relationship (9.35) to a set of (X, X,, ..., X, y) data
That discussion can be thought of as covering the fitting and use of residuals in
model checking for the multiple linear regression model (9.36). Section 4.2 did
not produce explicit formulasfor by, b;, b,, ..., by, the (least squares) estimates of
Bys B1: Bys - - -, By Instead it relied on the software to produce those estimates. Of
course, once one has estimates of the 8's, corresponding fitted values immediately
become

¥i = by +byxy; +byxy 4 -+ + B (9.38)
with residuals

(9.39)

&=V -

The residuals (9.39) can be used to make up an estimate of 2. One divides
a sum of sguared residuals by an appropriate number of degrees of freedom. That
is, one can make the following definition of a (multiple linear regression or)
surface-fitting sample variance.

For aset of n data vectors (X1, Xo1, - -+, X5 Y1)» (Xips Xons « oy Xpos Yoy v - o
(Xips Xons - - - > Xy Vi) Where least squares fitting produces fitted values given
by formula (9.38) and residuals (9.39),

2 __ 1 N2 1
SF=—— g VD= ) (9.40)

will be called a surface-fitting sample variance. Associated with it are v =
n — k — 1 degreesof freedom and an estimated standard deviation of response,

Compare Definitions 1 and 3 and notice that the k = 1 version of s3- isjust $%
from simple linear regression. sy estimatesthe level of basic background variation,
o, whenever the model (9.36) is an adequate description of the system under study.
When it is not, s will tend to overestimate o. So comparing sy to S, is another
way of investigating the appropriateness of that description. (sg- much larger than
S, suggests that model (9.36) is a poor one.)
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Example 2
(Example 5, Chapter 4,
revisited—page 150)

Inference in the Nitrogen Plant Study

The main examplein this section will bethe nitrogen plant dataset givenin Table
4.8. Recall that in the discussion of the example, with

X, = ameasure of air flow
X, = the cooling water inlet temperature

y = ameasure of stack loss
the fitted equation
§ = —15.409 — .069x, + .528x, + .007x?

appeared to be a sensible data summary. Accordingly, consider the making of
inferences based on the k = 3 version of model (9.36),

Y, = Bo+ BiXy + BoXy + BoXE + € (9.41)

Printout 2 is from a MINITAB analysis of the data of Table 4.8. Among
many other things, it gives the values of the residuals from the fitted version of
formula (9.41) for all n = 17 data points. It is then possible to apply Definition
3 and produce a surface-fitting estimate of the parameter o2 in the model (9.41).
That is,

2 =~ 24 (= 24 ... 2 2
s = 17_3_1((.053) + (—.125)* + - - - + (.265)* + (2.343)%)

=1.26

so acorresponding estimate of o is

S =V 1.26
=1.125

(The units of y—and therefore sq—are .1% of incoming ammonia escaping
unabsorbed.)

In routine practice it is a waste to do even these calculations, since multiple
regression programs typically output sy as part of their analysis. The reader
should take time to locate the value s- = 1.125 on Printout 2. If one accepts
the relevance of model (9.41), for fixed values of airflow and inlet temperature
(and therefore airflow squared), the standard deviation associated with many
days' stack losses produced under those conditions would then be expected to be
approximately .1125%.
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Printout 2 Multiple Linear Regression for the Stack Loss Data (Example 2)

Regression Analysis

The regression equation is
y =-15.4 - 0.069 x1 + 0.528 x2 + 0.00682 x1**2

Predictor Coef StDev T P
Constant -15.41 12.60 -1.22 0.243
x1 -0.0691 0.3984 -0.17 0.865
X2 0.5278 0.1501 3.52 0.004
x1**2 0.006818 0.003178 2.15 0.051
S =1.125 R-Sq = 98.0% R-Sq(adj) = 97.5%

Analysis of Variance

Source DF SS MS F P

Regression 3 799.80 266.60 210.81 0.000

Residual Error 13 16.44 1.26

Total 16 816.24

Source DF Seq SS

x1 1 775.48

x2 1 18.49

x1**2 1 5.82

Obs x1 y Fit  StDev Fit Residual St Resid
1 80.0 37.000 36.947 1.121 0.053 0.57 X
2 62.0 18.000 18.125 0.407 -0.125 -0.12
3 62.0 18.000 18.653 0.462 -0.653 -0.64
4 62.0 19.000 19.181 0.553 -0.181 -0.18
5 62.0 20.000 19.181 0.553 0.819 0.84
6 58.0 15.000 15.657 0.513 -0.657 -0.66
7 58.0 14.000 13.018 0.475 0.982 0.96
8 58.0 14.000 13.018 0.475 0.982 0.96
9 58.0 13.000 12.490 0.595 0.510 0.53
10 58.0 11.000 13.018 0.475 -2.018 -1.98
11 58.0 12.000 13.546 0.378 -1.546 -1.46
12 50.0 8.000 7.680 0.493 0.320 0.32
13 50.0 7.000 7.680 0.493 -0.680 -0.67
14 50.0 8.000 8.208 0.499 -0.208 -0.21
15 50.0 8.000 8.208 0.499 -0.208 -0.21
16 50.0 9.000 8.735 0.548 0.265 0.27
17 56.0 15.000 12.657 0.298 2.343 2.16R

R denotes an observation with a Targe standardized residual
X denotes an observation whose X value gives it large influence.

Predicted Values

Fit StDev Fit 95.0% CI 95.0% PI
15.544 0.383 ( 14.717, 16.372) ( 12.978, 18.111)
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Example 2 Among the 17 data points in Table 4.8, there are only 12 different airflow/inlet
(continued) temperature combinations (and therefore 12 different (x,, X,, x2) vectors). The
origina data can be thought of as organized into r = 12 separate samples, one
for each different (x,, X,, X?) vector and there is thus an estimate of o that
doesn’'t depend for its validity on the appropriateness of the assumption that
Iy, x, = Bo + BiXy + BoXp + BoXZ. That is, s, can be computed and compared
it to sy as a check on the appropriateness of mode! (9.41). Table 9.8 organizes
the calculation of that pooled estimate of o.

Table 9.8
Twelve Sample Means and Four Sample Variances
for the Stack Loss Data

X17 X27 Y,
Air Inlet Stack
Flow Temperature Loss y s?
50 18 8,7 7.5 5
50 19 8,8 80 0.0
50 20 9 9.0 —
56 20 15 150 —
58 17 13 130 —
58 18 14,14,11 13.0 30
58 19 12 120 —
58 23 15 150 —
62 22 18 180 —
62 23 18 180 —
62 24 19, 20 19.5 5
80 27 37 370 —
Then
5 1
S = 712 @2-D(H+2-DHO0O0O+B-DHBO0O+2-1(5)
= 1.40

> sP:\/éz V1.40 = 1.183
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Standardized
residuals for
multiple linear
regression

Example 2
(continued)

The fact that sz = 1.125 and s, = 1.183 are in substantial agreement is
consistent with the work in Example 5 of Chapter 4, which found the equation

§ = —15.409 — .069x, + .528x, + .007x?

to be a good summarization of the nitrogen plant data.

Sq Is basic to al of formal statistica inference based on the multiple lin-
ear regression model. But before using it to make statistical intervals and do
significance testing, note also that it is useful for producing standardized resid-
uals for the multiple linear regression model. That is, it is possible to find pos-

itive constants a,, a,, ..., a, (which are each complicated functions of all of
X115 Xogs « o5 Xegs X325 Xoos « ooy Xyeps « -5 Xqpps Xops « - - 5 Xepy) SUCH that the i th residual
g =Y — ¥ has

var(y, —9) = a0

Then, recalling Definition 2 in Chapter 7 (page 458), corresponding to the data point

(X35 X505 - -+ X » ;) isthe standardized residual for multiple linear regression
* &
e = (9.42)
Ssev/ G

It is not possible to include here a simple formula for the a, that are needed to
compute standardized residuals. (They are of interest only as building blocks in
formula (9.42) anyway.) But it is easy to read the standardized residuals (9.42) off a
typical multiple regression printout and to plot them in the usual ways as means of
checking the apparent appropriateness of a candidate version of model (9.36) fit to
aset of n data points (X, X,, . .., X, ¥).

Asanillustration of the use of standardized residuals, consider again Printout 2
on page 679. The annotations on that printout locate the columns of residuals and
standardized residuals for model (9.41). Figure 9.7 depicts normal probability
plots, first of the raw residuals and then of the standardized residuals.

There are only the most minor differences between the appearances of the
two plotsin Figure 9.7, suggesting that decisions concerning the appropriateness
of model (9.41) based on raw residuals will not be much altered by the more
sophisticated consideration of standardized residual s instead.
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Figure 9.7 Normal plots of residuals and standardized residuals for the stack loss data (Example 2)

9.2.2

Inference for the Parameters 8, ;. B,, ..., By

Section 9.1 considered inference for the slope parameter 8, in simple linear regres-
sion, treating it as arate of change (of average y as afunction of x). In the multiple

regression context, if x;, x,, ..., x, areall physically different system variables, the
coefficients g,, B,, ..., B, can again be thought of as rates of change of average

response with respect to X, X,, ..., X,, respectively. (They are partial derivatives
of Pyl Koo with respect to the x’s.)) On the other hand, when some x’s are
functionally related to others (for instance, if k = 2 and Hyx = By + B1X + ﬁzxz),
individual interpretation of the 8’s can be less straightforward. In any case, the 8’s
do determine the nature of the surface represented by

:u“y|X1,X2,‘..,)(k = ,80 + ,lel + ﬂ2X2 —|— - + ﬁkxk

and it is possible to do formal inference for B, B;. . ... B, individudly. In many
instances, important physical interpretations can be found for such inferences. (For
example, beginning with 11, = B, + B;X + B,x°, an inference that 8, is positive
says that the mean response is concave up as a function of x and has a minimum
value)

The key to formal inference for the 8’s is that under model (9.36), there are
positive constantsd,,, d,, d,, .. ., d, (which are each complicated functions of all of
Xpgs oo e Xegs Xgps oo o5 Xpp oo o5 Xqps « - -5 %) SUCh that the least squares coefficients
by, by, ..., b, arenormally distributed with

Eb =4
and

Varb = dla2
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Estimated standard
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for B,

Example 2
(continued)

Thisin turn makesit plausiblethat forl =0, 1, 2, ..., k, the quantity

sSF\/oTI (9.43)
isan estimate of the standard deviation of b, and that

T_bl_ﬂl

eV

(9.44)

hasat, , , distribution.

There is no simple way to write down formulas for the constants d,, but the
estimated standard deviations of the coefficients, sSF\/H , are atypical part of the
output from multiple linear regression programs.

The usua arguments of Chapter 6 applied to expression (9.44) then show that

Hy: B =# (9.45)

can be tested using the test statistic

(9.46)

and at _, ; reference distribution. More importantly, under the multiple linear
regression mode! (9.36), a two-sided individual confidence interval for g, can be
made using endpoints

by + tsge /e (9.47)

where the associated confidence is the probability assigned to the interval between
—tandt by thet, , , distribution. Appropriate use of only one of the endpoints
(9.47) gives aone-sided interval for f,.

Looking again at Printout 2 (see page 679), note that MINITAB's multiple re-
gression output includes a table of estimated coefficients (b)) and (estimated)
standard deviations (Sqz,/d,). These are collected in Table 9.9.
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Example 2
(continued)

>

Table 9.9
Fitted Coefficients and Estimates of Their Standard Deviations
for the Stack Loss Data

(Estimated) Standard Deviation
Estimated Coefficient  of the Estimate

b, = —15.41 Sg/d, = 12.60
b, = —.0691 Sg/d, = 3984
b, = 5278 Sgy/d, = 1501
b, = .006818 Sg/d; = 003178

Then since the upper .05 point of thet,, distributionis 1.771, from formula
(9.47) atwo-sided 90% confidence interval for g, in model (9.41) has endpoints

5278 + 1.771(.1501)
that is,
.2620 (.1% nitrogen loss/degree) and .7936 (.1% nitrogen |oss/degree)

This interval establishes that there is an increase in mean stack loss y with
increased inlet temperature X, (the interval contains only positive values). It
further gives away of assessing the likely impact on y of various changesin x,.
For example, if x, (and therefore x, = x2) isheld constant but x, isincreased by
2°, one can anticipate an increase in mean stack loss of between

5240 (.1% nitrogen loss) and 1.5873 (.1% nitrogen 10ss)

Asasecond example of the use of formula (9.47), note that a 90% two-sided
confidence interval for g, has endpoints

.006818 £ 1.771(.003178)
thatis,
.0012 and .0124

B, controlsthe amount and direction of curvature (inthe variable x, ) possessed by
the surface specified by Iy, x, = Bo T BrXy + BXo + BsXZ. Since the interval
contains only positive values, it shows that at the 90% confidence level, thereis
some important concave-up curvature in the airflow variable needed to describe
the stack loss variable. Thisis consistent with the picture of fitted mean response
given previoudly in Figure 4.15 (see page 155).
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9.2.3

Estimator of

2
YIXq Xy seeniX,

k

However, check that if 95% confidenceis used in the calculation of the two-
sided interval for B,, the resulting confidence interval contains values on both
sides of 0. If this higher level of confidence is needed, the data in hand are not
adequate to establish definitively the nature of any curvature in mean stack loss
as afunction of airflow. Any real curvature appears weak enough in comparison
to the basic background variation that more data are needed to decide whether
the surface is concave up, linear, or concave down in the variable X, .

Very often multiple regression programs output not only the estimated standard
deviations of fitted coefficients (9.43) but also the ratios

b
Seev/0

and associated two-sided p-values for testing

t=

Hy: B, =0

Review Printout 2 and note that, for example, the two-sided p-value for testing
Hy: B; = 0inmodel (9.41) isdlightly larger than .05. Thisis completely consistent
with the preceding discussion regarding the interpretation of interval estimates

of ;.

Inference for the Mean System Response for a Particular

Set of Values for x,, x,, ..., X
Inference methods for the parameters g, B, . . ., B, provideinsight into the nature
of the relationships between x,, X,, ..., X, and the mean response y. But other

methods are needed to answer the important engineering question, “ What can be
expected in terms of systemresponseif | use a particular combination of levels of the
system variables x,, X,, ..., X, ?" An answer to this question will first be phrased
in terms of inference methods for the mean System response iy,

¢
In amanner similar to what was done in Section 9.1, the notatlon <

¥ =by+byx; +bx, + -+ b X, (9.48)

will here be used for the value produced by the least squares equation when a
particular set of numbers x,, X,, ..., X, is plugged into it. (§ may not be a fitted
value in the strict sense of the phrase, as the vector (X, X,, ..., X,) may not match
any data vector (X, X, ..., X,;) used to produce the least squares coefficients
by, by, ..., b.) Asit turns out, the multiple linear regression model (9.36) leads to
simple distributional properties for §, which then produce inference methods for

MY‘X]_,XZ ~~~~~ Xy '
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A=/ Vary/o

Estimated standard
deviation of y

Test statistic for
=#

WAXZ ..... Xk

Hy: My ix

Confidence limits
for the mean response

12
YIXq Xy X

Finding the
factor A

Under model (9.36), it is possible to find a positive constant A depending in
a complicated way upon X, X,, ..., X, and all of X;;, ..., X, X0 ooy Xeos -+
Xins - -+ » X (the locations at which inference is desired and at which the original
data points were collected) so that § has a normal distribution with

and
Var § = o2 A2 (9.49)
Inview of formula (9.49), it is thus plausible that
S A (9.50)

can be used as an estimated standard deviation for § and that inference methods for
the mean system response can be based on the fact that

T = y— /‘Ly|><l,x2,...,xk

Ss - A
hasat,_,_, distribution. That is,
Ho: Hoyixg X, = # (9.51)
can be tested using the test statistic
T = 5 (9.52)

and at, , , reference distribution. Further, under the multiple linear regression
model (9.36), a two-sided confidence interval for Hyix, ..., CAN be made using
endpoints

X

§ttsg- A (9.53)

where the associated confidence is the probability assigned to the interval between
—tandt by thet,_, , distribution. One-sided intervals based on formula (9.53) are
made in the usua way.

The practical obstacleto be overcomein the use of these methodsis the compu-
tation of A. Althoughitisnot possibleto giveasimpleformulafor A, most multiple
regression programs provide A for (X, X,, ..., X,) vectors of interest. MINITAB,
for example, will fairly automatically produce values of s - A corresponding to
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Example 2
(continued)

each datapoint (x;;, X, ..., X, ¥;), |abeled as (the estimated) standar d deviation
(of the) fit. And an option makes it possible to obtain similar information for any
user-specified choice of (X, X,, ..., X, ). (Division of this by s then produces A.)

Consider the problem of estimating the mean stack loss if the nitrogen plant
of Example 5 in Chapter 4 is operated consistently with x; = 58 and x, = 19.
(Notice that this means that x; = xZ = 3,364 is involved.) Now the conditions
X, = 58, X, = 19, and x; = 3,364 match perfectly those of data point number
11 on Printout 2 (see page 679). Thus, § and s¢ - A for these conditions may
P> be read directly from the printout as 13.546 and .378, respectively. Then, for
example, from formula (9.53), a 90% two-sided confidence interval for the mean
stack loss corresponding to an airflow of 58 and water inlet temperature of 19
has endpoints

13.546 + 1.771(.378)
that is,
> 12.88 (.1% nitrogen loss) and 14.22 (.1% nitrogen 10ss)

As a second illustration of the use of formula (9.53), suppose that setting
plant operating conditions at an airflow of x, = 60 and awater inlet temperature
of x, = 20iscontemplated and it is desireable to have an interval estimatefor the
mean stack loss implied by those conditions. Notice that the x, = 60, x, = 20,
and x, = x¥ = 3,600 vector does not exactly match that of any of the n = 17
data points available. Therefore, some interpolation/extrapolation is required to
make the desired interval. And it will not be possible to simply read appropriate
values of § and sy - A off Printout 2 as related to one of the data points used to
fit the equation.

Location of the point with coordinates x, = 60 and x, = 20 on a scatterplot
of (x;, X,) values for the original n = 17 data points (like Figure 4.19) reveals
that the candidate operating conditions are not wildly different from those used
to develop the fitted equation. So there is hope that the use of formula (9.53)
will provide an inference of some practical relevance. Accordingly, the coordi-
nates x, = 60, X, = 20, and x, = x? = 3,600 were input into MINITAB and a
“prediction” request made, resulting in the final section of Printout 2. Reading
from that final section of the printout, § = 15.544 and s - A = .383, s0 a90%
two-sided confidence interval for the mean stack loss has endpoints

15.544 4+ 1.771(.383)
that is,

> 14.86 (.1% nitrogen loss) and 16.22 (.1% nitrogen 10ss)

(Of course, endpoints of a 95% interval can be read directly from the printout.)
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Example 2
(continued)

Simultaneous two-sided
confidence limits for all
mean repsonses

M YIXq X Xy

Example 2
(continued)

It isimpossible to overemphasize the fact that the preceding two intervalsare
dependent for their practical relevance on that of model (9.41) for not only those
(X;, X,) pairsintheoriginal databut (in the second case) also for the x; = 60 and
X, = 20 set of conditions. Formulas like (9.53) always allow for imprecision due
to statistical fluctuations/background noise in the data. They do not, however,
alow for discrepancies related to the application of a model in a regime over
which it is not appropriate. Formula (9.53) is an important and useful formula.
But it should be used thoughtfully, with no expectation that it will magically do
more than help quantify the precision provided by the data in the context of a
particular set of model assumptions.

Lacking asimple explicit formulafor A, it isdifficult to be very concrete about
how thisquantity varies. In quaitativeterms, it doeschangewiththe (x,, X,, ..., X,)
vector under consideration. It is smallest when this vector is near the center of the
cloud of points (X;;, Xy, ..., X,) in k-dimensiona space corresponding to the n
data points used to fit model (9.36). Thefact that it can vary substantially is obvious
from Printout 2. There for the nitrogen plant case, the estimated standard deviation
of ¥ given in display (9.50) varies from .298 to 1.121, indicating that A for data
point 1 is about 3.8 times the size of A for data point 17 (121928l ~ 3.8). That is, the
precision with which amean responseis determined can vary widely over the region
whereit is sensible to use afitted equation.

Formula (9.53) provides individual confidence intervals for mean responses.
Simultaneous intervals are also easily obtained by a modification of formula (9.53)
similar to the one provided for simple linear regression. That is, under the multiple
linear regression model, simultaneous two-sided confidence intervals for al mean
Fesponses iy . x €N be made using respective endpoints

g+ JKFD Fsg- A (9.54)

where for positive f, the associated confidence is the F, , , , probability as-
signed to the interval (0, f). Formula (9.54) is related to formula (9.53) through
the replacement of the multiplier t by the (larger for a given nominal confidence)
multiplier \/(k+ 1) f. When itisapplied only to (X, X, ..., X,) vectors found in
the original n data points, formula (9.54) is an alternative to the P-R method of
simultaneous intervals for means, appropriate to surface-fitting problems. When the
multiple linear regression model is indeed appropriate, formula (9.54) will usually
give shorter simultaneous intervals than the P-R method.

For making simultaneous 90% confidence intervals for the mean stack losses
at the 12 different sets of plant conditions represented in the original data s,
one can use formula (9.54) with k = 3, f = 2.43 (the .9 quantile of the F, ;,
distribution) and the § and corresponding s - A values appearing on Printout 2
(see page 679). For example, considering the x, = 80 and x, = 27 conditions of
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9.24
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multiple regression

observation 1 on the printout, s¢- - A = 1.121 and one of the simultaneous 90%
confidence interval s associated with these conditions has endpoints

36.947 + /(3 + 1)(2.43)(1.121)
or

33.452 (.1% nitrogen loss) and  40.442 (.1% nitrogen l0ss)

Prediction and Tolerance Intervals (Optional )

Thesecond kind of answer that statistical theory can providetothequestion, “What is
to be expected intermsof system responseif oneusesaparticular (x;, X,, ..., X)?",
has to do with individual responses rather than mean responses. That is, the same
factor A referred to in making confidence intervals for mean responses can be used
to develop prediction and tolerance intervals for surface-fitting situations.

In thefirst place, under model (9.36), the two-sided interval with endpoints

§E£tsgV1+ A? (9.55)

can be used as a prediction interval for an additional observation at a particular
combination of levels of the variables x,, X,, ..., X,. The associated prediction
confidence is the probability that the t, , , distribution assigns to the interval
between —t and t. One-sided intervals are made in the usual way, by employing
only one of the endpoints (9.55) and adjusting the confidence level appropriately.

In order to use formula (9.55), sy - A and sy can be taken from a multiple
regression printout and A obtained viadivision. Equivalently, it is possible to use a
small amount of algebrato rewrite formula (9.55) as

§Et/S% + (55 - A2 (9.56)

and substitute s and sy - A directly into formula (9.56).

In order to find one-sided tolerance bounds in the surface-fitting context, begin
with the value of A corresponding to a particular (X, X,, ..., X,). If a confidence
level of y is desired in locating a fraction p of the underlying distribution of
responses, compute

1 Qip
Q,(p + AQZ(V)J 1+ p T ( ro Qz<y>>

= (9.57)

QW
2n—k—-1)
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Then, the interval

(Y — T8¢, 00) (9.58)

or

(=00, § + 75g) (9.59)

can be used as an approximately y level one-sided tolerance interval for afraction
p of the underlying distribution of responses corresponding to (X, X,, . .., X,)-

Returning to the nitrogen plant example, consider first the calculation of a 90%
lower prediction bound for asingle additional stack loss'y, if airflow of x, = 58
and water inlet temperature of X, = 19 are used. Then consider also a 95% lower
tolerance bound for 90% of many additional stack loss values if the plant is run
under those conditions.

Treating the prediction interval problem, recall that for x, = 58 and x, = 19,
§ = 13.546 and sy - A = .378. Since s- = 1.125 and the .9 quantile of the t,
distribution is 1.350, formula (9.56) shows that the desired 90% lower prediction
bound for an additional stack loss under such plant operating conditionsis

13.546 — 1.350\/ (1.125)2 4 (.378)?
that is, approximately
> 11.94 (.1% nitrogen 10ss)

To not predict asingle additional stack loss, but rather to locate 90% of many
additional stack losses with 95% confidence, expression (9.57) is the place to
begin. Note that for x, = 58 and x, = 19,

A= .378/1.125 = .336

S0, using expression (9.57),

1 (1.282)? B 5
1.282 + (.378)(1.645)J 1+ 27 —3-1) ( 378 (1.645) )

B (1.645)°
2(17-3-1)

=2234

T =

1
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9.2.5

F statistic for testing
Hy: B, =B, = =B, =0

So finaly, a 95% lower tolerance bound for 90% of stack losses produced under
operating conditions of x;, = 58 and x, = 19 s, viadisplay (9.58),

13.546 — 2.234(1.125) = 13.546 — 2.513

that is,

> 11.033 (.1% nitrogen loss)

Thewarningsraised in the previous section concerning prediction and tolerance
intervals in simple regression all apply equaly to the present case of multiple
regression. So do points similar to those made in Example 2 (page 688) in reference
to confidence intervals for the mean system response. Although they are extremely
useful engineering tools, statistical intervals are never any better than the models on
which they are based.

Multiple Regression and ANOVA

Formal inference in curve- and surface-fitting contexts can (and typically should)
be carried out primarily using interval-oriented methods. Nevertheless, testing and
ANOVA methods do have their place. So the discussion now turns to the matter of
what ANOVA ideas provide in multiple regression.

Asaways, SSTot will stand for 3" (y — ¥)? and SSE for Y_(y — §)°. Remember
also that Definition 2 introduced the notation SSR for the difference SSTot — SSE.
Asremarked following Definition 2, the coefficient of determination can be written
in terms of SSR and SSTot as

R2_$Tot—SSE_SSR
~ SSlot  SSTot

Further, under model (9.36), these sums of squares (SSTot, SSE, and SSR) form the
basis of an F test of the hypothesis

Hoy:Bi=B,=- =B =0 (9.60)
VEersus
H,: notH, (9.61)

Hypothesis (9.60) can be tested using the statistic

SSR/k

F=SSE/(n—k—1)

(9.62)
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andan F  _,_, referencedistribution, where large observed values of the test stetis-
tic constitute evldence against H,. (The denominator of statistic (9.62) is another

way of writing s2-.)
Hypothesis (9.60) in the context of the multiple linear regression model implies
that the mean response doesn’t depend on any of the processvariablesx,, X,, ..., X,.

That is, if all of B, through B, are 0, model statement (9.36) reducesto

=By +¢

Interpreting a test of S0 a test of hypothesis (9.60) is often interpreted as a test of whether the mean
Hy: B, =8, = =p, =0 responseisrelatedto any of theinput variablesunder consideration. Thecalculations
leading to statistic (9.62) are most often organized in a table quite similar to the
one discussed in Section 9.1 for testing H,: #; = 0insimplelinear regression. The
genera form of that table is given as Table 9.10.

Table 9.10
General Form of the ANOVA Table for Testing Hy: g, =8, =--- =8, =0
in Multiple Regression
ANOVA Table (for testingH,: B, =B, =--- =B, =0)
Source S df MS F
Regression SSR k SSR/k MSR/MSE
Error SSE n—k—-1 S¥E/(h—k-1)
Total SSfot n-1
Example 2 Once againturning to the analysis of the nitrogen plant dataunder themodel y;, =

(continued) | By 4 ByXy + BoXy + BoX5 + €, consider testing Hy: B, = B, = B, = O—that
is, mean stack loss doesn't depend on airflow (or its square) or water inlet
temperature. Printout 2 (see page 679) includes an ANOVA table for testing this
hypothesis, which is essentially reproduced here as Table 9.11.

From Table9.11, the observed value of the F statisticis210.81, whichistobe
compared to F3 13 Quantilesin order to produce an observed level of significance.
As indicated in Printout 2, the F, ;5 probability to the right of the value 210.81
is 0 (to three decimal places). This is definitive evidence that not aII of B, B,
and B, can be 0. Taken as a group, the variables x,, X,, and X, = X2 definitely
enhance one's ability to predict stack loss.
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An expression for
the F statistic (9.62)
in terms of R?

Table 9.11
ANOVA Table for Testing H,: 8, = 8, = B; = 0 for the Stack Loss
Data

ANOVA Table (for testingH,: 8, = B, = B; =0)

Source SS df MS F
Regression (on X, X,, xf) 799.80 3 266.60 210.81
Error 16.44 13 1.26

Total 816.24 16

Note also that the value of the coefficient of determination here can be
calculated using sums of squares givenin Table 9.11 as

SR 799.80
RE—_—"° _ 2" _ 980
SSTot  816.24

This is the value for R? advertised long ago in Example 5 in Chapter 4. Also,
the error mean square, MSE = 1.26, is (as expected) exactly the value of séF
calculated earlier in this example.

It is a matter of simple algebrato verify that R? and the F statistic (9.62) are
equivaent in the sense that

_ R?/k
T 1-R)/(n—k-1)

(9.63)

so the F test of hypothesis (9.60) can be thought of in terms of attaching a p-value
to the statistic R?. This is a valuable development, but it should be remembered
that it is R? (rather than F) that has the direct interpretation as a measure of what
fraction of raw variability the fitted equation accounts for. F and its associated
p-value take account of the sample size n in away that R? doesn’t. They really
measure statistical detectability rather than variation accounted for. This means that
an equation that accounts for afraction of observed variation that isrelatively small
by most standards can produce avery impressive (small) p-value. If thispoint is not
clear, try using formula (9.63) to find the p-value for a situation where n = 1,000,
k=4,andR* = .1

From Section 4.2 on, R? values have been used in this book for informal
comparisons of various potential summary equations for a single data set. It turns
out that it is sometimes possible to attach p-values to such comparisons through the
use of the corresponding regression sums of squares and another F test.
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F statistic for testing
Ho: By =--- =8, =0
in multiple regression

Suppose that there are two different regression models for describing a data
set—the first of the usual form (9.36) for k input variables x,, X,, ..., X,

Yi = Bo+ BiXy + BXy -+ BXy t €

and the second being a specialization of the first where some p of the coefficients
B (say, ﬁll, 5|2, ..., B, )areall 0(i.e., aspecialization not involving input variables

X > X, ++» % ). Thefirst of these models will be called the full regression model
p

and the second a reduced regression model. When one informally compares R?
values for two such models, the comparison is essentially between SSR values, since
the two R? values share the same denominator, SSTot. The two SSR values can be
used to produce an observed level of significance for the comparison.

Under model the full model (9.36), the hypothesis

Ho: B, = B, =+ =f =0 (9.64)
(that the reduced model holds) can be tested against
H,: notH, (9.65)
using the test statistic
- g(; fs;ri/ B (9.66)

and an F,, , , reference distribution, where large observed values of the test
statistic constitute evidence against H, in favor of H,. In expression (9.66), the
“f” and “r" subscripts refer to the full and reduced regressions. The calculation of
statistic (9.66) can be facilitated by expanding the basic ANOVA table for the full
model (Table 9.10). Table 9.12 shows one form this can take.

Table 9.12
Expanded ANOVA Table for Testing H,: ,8,1 = /3,2 =...=f, =0in Multiple Regression
P
ANOVA Table (for testing H: ﬂll = ﬂ|2 =...=4 =0
p

Source SS df MS F
Regression (full) SR k

Regression (reduced) SR k—p

Regression (full | reduced) SSR -SSR p (SR -SR)/p MR, /M
Error S5 n—-k-1 SS/(n—-k-1)
Total SSTot n—1




9.2 Inference Methods for General Least Squares Curve- and Surface-Fitting (Multiple Linear Regression) 695

Example 2
(continued)

In the nitrogen plant example, consider the comparison of the two possible
descriptions of stack loss

y~ By + B X, (9.67)

(stack loss is approximately alinear function of airflow only) and
Y & By + ByXy + BoXo + BaXE (9.68)

(thedescription of stack lossthat has been used throughout thissection). Although
aprintout won't beincluded hereto show it, it isasimple matter to verify that the
fitting of expression (9.67) to the nitrogen plant data produces SSR = 775.48 and
therefore R? = .950. Fitting expression (9.68), on the other hand, gives SSR =
799.80 and R? = .980. Since expression (9.67) is the specialization/reduction of
expression (9.68) obtained by dropping the last p = 2 terms, the comparison of
these two SSR (or R?) values can be formalized with a p-value. A test of

can be made in the (full) model (9.68). Table 9.13 organizes the calculation of
the observed value of the statistic (9.66) for this problem. That is,

_ (799.80 — 775.48)/2

9.7
16.44/13

When compared with tabled F, ,, percentage points, the observed value of
9.7 is seen to produce a p-value between .01 and .001. Thereis strong evidence
in the nitrogen plant data that an explanation of mean response in terms of
expression (9.68) (pictured, for example, in Figure 4.15) is superior to one in
terms of expression (9.67) (which could be pictured as a single linear mean
responsein x, for all x,).

Table 9.13
ANOVA Table for Testing H,: 8, = 85 = 0 in Model (9.68)
for the Stack Loss Data

ANOVA Table (for testingH,: B, = ;= 0)

Source S df MS F
Regression (X;, X,, X?) 79980 3

Regression (X,) 775.48 1

Regression (x,, XZ | X,) 2432 2 1216 97
Error (X, X,, X3) 16.44 13 126

Total 816.24 16
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Alternative form

of the F statistic

for testing

Hoif, = =p =0

1

Interpreting full
and reduced R?’s
and the F test

p tests that single
coefficients are 0
versus a test that p
coefficients are all 0

The F statistic (9.66) can be written in terms of R? values as

_ (R=RY/p
(1-R*)/(n—k—1)

(9.69)

so that the test of hypothesis (9.64) is indeed a way of attaching a p-value to the
comparison of two R?'s. However, just as was remarked earlier concerning the test
of hypothesis (9.60), it is the R?’s themselves that indicate how much additional
variation a full model accounts for over a reduced model. The observed F vaue
or associated p-value measures the extent to which that increase is distinguishable
from background noise.

To conclude this section, something needs to be said about the relationship
between the tests of hypotheses (9.45) (with # = 0), mentioned earlier, and the tests
of hypothesis (9.64) based on the F statistic (9.66). When p = 1 (the full model
contains only one moreterm than thereduced model), observed level s of significance
based on statistic (9.66) arein fact equal to two-sided observed level s of significance
based on # = 0 versions of statistic (9.46). But for cases where p > 2, the tests of
the hypothesesthat individual 8’sare 0 (one at atime) are not an adequate substitute
for the tests of hypothesis (9.64). For example, in the full model

Y = By + BiXy + BX + BaXg + € (9.70)
testing
Hy: B, =0 (9.71)
and then testing
Hy: B3 =0 (9.72)

need not be at all equivalent to making asingle test of
Hy: B, =PB3=0 (9.73)

This fact may at first seem paradoxical. But should the variables x, and x; be
reasonably highly correlated in the data set, it is possible to get large p-values
for tests of both hypothesis (9.71) and (9.72) and yet atiny p-value for atest of
hypothesis (9.73). The message carried by such an outcome is that (due to the fact
that the variables x, and x, appear in the data set to be more or less equivalent) in
the presence of x; and X, X; is not needed to model y. And in the presence of x,;
and x5, X, isnot needed to mode! y. But one or the other of the two variables x, and
X4 isneeded to help model y even in the presence of X,. So, the F test of hypothesis
(9.64) ismore than just afancy version of several tests of hypothesesH,: g, = 0. It
is an important addition to an engineer’s curve- and surface-fitting tool kit.
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S ON 2 EXOICI S OS . oo

1. Return to the situation of Chapter Exercise 2 of
Chapter 4 and the carburetion study of Griffith and
Tesdall. Consider an analysis of these data based

in the context of the study and the quadratic
model ?

2. Return to the situation of Exercise 2 of Section

onthemodel y = B, + B X + BX° + €.

(@) Find s for these data. What does this intend
to measure in the context of the engineering
problem?

(b) Plot both residuals versus x and the standard-
ized residuals versus x. How much difference
is therein the appearance of these two plots?

(c) Give 90% individual two-sided confidence in-
tervals for each of g, g, and B,.

(d) Giveindividual 90% two-sided confidence in-
tervals for the mean elapsed time with a carbu-
retor jetting size of 70 and then with ajetting
size of 76.

(e) Give simultaneous 90% two-sided confidence
intervals for the two means indicated in
part (d).

(f) Give 90% lower prediction bounds for an ad-
ditional elapsed time with a carburetor jetting
size of 70 and also with ajetting size of 76.

(g) Giveapproximate 95% |lower tolerance bounds
for 90% of additional elapsed times, first with
a carburetor jetting size of 70 and then with a
jetting size of 76.

(h) Make an ANOVA table for testing H,: 8, =
B, =0in the model y = B, + B,X + B,X° +
€. What isthe meaning of thishypothesisinthe
context of the study and the quadratic model ?
What isthe p-value?

(1) Useat tatisticandtest thenull hypothesisH,; :
B, = 0. What isthe meaning of thishypothesis

4.2, and the chemithermomechanical pulp study of
Miller, Shankar, and Peterson. Consider an analysis
of the data there based on the model y = 8, +
Bi Xy + BoX, + €.

(@ Find sg-. What does this intend to measure in
the context of the engineering problem?

(b) Plot both residuals and standardized residuals
VErsus X, X,, and §. How much difference is
there in the appearance of these pairs of plots?

(c) Give 90% individual two-sided confidence in-
tervalsfor al of g,, ,, and B,.

(d) Giveindividual 90% two-sided confidence in-
tervals for the mean specific surface area, first
when x;, = 9.0 and x, = 60 and then when
X, = 10.0 and x,, = 70.

(e) Give simultaneous 90% two-sided confidence
intervals for the two means indicated in part
(d).

(f) Give90% lower prediction boundsfor the next
specific surface area, first when x; = 9.0 and
X, = 60andthenwhenx, = 10.0andx, = 70.

(g) Giveapproximate 95% lower tolerance bounds
for 90% of specific surface areas, first when
X, = 9.0andx, = 60andthenwhenx, = 10.0
and x, = 70.

(h) Make an ANOVA table for testing H,: 8, =
B, = 0inthe model y = B, + B,X; + B,X, +
€. What isthe p-value?

9.3 Application of Multiple Regression
in Response Surface Problems

and Factorial Analyses

Thediscussionsin Sections4.1, 4.2, 9.1, and 9.2 have, we hope, given you agrowing
appreciation of the wide utility of regression methods in engineering. The purpose
of this final section is to further expand your range of experience with multiple
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9.3.1

Fitted linear and
quadratic functions
as empirical models

Gathering adequate
data

regression by illustrating its usefulness in two additional contexts. First there is
an illustration of how surface fitting is used in “response surface” (or response
optimization) problems. Then there is alook at how regression has its applications
even in factorial analyses.

Surface-Fitting and Response Surface Studies

Engineersareoften called upon to addressthefollowing generic problem. A response
or responses y are known to depend upon system variables x;, X,, ..., X,. No
simple physical theory is available for describing the dependence. Nevertheless, the
variables x,, X,, . .., X, need adjustment to get good system behavior (as measured
by the variables y). Multiple regression analysis and some specialized “response
surface” considerations often prove effective in such problems.

For onething, linear and quadratic functionsof x,, x,, ..., x, areoften useful
empirical descriptionsof arelationship betweenx,, X,, ..., X, andy. Thematerial in
Sections 4.2 and 9.2 directly addresses fitting and inference for alinear approximate
relationship like

Response surfaces specified by equation (9.74) are “planar” (see again Figure 9.6
in this regard). When such surfaces fail to capture the nature of dependence of
y on X, X,, ..., X, because of their “lack of curvature,” quadratic approximate
relationships often prove effective. The general version of a quadratic equation for
y in k variables x has k linear terms, k quadratic terms, and cross product terms
for al pairs of x variables. For example, the general 3-variable quadratic response
surfaceis specified by

Y & By + ByXy + BoXo + BaXs + BuXE + BsXs + BeXE + BrXyXs
+ BgX1 X5 + BgXoXg (9.75)

Oneissuein using the k-variable version of quadratic function (9.75) isthat of
collecting adequate data to support the enterprise. 2% factorial dataare not sufficient.
Thisiseasy to see by considering thek = 1 case. Having datafor only two different
values of x,, say x; = O and x; = 1, would not be adequate to support the fitting of

Y& By + ByXy + BoXE (9.76)

There are, as an arbitrary example, many different versions of equation (9.76) with
y=5forx, =0andy = 7for x;, = 1, including

y & 54 2%, + Ox?

y & 5 — 8x, + 10x?

y ~ 5+ 10x, — 8x?
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Example 3

y:5+10x1—8x%

o\/ 1 X

Figure 9.8 Plots of three different quadratic
functions passing through the points
x;,y)=1(0,5)and (x,,y) =(1,7)

These three equations have plots with quite different shapes. The first is linear, the
second is concave up with a minimum at x, = .4, and the third is concave down
with a maximum at x, = .625. Thisisillustrated in Figure 9.8. The point is that
data from at least three different x, values are needed in order to fit a one-variable
guadratic equation.

What would happen if a regression program were used to fit equation (9.76)
to a set of (x,, y) data having only two different x, values in it? The program
will typically refuse the user’s request, perhaps fitting instead the smpler equation
Y~ By + BrXy-

Exactly what is needed in the way of datain order to fit a k-variable quadratic
equation is not easy to describe in elementary terms. 3" factorial data are sufficient
but for large k are really much more than are absol utely necessary. Statisticians have
invested substantial effort in identifying patterns of (x,, X,, ..., X,) combinations
that are both small (in terms of number of different combinations) and effective (in
terms of facilitating precise estimation of the coefficients in a quadratic response
function). See, for example, Section 7.2.2 of Statistical Quality Assurance Methods
for Engineers by Vardeman and Jobe for a discussion of “central composite” plans
often employed to gather data adequate to fit a quadratic. An early successful
application of such aplan is described next.

A Central Composite Study for Optimizing Bread Wrapper Seal Strength

The article “Sealing Strength of Wax-Polyethylene Blends’ by Brown, Turner,
and Smith (Tappi, 1958) contains an interesting central composite data set. The
effectsof thethree processvariables Seal Temperature, Cooling Bar Temperature,
and % Polyethylene Additive on the seal strength y of abread wrapper stock were

studied. With the coding of the processvariablesindicated in Table 9.14, the data
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Example 3 Table 9.14
(continued) Coding of Three Process Variables in a Seal Strength Study
Factor Variable
t, — 255 _
A Seal Temperature X, = = % wheret, isin °F
. t, — 55 .
B Cooling Bar Temperature X, = 9 wheret, isin °F
c—11 .
C Polyethylene Content Xg = 5 wherecisin %

Table 9.15
Seal Strengths Produced under 15 Different Sets
of Process Conditions

Seal Strength,
Xy X, Xq y (g/in.)

-1 -1 -1 6.6
1 -1 -1 6.9
-1 1 -1 79
1 1 -1 6.1
-1 -1 1 9.2
1 -1 1 6.8
-1 1 1 104
1 1 1 7.3
0 0 0 10.1
0 0 0 99
0 0 0 12.2
0 0 0 9.7
0 0 0 9.7
0 0 0 9.6
—1.682 0 0 9.8
1.682 0 0 5.0
0 -1.682 0 6.9
0 1.682 0 6.3
0 0 -1.682 4.0
0 0 1.682 8.6




9.3 Application of Multiple Regression in Response Surface Problems and Factorial Analyses 701

Plots and
interpreting a
fitted quadratic

Example 3
(continued)

in Table 9.15 were obtained. Notice that there are fewer than 3° = 27 different
(X1, X5, X5) Vectors in these data. (The central composite plan involves only 15
different combinations.)

If onefits afirst-order (linear) model

Yy = By+ BiXg + BXy + BaXg + € (9.77)

to the data points listed in Table 9.15, a coefficient of determination of only R? =
.38 is obtained, along with s = 1.79. The pooled sample standard deviation
(coming from the six points with x;, =0, x, =0, and x; = 0) is quite a bit
smaller than sq-—namely, s, = 1.00. Between the small value of R? and the
moderate difference between s and s;, there is aready some indication that
model (9.77) may be a poor description of the data. A residual analysislike those
done in Section 4.2 would further confirm this.

On the other hand, fitting the expression (9.75) to the data in Table 9.15
produces the equation

§ = 10.165 — 1.104x, + .0872x, + 1.020x, — .7596x; — 1.042x3
— 1.148x2 — .3500x, X, — .5000%, X, + .1500X,X5 (9.78)

with a coefficient of determination of R? = .86 and sq- = 1.09. At least on the
basis of the two measures R? and Sqr» this quadratic description of seal strength
seems much superior to afirst-order description.

For small values of k, the interpretation of a fitted quadratic response function
can befacilitated through the use of various plots. One possibility isto plot § versus
aparticular system variablex, with valuesof any other system variablesheld fixed.
This was the method used in Figure 4.15 for the nitrogen plant data, in Figure 4.16
(see page 158) for the lift/drag ratio data of Burris, and in Figure 9.8 of this section
for the hypothetical one-variable quadratics. (It is aso worth noting that in light of
the inference material presented in Section 9.2, one can enhance such plots of § by
adding error bars based on confidence limits for the means ., X )

A second kind of plot that can helpin understanding afitted quadratlcfunctlon is
the contour plot. A contour plot isessentially atopographic map. For agiven pair of
system variables (say x, and x,) one can, for fixed values of all other input variables,
sketch out the loci of points in the (X,, X,)-plane that produce several particular
values of §. Most statistical packages and engineering mathematics packages will
make contour plots.

Figure 9.9 shows a series of five contour plots made using the fitted equation
(9.78) for seal strength. These correspondto X, = —2, —1,0, 1, and 2. Thefigure
suggests that optimum predicted seal strength may be achievable for x; between
O and 1, with x, between —2 and —1, and x, between 0 and 1.
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Figure 9.9 A series of contour plots for seal strength
Analytic interpretation Plotting is helpful in understanding a fitted quadratic primarily for small k. So

of a fitted quadratic  itisimportant that there are also analytical toolsthat can be employed. Toillustrate
their character, consider the simple case of k = 1. The basic nature of the quadratic
eguation

§ = by + b X, + b,x?

is governed by b,. For b, > O it describes a parabola opening up. For b, < 0 it
describes a parabola opening down. And for b, = 0O it describes a line. Provided
b, # 0 the value

bl
Xl = —2—b2

produces the minimum (b, > 0) or maximum (b, < 0) value of §. Something like
thisstory isalso truefor k > 1.

It is necessary to use some matrix notation to say what happens for k > 1.
Temporarily modify the way the b’s are subscripted as follows. The meaning of
b, will remain unchanged. b, through b, will be the coefficients for the k system
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Vector of linear
coefficients and
matrix of quadratic
coefficients

Location of a
stationary point
for a k-variable
fitted quadratic

Equation solved
by the eigenvalues
). of the matrix B
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variables x, through x,. b, through by, will be the coefficients for the k squares x?
through x2. And for eachi # j, bij will be the coefficient of the x; X; Ccross product.
One can defineak x 1 vector b and ak x k matrix B as

b,
b= 2
by
by, %blz :_Zlblk
B — %b12 b,, %b2k
%blk %bZk By
With
Xy
X
X = _2
Xy

Provided the matrix B is nonsingular, the corresponding k-variable quadratic then
has astationary point (i.e., apoint at which first partial derivatives with respect to

Xys Xy, ..., X, areall 0) where
x=—2B""b

And depending upon the nature of B, the stationary point will be either a minimum,
amaximum, or a saddle point of thefitted response. (Moving away from a saddle
point in some directions produces an increase in §, while moving away in other
directions produces a decrease.)

It isthe eigenvalues of B that are critical in determining the shape of the fitted
quadratic surface. The eigenvalues of B are the k solutions of the equation (in 1)

(9.79)

det(B — Al) = 0 (9.80)

where | is the identity matrix. (Most statistical analysis packages and engineering
mathematics packages will compute eigenvalues quite painlessly.)

When all solutions to equation (9.80) are positive, a fitted quadratic is bowl-
shaped up and has a minimum at the point (9.79). When all solutions to equation
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Example 3
(continued)

(9.80) are negative, a fitted quadratic is bowl-shaped down and has a maximum at
the point (9.79). When some solutions to equation (9.80) are positive and some are
negative, the fitted quadratic surface has neither a maximum nor minimum (unless
one restricts attention to some bounded region of x vectors).

Printout 3 Analysis of the Fitted Quadratic for the Bread Wrapper Data
(Example 3)

MTB > Read 3 3 MI.
DATA> -.7596 -.175 -.250
DATA> -.175 -1.042 .075
DATA> -.250 .075 -1.148
3 rows read.
MTB > Read 3 1 M2.
DATA> -1.104
DATA> .0872
DATA> 1.020
3 rows read.
MTB > Eigen M1 Cl.
MTB > Print C1.

Data Display
Cl
-1.27090 -1.11680 -0.56190
MTB > Invert M1 M3.
MTB > Multiply M3 M2 M4.
MTB > Multiply M4 -.5 M5.
MTB > Print M5.

Data Display

Matrix M5

-1.01104
0.26069
0.68146

Printout 3 illustrates the use of MINITAB in the analytic investigation of the
nature of the fitted surface (9.78) in the bread wrapper seal strength study. The
printout shows the three eigenvalues of B to be negative. The fitted seal strength
therefore hasamaximum. This maximum is predicted to occur at the combination
of values x;, = —1.01, x, = .26, and X, = .68. (The MINITAB matrix functions
used to make the printout are under the “Calc/Matrices’ menu, and the display
routine is under the “Manip/Display Data” menu.)
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9.3.2

The discussion of response surface studies in this subsection isn’t intended to
be complete. Whole books, like, for example, Box and Draper’s Empirical Model-
Building and Response Surfaces, have been written on the subject. (Section 9.3 of
Vardeman’'s Satistics for Engineering Problem Solving contains a more complete
discussion than the present one, is till short of a book-length treatment.) We hope,
however, thisbrief 1ook at the topic sufficesto indicate itsimportance to engineering
practice.

Regression and Factorial Analyses

Many of the factorial inference methods discussed in this book are applicable only
in balanced-data situations. For example, remember that the use of the reverse Yates
agorithm to fit few-effects 2P factorial models and the methods of interval-oriented
inferencefor 2P studiesunder few-effects model sdiscussed in Section 8.2 arelimited
to balanced-data applications.

But by accident if not by design, an engineer will eventually face the analysis
of unbalanced factorial data. Happily enough, this can be accomplished through use
of the multiple regression formulas provided in Section 9.2. This subsection shows
how factorial analyses can be thought of in multiple regression terms. It begins with
adiscussion of two-way factorial cases and then considers three-way (and higher)
situations.

The basic multiple regression model equation used in Section 9.2,

Yi = Bot+ BiXy + BpXg + o+ BXg t (9.81)

looks deceptively smple. With proper choice of the inputs X, versions of it can
be used in a wide variety of contexts, including factorial analyses. For purposes
of illustration, consider the case of a complete two-way factoria study with | = 3
levels of factor A and J = 3 levels of factor B. In the usua two-way factorial
notation introduced in Definitions 1 and 2 of Chapter 8, the basic constraints on the
main effects and two-factor interactionsare } , o, = 0,3, ; =0,and 3, of;; =
Zj ap;; =0. These imply that the | - J = 3.3 = 9 different mean responses in
such a study,

can be written as displayed in Table 9.16.
At first glance, the advantage of writing out these mean responses in terms of

only effects corresponding to thefirst 2 (= | — 1) levelsof A andfirst2 (= J — 1)
levels of B isnot obvious. But doing so expressesthe 9 (= | - J) different meansin

terms of only as many different parameters as there are means, and helps one find a
regression-type analog of expression (9.82).

Notice first that « appears in each mean response listed and therefore plays
arole much like that of the intercept term g, in a regression model. Further, the
two A main effects, o, and «,, appear with positive signswhen (respectively) i =1
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Table 9.16
Mean Responses in a 3 Factorial Study

il j;
Level of A Level of B Mean Response

oy + B+ aby

ooy + By +aBy,

o =By =By —afy —apy,

to,+ B +aBy

toao,+ B, +aB,,

o, =By = By —afy —apy,

T+ fy—afy —apy

ma ot By —af, —apy,

Ty = By = Byt afy FaB, +ap, +afy,

WWWNNNPRE R R
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or 2 but with negative signs when i = 3 (= 1). In a similar manner, the first two
B main effects, g, and 8,, appear with positive signs when (respectively) j =1
or 2 but with negative signs when j = 3 (= J). If one thinks of the four A and B
main effects used in Table 9.16 in terms of coefficients 8 in a regression model,
it soon becomes clear how to invent “system variables’ x to make the regression
coefficients g appear with correct signs in the expressions for means p; i That is,
define four dummy variables

1 if theresponsey isfromlevel 1 of A

x;' = § —1 if theresponsey isfrom level 3 of A
0 otherwise
1 if theresponsey isfrom level 2 of A
x5 = § —1 if theresponsey isfrom level 3 of A
0 otherwise
1 if theresponsey isfromlevel 1 of B
x2 =1 -1 iftheresponsey isfrom level 3 of B
0 otherwise
1 if theresponsey isfromlevel 2 of B
x5 =1 -1 iftheresponsey isfrom level 3 of B
0 otherwise

Then, making the correspondences indicated in Table 9.17, 1+ o; + B; can be
written in regression notation as

By + :3le + /32X9 + /33)(? + /34)(£3
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Table 9.17
Correspondences between Regression Coefficients and the Grand
Mean and Main Effects in a 3% Factorial Study

Regression Coefficient  Corresponding 3 x 3 Factoria Effect

,30 M
By oy
B, )
,33 '31
,34 '32

What is more, since the x’s used here take only the values —1, 0, and 1, so
aso do their products. And taken in pairs (one x* variable with one x& variable),
their products produce the correct (—1, 0, or 1) multipliers for the 2-factor inter-
actions ap,,, af,,, apf,, and ap,, appearing in Table 9.16. That is, if one thinks
of the interactions «f;; in terms of regression coefficients g, with the additional
correspondences listed in Table 9.18, the entire expression (9.82) can be written in
regression notation as

_ A A B B A,B
I’Ly|xf,x2A,xlB,sz - '80 + llel + 182)(2 + ﬂ3X1 + 184)(2 + 185)(1 X1

+ BeXi'Xg + B X5 XE + PeXo' X3 (9.83)

By rewriting the factorial-type expression (9.82) asaregression-type expression
(9.83) it is then obvious how to fit few-effects models and do inference under those
models even for unbalanced data. Nowherein Section 9.2 wasthere any requirement
that the data set be balanced. So the methods there can be used (employing properly
constructed x variables and properly interpreting a corresponding regression print-
out) to fit reduced versions of model (9.83) and make confidence, prediction, and
tolerance interval s under those reduced models.

Table 9.18
Correspondence between Regression Coefficients and Interactions
in a 3% Factorial Study

Regression Coefficient  Corresponding 3 x 3 Factorial Effect

Bs afy
,35 Ot,B 12
:37 Ot,321

Bg afy
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Thegenera | x J two-way factorial version of thisstory issimilar. One defines

| — 1 factor A dummy variables x{', x5, ..., x{* ; according to
I — 1 dummy 1 iftheresponseyisfromlevel i of A
variables for xiA = 41-1 iftheresponseyisfromlevel | of A (9.84)
factor A 0 0therW|$
and J — 1 factor B dummy variables x?, x5, ..., x§_; according to
J— 1 dummy 1 if theresponse y isfrom level j of B
variables for ij =4 —1 iftheresponseyisfromlevel J of B (9.85)
factor B 0 otherwise

Multiple regression — and uses aregression program to do the computations. Estimated regression coeffi-
and two-way  cients of x* or x® variables alone are estimated main effects, while those for x/*x?
factorial analyses ~ Cross products are estimated 2-factor interactions.

Example 4 A Factorial Analysis of Unbalanced Wood Joint Strength

(Examples 7, Chapter 4, Data Using a Regression Program
rev?sr;zic;' izzp tgr fs Consider again the wood joint strength study of Kotlers, MacFarland, and Tom-
763’3527) linson. The discussion in Section 8.1 showed that if only the wood types pine

and oak are considered, a no-interaction description of joint strength for butt,
beveled, and lap joints might be appropriate. The corresponding part of the (orig-
inally 3 x 3 factorial) data of Kotlers, MacFarland, and Tomlinson is given here

in Table 9.19.
Table 9.19
Strengths of 11 Wood Joints
B Wbod Type
1 (Pine) 2 (0Oa&k)
1 (Buitt) 829, 596 1169

A Joint Type 2(Beveled) 1348,1207 1518, 1927
3(Lap) 1000, 859 1295, 1561
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Table 9.20
Joint Strength Data Prepared for a Factorial Analysis Using
a Regression Program

i: jy

Joint Type  Wood Type  x x5 xP y
1 1 1 0 1 829, 596
1 2 1 0O -1 1169
2 1 0 1 1 1348, 1207
2 2 0 1 -1 1518,1927
3 1 -1 -1 1 1000, 859
3 2 -1 -1 -1 1295, 1561

Notice that because these data are unbalanced (due to the unfortunate loss
of one butt/oak response), it is not possible to fit a no-interaction model to these
data by simply adding together fitted effects (defined in Section 4.3) or to use
anything said in Chapter 8 to make inferences based on such a model. But it is
possibleto use the dummy variable regression approach based on formulas (9.84)
and (9.85) to do so.

Consider the regression-data-set version of Table 9.19 given in Table 9.20.
Printouts 4 and 5 show the results of fitting the two regression models

Y = By + BIXE + BoXo + BXe + BXUXE + BxoxZ + € (9.86)
Y = Bo+ BX4 + BoXh + BaXT + € (9.87)

tothedataof Table 9.20. Printout 4 corresponding to model (9.86) isthefull model
or wi; =+ o; + B; + af;; description of the data. For that regression run, the
reader should verify the correspondences between fitted regression coefficients
b and fitted effects (defined in Section 4.3), listed in Table 9.21. (For example,

Table 9.21
Correspondence between Fitted Regression Coefficients and Fitted Factorial
Effects for the Wood Joint Strength Data

Fitted Regression Coefficient Value  Corresponding Fitted Effect

by 1206.5 y
b, —265.75 a
b, 293.50 a,
b, —233.33 b,
b, 5.08 ab,,
by 10.83 ab,,
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Example 4
(continued)

y =1206.5and y, = 940.75, s0 a; = 940.75 — 1206.5 = —265.75, which is
the value of the fitted regression coefficient b, .)

Model (9.86), like the two-way model (8.4) of Section 8.1, represents no
restriction or simplification of thebasic one-way model. Soleast squaresestimates
of parameters that are linear combinations of underlying means are simply the
same linear combinations of sample means. Further, the fitted y values are (as
expected) simply the sample means 'y, . .

Printout 5 corresponding to model (9.87) isthe wij = +o + B descrip-
tion of the data. The fitted regression coefficients b for model (9.87) are not
equal to the (full-model) fitted factorial effects defined in Section 4.3. (The b’s
are least squares estimates of the underlying effects for the no-interaction model.
When factorial data are unbalanced, these are not necessarily equal to the quan-
tities defined in Section 4.3. For example, b, from Printout 5 is —264.48, which
is the least squares estimate of «, in a no-interaction model but differs from
a, = —264.75.) Inasimilar vein, the fitted responses are neither sample means
nor sums of y plusthe full-model fitted main effects defined in Section 4.3. (Of
course, sincethe x variablestake only values —1, 0, and 1, thefitted responsesare
sums and differences of the least squares estimates of the underlying parameters
K, ay, oy, B; inthe no-interaction model.)

Inference under model (9.86) is simply inference under the usual one-way
normal model, and all of Sections 7.1 through 7.4 and 8.1 can be used. It isthen
reassuring that on Printout 4, sq- = S, = 182.2 and that (for example) for butt
joints and pinewood (levels 1 of both A and B), the estimated standard deviation

fory =y, is

$ 1822
I’]ll \/z

1289 =54 A=

To illustrate how inference under a no-interaction model would proceed for
the unbalanced 3 x 2 factorial joint strength data, consider making a 95% two-
sided confidence interval for the mean strength of butt/pine joints and then a
90% lower prediction bound for the strength of a single joint of the same kind.
Note that for data point 1 (a butt/pine observation) on Printout 5, ¥ = 708.7 and
S¢ - A = 94.8, where sg = 154.7 has seven associated degrees of freedom. So
from formula (9.53) of Section 9.2 (page 686), two-sided 95% confidence limits
for mean butt/pine joint strength are

708.7 £ 2.365(94.8)
that is,

484.5ps and 932.9psi



9.3 Application of Multiple Regression in Response Surface Problems and Factorial Analyses

>

708.7 — 1.415\/ (154.7)% + (94.8)” = 452.0 psi
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Similarly, using formula (9.56) on page 689, a 90% lower prediction limit for a
single additional butt/pine joint strengthis

From these two calculations, it should be clear that other methods from
Section 9.2 could be used here aswell. Thereader should have no trouble finding
and using residuals and standardized residuals for the no-interaction model based
on formulas (9.39) and (9.42), giving simultaneous confidence intervals for all
six mean responses under the no-interaction model using formula (9.54) or giving
one-sided tolerance bounds for certain joint/wood combinations under the no-
interaction model using formula (9.58) or (9.59).

of Joint Strength (Example 4)

Printout 4 Multiple Regression Version of the With-Interactions Factorial Analysis

Data Display

Row xal
1 1
2 1
3 1
4 0
5 0
6 0
7 0
8 -1
9 -1

10 -1
11 -1

xa2  xbl
0 1
0 1
0 -1
1 1
1 1
1 -1
1 -1
-1 1
-1 1
-1 -1
-1 -1

Regression Analysis

The regression equation is
y = 1207 - 266 xal + 294 xa2 - 233 xbl + 5.1 xal*xbl + 10.8 xa2*xbl

Predictor
Constant
xal

xa2

xbl
xal*xbl
xa2*xbl

S =182.2

Coef
1206.50
-265.75

293.50
-233.33
5.08
10.83

829

596
1169
1348
1207
1518
1927
1000

859
1295
1561

StDev
56.82
85.91
77 .43
56.82
85.91
77 .43

R-Sq = 88.5%

T
21.23
-3.09
3.79
-4.11
0.06
0.14

0
0
0
0
0
0

P
.000
.027
.013
.009
.955
.894

R-Sq(adj) = 77.1%
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Analysis of Variance

Source DF SS MS F P

Regression 5 1283527 256705 7.73 0.021

Residual Error 5 166044 33209

Total 10 1449571

Source DF Seq SS

xal 1 120144

xa2 1 577927

xbl 1 583908

xal*xbl 1 897

xa2*xbl 1 650

Obs xal y Fit  StDev Fit Residual St Resid
1 1.00 829.0 712.5 128.9 116.5 0.90
2 1.00 596.0 712.5 128.9 -116.5 -0.90
3 1.00 1169.0 1169.0 182.2 -0.0 * X
4 0.00 1348.0 1277 .5 128.9 70.5 0.55
5 0.00 1207.0 1277.5 128.9 -70.5 -0.55
6 0.00 1518.0 1722.5 128.9 -204.5 -1.59
7 0.00 1927.0 1722.5 128.9 204.5 1.59
8 -1.00 1000.0 929.5 128.9 70.5 0.55
9 -1.00 859.0 929.5 128.9 -70.5 -0.55
10 -1.00 1295.0 1428.0 128.9 -133.0 -1.03
11 -1.00 1561.0 1428.0 128.9 133.0 1.03

X denotes an observation whose X value gives it Targe influence.

Printout 5 Multiple Regression Version of the No-Interactions Factorial Analysis
of Joint Strength (Example 4)

Regression Analysis

The regression equation is
y = 1207 - 264 xal + 293 xa2 - 234 xbl

Predictor Coef StDev T P
Constant 1207.14 47.38 25.48 0.000
xal -264.48 70.62 -3.74 0.007
xa2 292.86 65.11 4.50 0.003
xbl -233.97 47.38 -4.94 0.002
S = 154.7 R-Sq = 88.4% R-Sq(adj) = 83.5%

Analysis of Variance

Source DF SS MS F P
Regression 3 1281980 427327 17.85 0.001
Residual Error 7 167591 23942

Total 10 1449571

Source DF Seq SS

xal 1 120144

xa2 1 577927

xbl 1 583908
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Dummy variables
for regression
analysis of p-way
factorials

Alternative choice
of x variables for
regression analysis
of 2P factorials

Obs xal y Fit  StDev Fit Residual St Resid
1 1.00 829.0 708.7 94.8 120.3 0.98
2 1.00 596.0 708.7 94.8 -112.7 -0.92
3 1.00 1169.0 1176.6 109.4 -7.6 -0.07
4 0.00 1348.0 1266.0 90.7 82.0 0.65
5 0.00 1207.0 1266.0 90.7 -59.0 -0.47
6 0.00 1518.0 1734.0 90.7 216.0 -1.72
7 0.00 1927.0 1734.0 90.7 193.0 1.54
8 -1.00 1000.0 944.8 90.7 55.2 0.44
9 -1.00 859.0 944.8 90.7 -85.8 -0.68

10 -1.00 1295.0 1412.7 90.7 117.7 -0.94
11 -1.00 1561.0 1412.7 90.7 148.3 1.18

The pattern of analysis set out for two-way factorials carries over quite nat-
uraly to three-way and higher factorials. To use a multiple regression program
to fit and make inferences based on simplified versions of the p-way factoria
model, proceed as follows. | — 1 dummy variables x', x5, ..., X{* ; are defined
(as before) to carry information about | levels of factor A, J — 1 dummy variables
x2,x8, ..., x5, aredefined (asbefore) to carry information about J levels of factor
B, K — 1dummy variablesx$, x5, ..., x$_, are defined to carry information about
K levels of factor C, .. ., etc. Products of pairs of these, one each from the groups
representing two different factors, carry information about 2-factor interactions of
the factors. Products of triples of these, one each from the groups representing
three different factors, carry information about 3-factor interactions of the factors.
And so on.

When something short of the largest possible regression model is fitted to
an unbalanced factorial data set, the estimated coefficients b that result are the
least squares estimates of the underlying factoria effects in the few-effects model.
(Usually, thesediffer somewhat from the (full-model) fitted eff ects defined in Section
4.3.) All of the regression machinery of Section 9.2 can be applied to create fitted
values, residuals, and standardized residuals; to plot these to do model checking; to
make confidenceintervalsfor mean responses; and to create prediction and tolerance
intervals.

When the regression with dummy variables approach is used as just described,
the fitted coefficients b correspond to fitted effects for the levels 1 through | — 1,
J — 1, K — 1, etc. of the factors. For two-level factorials, this means that the fitted
coefficients are estimated factorial effects for the “all low” treatment combination.
However, because of extensive use of the Yates algorithm in this text, you will
probably think first in terms of the 2P factorial effects for the “all high” treatment
combination.

Two sensible courses of action then suggest themselves for the analysis of
unbalanced 2P factorial data. You can proceed exactly as just indicated, using
dummy variables x2', x2, x&, etc. and various products of the same, taking care
to remember to interpret b's as “all low” fitted effects and subsequently to switch
signs as appropriate to get “all high” fitted effects. The other possibility isto depart
dightly from the program laid out for general p-way factorialsin 2P cases: Instead
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of using the variables x7', x2, x&, etc. and their products when doing regression, one
may use the variables

WA A _ 1 if theresponsey isfrom the high level of A
2 ! —1 if theresponsey isfrom the low level of A
WB — _xB _ 1 if theresponsey isfrom the high level of B
2 ! —1 if theresponsey isfromthelow level of B
«C — _xC _ 1 if theresponsey isfrom the high level of C
2 17 |-1 iftheresponsey isfromthelow level of C

etc. and their products when doing regression. When the variables x5, x3, x5, etc.
are used, the fitted b’s are the estimated “all high” 2P factorial effects.

Example 5 A Factorial Analysis of Unbalanced 2 Power
(Example 4, Chapter 8, Requirement Data Using Regression

revisited—page 569) Return to the situation of the 2°> metalworking power requirement study of Miller.

The original data set (given in Table 8.8) is balanced, with the common sample
size being m = 4. For the sake of illustrating how regression with dummy vari-
ablescan be usedintheanalysisof unbalanced higher-way factorial data, consider
artificially unbalancing Miller’s data by supposing that the first data point ap-
pearing in Table 8.8 has gotten lost. The portion of Miller's data that will be used
hereisthen given in Table 9.22.

Table 9.22
Dynamometer Readings for 23 Treatment Combinations

Tool Type Bevel Angle Typeof Cut vy, Dynamometer Reading (mm)

1 15° continuous  26.5, 30.5, 27.0

2 15° continuous  28.0, 28.5, 28.0, 25.0
1 30° continuous  28.5, 28.5, 30.0, 32.5
2 30° continuous 29.5, 32.0, 29.0, 28.0
1 15° interrupted  28.0, 25.0, 26.5, 26.5
2 15° interrupted 245, 25.0, 28.0, 26.0
1 30° interrupted  27.0, 29.0, 27.5, 27.5
2 30° interrupted  27.5, 28.0, 27.0, 26.0
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For this dightly altered data set, the Yates algorithm produces the fitted

effects
a, = —.2656 ab,, = .0469 abc,,, = —.0469
b, = .8281 ac,, = —.0469
c, = —.9531 bc,, = —.2031

and s, = 1.51 with v = 23 associated degrees of freedom. Formula (8.12)
(page 575) of Section 8.2 then shows that (say) two-sided 90% confidence
intervals for effects have plus-and-minus parts

:i:1714(151)1,/7+1—:|;47
. SD=yz 3=+

Just as in Example 4 in Chapter 8, where all n = 32 data points were used,
one might thus judge only the B and C main effects to be clearly larger than
background noise.

Printout 6 supports exactly these conclusions. This regression run was made
using all seven of the terms

A B C A,B A, C B, C AB,C
X5y X5, X5y X' X5, Xo' X5, X5 X5, and  X5'X5 X5

(i.e,, using the full model in regression terminology and the unrestricted 23
factorial model in theterminology of Section 8.2). On Printout 6, one canidentify
the fitted regression coefficients b with the fitted factoria effects in the pairs
indicated in Table 9.23.

Table 9.23

Correspondence Between Fitted Regression Coefficients
and Fitted Factorial Effects for the Regression Run

of Printout 6

Fitted Regression Coefficient  Fitted Factorial Effect

by y..

b, a

b2 b2

by )

b, ab,,
by ac,,
bs bc,,
b, abc,,,
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Example 5
(continued)

Analysis of the data of Table 9.22 based on afull factorial model
Yiju = M+ o + B + v+ ab +ay + By + aByij + €54

that is,

Y, = B+ BiXo + BoX5 + BaXs + ByXeiXe + BXaXs + BeXa Xy

ABC
+ BoX5i X5 X5 + €

is a logical first step. Based on that step, it seems desirable to fit and draw
inferences based on a “B and C main effects only” description of y. Since the
data in Table 9.22 are unbalanced, the naive use of the reverse Yates algorithm
with the (full-model) fitted effects will not produce appropriate fitted values. y ,
b,, and c, are simply not the least squares estimates of 1., B,, and y, for the“B
and C main effects only” model in this unbalanced data situation.

However, what can be done is to fit the reduced regression model

Yo = By + BoXE + BaXs + €

to the data. Printout 7 represents the use of thistechnique. L ocate on that printout
the (reduced-model) estimates of the factorial effects ., B,, and y, and note
that they differ somewhat from y , b,, and ¢, as deflned in Section 4.3 and
displayed on Printout 6. Note also that the four different possible fitted mean
responses, along with their estimated standard deviations, are as given in Table
9.24.

Thevaluesin Table 9.24 can be used in theformulas of Section 9.2 to produce
confidence intervals for the four mean responses, prediction intervals, tolerance
intervals, and so on based on the “B and C main effects only” model. All of this
can be done despite the fact that the data of Table 9.22 are unbalanced.

Table 9.24

Fitted Values and Their Estimated Standard Deviations for a “B
and C Main Effects Only” Analysis of the Unbalanced Power
Requirement Data

C

Bevel Angle xZ Typeof Cut X5 g S A
15° —1 continuous -1 27.88 46
30° 1 continuous —1 29.54 44
15° —1 interrupted 1 2598 A4
30° 1 interrupted 1 2764 A4
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Printout 6 Multiple Regression Version of the With-Interactions Factorial Analysis
of Power Requirement (Example 5)

Regression Analysis

The regression equation is
y =27.8 - 0.266 xa2 + 0.828 xb2 - 0.953 xc2 + 0.047 xa*xb - 0.047 xa*xc
- 0.203 xb*xc - 0.047 xa*xb*xc

Predictor Coef StDev T p

Constant 27.7656 0.2731 101.68 0.000

xa2 -0.2656 0.2731 -0.97 0.341

xb2 0.8281 0.2731 3.03 0.006

xc2 -0.9531 0.2731 -3.49 0.002

xa*xb 0.0469 0.2731 0.17 0.865

Xa*xc -0.0469 0.2731 -0.17 0.865

xb*xc -0.2031 0.2731 -0.74 0.465

xa*xb*xc -0.0469 0.2731 -0.17 0.865

S =1.514 R-Sq = 51.0% R-Sq(adj) = 36.0%

Analysis of Variance

Source DF SS MS F P

Regression 7 54.748 7.821 3.41 0.012

Residual Error 23 52.687 2.291

Total 30 107.435

Source DF Seq SS

xa2 1 2.202

xb2 1 22.645

xc2 1 28.398

xa*xb 1 0.091

Xa*xc 1 0.051

xb*xc 1 1.293

xa*xb*xc 1 0.068

Obs Xxa2 y Fit  StDev Fit Residual St Resid
1 -1.00 26.500 28.000 0.874 -1.500 -1.21
2 -1.00 30.500 28.000 0.874 2.500 2.02R
3 -1.00 27.000 28.000 0.874 -1.000 -0.81
4 1.00 28.000 27.375 0.757 0.625 0.48
5 1.00 28.500 27.375 0.757 1.125 0.86
6 1.00 28.000 27.375 0.757 0.625 0.48
7 1.00 25.000 27.375 0.757 -2.375 -1.81
8 -1.00 28.500 29.875 0.757 -1.375 -1.05
9 -1.00 28.500 29.875 0.757 -1.375 -1.05
10 -1.00 30.000 29.875 0.757 0.125 0.10
11 -1.00 32.500 29.875 0.757 2.625 2.00R
12 1.00 29.500 29.625 0.757 -0.125 -0.10
13 1.00 32.000 29.625 0.757 2.375 1.81
14 1.00 29.000 29.625 0.757 -0.625 -0.48
15 1.00 28.000 29.625 0.757 -1.625 -1.24
16 -1.00 28.000 26.500 0.757 1.500 1.14
17 -1.00 25.000 26.500 0.757 -1.500 -1.14
18 -1.00 26.500 26.500 0.757 -0.000 -0.00
19 -1.00 26.500 26.500 0.757 -0.000 -0.00
20 1.00 24.500 25.875 0.757 -1.375 -1.05
21 1.00 25.000 25.875 0.757 -0.875 -0.67
22 1.00 28.000 25.875 0.757 2.125 1.62
23 1.00 26.000 25.875 0.757 0.125 0.10
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24 -1.00 27.000 27.750 0.757 -0.750 -0.57
25 -1.00 29.000 27.750 0.757 1.250 0.95
26 -1.00 27.500 27.750 0.757 -0.250 -0.19
27 -1.00 27.500 27.750 0.757 -0.250 -0.19
28 1.00 27.500 27.125 0.757 0.375 0.29
29 1.00 28.000 27.125 0.757 0.875 0.67
30 1.00 27.000 27.125 0.757 -0.125 -0.10
31 1.00 26.000 27.125 0.757 -1.125 -0.86

R denotes an observation with a large standardized residual

Printout 7 Multiple Regression Version of a “B and C Main Effects Only” Analysis
of Power Requirement (Example 5)

Regression Analysis

The regression equation is
y =27.8 + 0.832 xb2 - 0.949 xc2

Predictor Coef StDev T P
Constant 27.7619 0.2553 108.73 0.000
xb2 0.8319 0.2553 3.26 0.003
xc2 -0.9494 0.2553 -3.72 0.001
S =1.420 R-Sq = 47.4% R-Sq(adj) = 43.7%

Analysis of Variance

Source DF SS MS F P

Regression 2 50.972 25.486 12.64 0.000

Residual Error 28 56.463 2.017

Total 30 107.435

Source DF Seq SS

xb2 1 23.093

xc2 1 27.879

Obs xb2 y Fit  StDev Fit Residual St Resid
1 -1.00 26.500 27.879 0.457 -1.379 -1.03
2 -1.00 30.500 27.879 0.457 2.621 1.95
3 -1.00 27.000 27.879 0.457 -0.879 -0.65
4 -1.00 28.000 27.879 0.457 0.121 0.09
5 -1.00 28.500 27.879 0.457 0.621 0.46
6 -1.00 28.000 27.879 0.457 0.121 0.09
7 -1.00 25.000 27.879 0.457 -2.879 -2.14R
8 1.00 28.500 29.543 0.437 -1.043 -0.77
9 00 28.500 29.543 0.437 -1.043 -0.77
10 1.00 30.000 29.543 0.437 0.457 0.34
11 1.00 32.500 29.543 0.437 2.957 2.19R
12 1.00 29.500 29.543 0.437 -0.043 -0.03
13 1.00 32.000 29.543 0.437 2.457 1.82
14 1.00 29.000 29.543 0.437 -0.543 -0.40
15 1.00 28.000 29.543 0.437 -1.543 -1.14
16 -1.00 28.000 25.981 0.437 2.019 1.49
17 -1.00 25.000 25.981 0.437 -0.981 -0.73
18 -1.00 26.500 25.981 0.437 0.519 0.38
19 -1.00 26.500 25.981 0.437 0.519 0.38
20 -1.00 24.500 25.981 0.437 -1.481 -1.10
21 -1.00 25.000 25.981 0.437 -0.981 -0.73
22 -1.00 28.000 25.981 0.437 2.019 1.49
23 -1.00 26.000 25.981 0.437 0.019 0.01
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24 1.00 27.000
25 1.00 29.000
26 1.00 27.500
27 1.00 27.500
28 1.00 27.500
29 1.00 28.000
30 1.00 27.000
31 1.00 26.000

27.644
27.644
27.644
27.644
27.644
27.644
27.644
27.644

ODOOOOO OO

.437
.437
.437
437
437
437
.437
437

[ [ '
HPOOOOORrOo

.644
.356
.144

144

.144

356

.644
.644

R denotes an observation with a Targe standardized residual

-0.48

1.00
-0.11
-0.11
-0.11

0.26
-0.48
-1.22
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Example 5 has been treated as if the lack of balance in the data came about
by misfortune. And the lack of balance in Example 4 did come about in such a
way. But lack of balance in p-way factorial data can also be the result of careful
planning. Consider, for example, a 2* factoria situation where the budget can
support collection of 20 observations but not as many as 32. In such acase, complete
replication of the 16 combinations of two levels of four factors in order to achieve
balance is not possible. But it makes far more sense to replicate four of the 16
combinations (and thus be able to calculate s, and honestly assess the size of
background variation) than to achieve balance by using no replication. By now
it should be obvious how to subsequently go about the analysis of the resulting
partialy replicated (and thus unbalanced) factorial data.

S ON B3 X OISO .o

1. Flood and Shankwitz reported the results of a met-
alurgical engineering design project involving the
tempering response of a certain grade of stainless
steel. Slugs of this steel were preprocessed to rea-
sonably uniform hardnesses, which were measured
and recorded. The slugs were then tempered at var-
ious temperatures for various lengths of time. The
hardnesses were then remeasured and the change
in hardness computed. The data in the accompa-
nying tables were obtained in this replicated 4 x 4
factorial study.

Time, Temperature, Increasein
X, (min) X, (°F) Hardness, y
5 800 0,0 -1
5 900 -3,-2,1
5 1000 -1,-1,0
5 1100 -4,1,3
50 800 3,4, -1
50 900 -3,-1,1
50 1000 —-4,-1,-3
50 1100 —4, -4, -2

Time, Temperature, Increasein
X, (min) X, (°F) Hardness, y
150 800 4,2, -2
150 900 -1,-1,-2
150 1000 -4, -5, -7
150 1100 -7,-5,-8

500 800 1,-30

500 900 -2,-8,-2
500 1000 -8, -7,—-7
500 1100 -11,-9,-5

(a) Fit the quadratic model

Y = Bo+ B In(X) + BX, + By (In(xl))z +
BiX5 + BsX, IN(X,) + €

to these data. What fraction of the observed
variability in hardnessincreaseisaccounted for
inthefitting of the quadratic response surface?
What isyour estimate of the standard deviation
of hardness changes that would be experienced
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at any fixed combination of time and tempera-
ture? How doesthis estimate compare with s,?
Does there appear to be enough difference be-
tween the two values to cast serious doubt on
the appropriateness of the regression model ?

(b) Therewas some concern onthe project group’s
part that the 5-minute time was completely un-
like the other times and should not be consid-
ered in the same analysis as the longer times.
Temporarily delete the 12 slugs treated only 5
minutes from consideration, refit the quadratic
model, and compare fitted values for the 36
slugs tempered longer than 5 minutes for this
regression to those from part (a). How different
are these two sets of values?

Henceforth consider the quadratic model fitted to

all 48 data points.

(c) Makeacontour plot showing how y varieswith
In(x,) and x,. In particular, useit toidentify the
region of In(x,) and x, values where the tem-
pering seems to provide an increase in hard-
ness. Sketch the corresponding region in the
(Xq, Xy)-plane.

(d) Forthex, = 50andx, = 800set of conditions,
(i) give a 95% two-sided confidence interval
for the mean increase in hardness provided by
tempering.

(ii) give a 95% two-sided prediction interval
for the increase in hardness produced by tem-
pering an additional slug.

Chapter 9 Exercises

1. Return to the situation of Chapter Exercise 3 of

Chapter 4 and the grain growth study of Huda and
Ralph. Consider an analysisof theresearchers’ data
based on the model

Y = By + B X, + +B51In(X,) + BoX, In(X,) + €

(a) Fit this model to the data given in Chapter 4.
Based on thisfit, what is your estimate of the
standard deviation of grain size, y, associated
with different specimens treated using a fixed
temperature and time?
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(iii) give an approximate 95% lower tolerance
bound for the hardness increases of 90% of
such slugs undergoing tempering.

2. Return to the situation of Chapter Exercise 10 of

Chapter 8 and the chemical product impurity study.
The analysis suggested in that exercise leadsto the
conclusion that only the A and B main effects are
detectably nonzero. The data are unbalanced, so it
is not possible to use the reverse Yates algorithm
tofit the"A and B main effects only” model to the
data.

(8 Usethe dummy variable regression techniques
to fit the “A and B main effects only” model.
(You should be able to pattern what you do
after Example 5.) How do A and B main
effects estimated on the basis of this few-
effects/simplified description of the pattern of
response compare with what you obtained for
fitted effects using the Yates algorithm?

(b) Compute and plot standardized residuals for
the few-effects model. (Plot against levels of
A, B, and C, against ¥, and normal -plot them.)
Do any of these plots indicate any problems
with the few-effects model ?

(c) How does s (which you can read directly off
your printout as sq-) compare with s, in this
situation? Do the two values carry any strong
suggestion of lack of fit?

(b) Makeaplot of the observed y’s versusthe cor-
respondingIn(x,)’s. Onthisplot, sketchthelin-
ear fitted response functions (§ versus In(x,))
for x, = 1443, 1493, and 1543. Notice that the
fit to the researchers’ data is excellent. How-
ever, notice al so that themodel hasfour 8’sand
was fit based on only nine data points. What
possibility therefore needs to be kept in mind
when making predictions based on thismodel ?



(c) Make a 95% two-sided confidence interval
for the mean y when a temperature of x, =
1493°K and a time of x, = 120 minutes are
used.

(d) Make a 95% two-sided prediction interval for
an additional grain size, y, when a tempera-
ture of x; = 1493°K and a time of x, = 120
minutes are used.

(e) Find a 95% two-sided confidence interval for
the mean y when atemperature of x, =1500°K
and atime of x, = 500 minutes are used. (This
is not a set of conditions in the origina data
set. So you will need to inform your regression
program of where you wish to predict.)

(f) What does the hypothesis H,: 8, = 8, =
B3 = 0 mean in the context of this study and
the model being used in this exercise? Find
the p-value associated with an F test of this
hypothesis.

(9) What doesthe hypothesisH,: g, = Omeanin
the context of this study and the model being
used in this exercise? Find the p-value associ-
ated with atwo-sided t test of this hypothesis.

. The article “Orthogonal Design for Process Opti-
mization and its Application in Plasma Etching”
by Yin and Jillie (Solid State Technology, 1987)
discusses a 4-factor experiment intended to guide
optimization of a nitride etch process on a single
wafer plasma etcher. Data were collected at only
nine out of 3* = 81 possible combinations of three
levels of each of the four factors (making up a so-
called orthogonal array). The factors involved in
the experimentation were the Power applied to the
cathode x,, the Pressurein the reaction chamber x,
the spacing or Gap between the anode and the cath-
ode X5, and the Flow of the reactant gas C,F, X,.
Three different responses were measured, an etch
rate for SIN y,, auniformity for SIN y,, and a se-
lectivity of the process (for silicon nitride) between
silicon nitride and polysilicon y,. Eight of the nine
different combinations were run once, while one
combination was run three times. The researchers
reported the data given in the accompanying table.
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X ) X3 X4 . Y1 Y2 Y3
(W) (mTorr) (cm) (sccm) (A/min) (%) (SiN/poly)
275 450 0.8 125 1075 2.7 1.63
275 500 1.0 160 633 4.9 1.37
275 550 12 200 406 4.6 1.10
300 450 1.0 200 860 34 1.58
300 500 12 125 561 4.6 1.26
275 450 0.8 125 1052 1.7 172
300 550 0.8 160 868 4.6 1.65
325 450 12 160 669 5.0 142
325 500 0.8 200 1138 2.9 1.69
325 550 10 125 749 5.6 154
275 450 0.8 125 1037 2.6 172

The dataare listed in the order in which they were
actually collected. Notice that the conditions un-
der which the first, sixth, and eleventh data points
were collected are the sasme—that is, thereis some
replication in this fractional factorial data set.

(@) Thefactthat thefirst, sixth, and last data points
were collected under the same set of process
conditions provides some check on the con-
sistency of experimental results acrosstimein
this study. What el se might (should) have been
donein this study to try to make sure that time
trends in an extraneous variable don’t get con-
fused with the effects of the experimental vari-
ables (in particular, the effect of x,, asthe ex-
periment was run)? (Consider again the ideas
of Section 2.3.)

(b) Fit alinear mode! in al of x;, X,, X5, and X,
to each of the three response variables. Notice
that although such a model appears to provide
agood fit to the y, data, the situations for y,
and y, are not quite so appeding. (Compare
s¢ t0'S, for y; and note that R? for the second
variable is relatively low, at least compared to
what one can achieve for y,.)

(c) In search of better-fitting equations for the y,
(or y,) data, one might consider fitting a full
quadratic equation in X;, X,, X5, and X, to the
data. What happens when you attempt to do
this using a regression package? (The problem
is that the data given here are not adequate to
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distinguish between various possible quadratic
response surfacesin four variables.)

(d) In light of the difficulty experienced in (c),
a natural thing to do might be to try to fit
quadratic surfaces involving only some of all
possible second-order terms. Fit the two mod-
es for y, including (i) X, Xy, Xg, X,, X, X2,
x3, and xZ terms, and (ii) X;, X, X4, X2, X3, X2,
X; X5, and X,X, terms. How do these two fitted
equations compare in terms of §, values for
(X1, X5, X3, X,) combinations in the data set?
How do ¥, values compare for the two fitted
equationswhenx; = 325, x, = 550, x; = 1.2,
and x, = 200? (Notice that although this last
combination is not in the data set, there are
values of the individual variables in the data
set matching these.) What isthe practical engi-
neering difficulty faced in a situation like this,
where there is not enough data available to fit
afull quadratic model but it doesn’t seem that
amodd linear in the variables is an adequate
description of the response?

Henceforth, confine attention to y, and consider an

analysis based on amodel linear inall of x,, X,, X5,

and x,.

(e) Give a 90% two-sided individual confidence
interval for the increase in mean selectivity ra-
tiothat accompaniesal watt increasein power.

(f) What appear to be the optimal (large y,) set-
tings of the variables x,, X,, X5, and x,, (within
their respective ranges of experimentation)?
Refer to the coefficients of your fitted equa-
tion from (b).

(g) Give a 90% two-sided confidence interval for
the mean selectivity ratio at the combination of
settingsthat youidentifiedin (f). What cautions
would you include in a report in which this
interval is to appear? (Under what conditions
is your calculated interval going to have real-
world meaning?)

3. Thearticle“How to Optimize and Control the Wire

Bonding Process: Part I1” by Scheaffer and Levine
(Solid Sate Technology, 1991) discusses the use
of ak = 4 factor central composite design in the
improvement of the operation of the K& S 1484XQ
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bonder. The effects of the variables Force, Ultra-
sonic Power, Temperature, and Time on the fina
ball bond shear strength were studied. The accom-
panying table gives data like those collected by the
authors. (The origina data were not given in the
paper, but enough information was given to pro-
duce these simulated valuesthat have structurelike
the original data.)

Force, Power, Temp., Time, Strength,

X, (@m) %, (mw) X3 °C X, (Ms) y (gm)
30 60 175 15 26.2
40 60 175 15 26.3
30 90 175 15 39.8
40 20 175 15 39.7
30 60 225 15 38.6
40 60 225 15 355
30 20 225 15 48.8
40 20 225 15 37.8
30 60 175 25 26.6
40 60 175 25 234
30 20 175 25 38.6
40 90 175 25 52.1
30 60 225 25 395
40 60 225 25 323
30 90 225 25 43.0
40 90 225 25 56.0
25 75 200 20 35.2
45 75 200 20 46.9
35 45 200 20 22.7
35 105 200 20 58.7
35 75 150 20 345
35 75 250 20 44.0
35 75 200 10 357
35 75 200 30 41.8
35 75 200 20 36.5
35 75 200 20 37.6
35 75 200 20 40.3
35 75 200 20 46.0
35 75 200 20 27.8
35 75 200 20 40.3




(a) Fitboththefull quadratic response surface and
the simpler linear response surface to these
data. On the basis of simple examination of
the R? values, does it appear that the quadratic
surface is enough better as a data summary
to make it worthwhile to suffer the increased
complexity that it brings with it? How do the
S Vvalues for the two fitted models compare
to s, computed from the final six data points
listed here?

(b) Conduct a forma test (in the full quadratic
model) of the hypothesis that the linear model
Y =Byt BXy+ BX + BaXg + BX, € s
an adequate description of the response. Does
your p-value support your qualitative judg-
ment from part (a)?

(©) In the linear model y = B, + B,X; + B,X, +
B3X3 + B,X, + €, give a90% confidence inter-
val for B,. Interpret thisinterval in the context
of the original engineering problem. (What is
B, supposed to measure?) Would you expect
the p-value from atest of H,: 8, = 0 to be
large or to be small?

(d) Usethelinear model and find an approximate
95% lower tolerance bound for 98% of bond
shear strengths at the center point x, = 35,
X, = 75, X; = 200, and x, = 20.

. (Testingfor “ Lack of Fit” toaRegression M odel)
In curve- and surface-fitting problems where there
is some replication, this text has used the informal
comparison of s (or s ;) to s, as ameans of de-
tecting poor fit of aregression model. It isactually
possible to use these values to conduct a formal
significance test for lack of fit. That is, under the
one-way normal model of Chapter 7, it is possible
to test

Ho: Fyix, xp X, = By + ByXy + BoXo + - + BX,

using the test statistic

(N—k—1s3— (n—r)s3
r—-k—1
2

s

F=
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and an F_,_,, , reference distribution, where

large values of F count as evidence against H,.

(If s ismuch larger than s;,, the difference in the

numerator of F will be large, producing a large

sample value and a small observed level of signifi-
cance.)

(a) Itisnot possible to use the lack of fit test in
any of Exercise 3 of Section 4.1, Exercise 2
of Section 4.2, or Chapter Exercises 2 or 3 of
Chapter 4. Why?

(b) For the situation of Exercise 2 of Section 9.1,
conduct aformal test of lack of fit of the linear
relationship u,,, = B, + B;X to the concrete
strength data.

(c) For the situation of Exercise 1 of Section 9.3,
conduct a formal test of lack of fit of the full
quadratic relationship

Iy, x, = Bo T BrINCXY) + B5%; + B3 (Inxy))°
+ BX3 + BsX, IN(X,)

to the hardness increase data.

(d) For the situation of Chapter Exercise 3, con-
duct a formal test of lack of fit of the linear
relationship

Hyix, %, x5, = Po T B1Xy + BXy
+ B3X3 + ByX,

to the ball bond shear strength data.

. Return to the situation of Chapter Exercises 18 and

19 of Chapter 4 and the ore refining study of S.
Osoka. Inthat study, the object wasto discover set-
tings of the process variables x; and x, that would
simultaneously maximize y; and minimize y,,.

(@) Fitfull quadratic response functionsfor y; and
Yy, to the data given in Chapter 4. Compute
and plot standardized residuals for these two
fitted equations. Comment on the appearance
of these plots and what they indicate about the
appropriateness of the fitted response surfaces.

(b) One useful rule of thumb in response surface
studies (suggested by Box, Hunter, and Hunter
intheir book Statisticsfor Experimenters) isto
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check that for afitted surface involving atotal
of | coefficients b (including by),

I s2
max §y —min{ > 4 %

beforetrying to make decisionsbased onitsna
ture (bowl-shape up or down, saddle, etc.) or
do even limited interpolation or extrapolation.
Thiscriterionisacomparison of the movement
of the fitted surface across those n data points
in hand, to four times an estimate of the root of
the average variance associated with the n fit-
ted values V. If the criterion is not satisfied, the
interpretation isthat the fitted surfaceis so flat
(relative to the precision with which it is deter-
mined) asto makeitimpossibleto tell with any
certainty the true nature of how mean response
varies as afunction of the system variables.

Judgethe usefulness of the surfacesfitted in part (a)

against this criterion. Do the response surfaces ap-

pear to be determined adequately to support further
analysis (involving optimization, for example)?

(c) Use the analytic method discussed in Section
9.3toinvestigatethe nature of theresponse sur-
faces fitted in part (a). According to the signs
of the eigenvalues, what kinds of surfaceswere
fitted to y, and y,, respectively?

(d) Make contour plots of the fitted y; and y, re-
sponse surfaces from (a) on a single set of
(X, X,)-axes. Use these to help locate (at |east
approximately) apoint (x,, X,) with maximum
predicted y,, subject to a constraint that pre-
dicted y, be no larger than 55.

(e) For the point identified in part (d), give 90%
two-sided prediction intervals for the next val-
ues of y, and y, that would be produced by
thisrefining process. Also give an approximate
95% lower tolerance bound for 90% of ad-
ditional pyrite recoveries and an approximate
95% upper tolerance bound for 90% of addi-
tional kaolin recoveries at this combination of
X, and X, settings.
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6. Return to the concrete strength testing situation of

Chapter Exercise 16 of Chapter 4.

(@) Find estimates of the parameters g, #,, and
o in the smple linear regression model y =
By + BiX +e€.

(b) Compute standardized residuals and plot them
in the same ways that you were asked to plot
theordinary residualsin part (g) of theproblem
in Chapter 4. How much do the appearances of
the new plots differ from the earlier ones?

(c) Make a95% two-sided confidence interval for
the increase in mean compressive strength that
accompaniesab psi increasein splitting tensile
strength. (Note: Thisis58,.)

(d) Make a90% two-sided confidence interval for
the mean strength of specimens with splitting
tensile strength 300 psi (based on the simple
linear regression model).

(e) Make a 90% two-sided prediction interval for
the strength of an additional specimen with
splitting tensile strength 300 psi (based on the
simple linear regression model).

(f) Find an approximate 95% lower tolerance
bound for the strengths of 90% of additional
specimens with splitting tensile strength 300
psi (based onthesimplelinear regressionmodel).

. Wiltse, Blandin, and Schiesel experimented with

a grain thresher built for an agricultural engineer-
ing design project. They ran efficiency tests on the
cleaning chamber of the machine. This part of the
machine sucksair through threshed material, draw-
ing light (nonseed) material out an exhaust port,
while the heavier seeds fall into a collection tray.
Airflow is governed by the spacing of an air relief
door. The following are the weights, y (in grams),
of the portionsof 14 gram samplesof pure oat seeds
run through the cleaning chamber that ended up in
the collection tray. Four different door spacings x
were used, and 20 trials were made at each door

spacing.



.500 in. Spacing

12.00, 12.30, 12.45, 12.45, 12.50, 12.50, 12.50, 12.60, 12.65,
12.70, 12.70, 12.80, 12.90, 12.90, 13.00, 13.00, 13.00, 13.10,
13.20, 13.20

.875in. acing

12.40, 12.80, 12.80, 12.90, 12.90, 12.90, 12.90, 13.00, 13.00,
13.00, 13.00, 13.20, 13.20, 13.20, 13.30, 13.40, 13.40, 13.45,
13.45, 13.70

1.000 in. Spacing

12.00, 12.80, 12.80, 12.90, 12.90, 13.00, 13.00, 13.00, 13.15,
13.20, 13.20, 13.30, 13.40, 13.40, 13.45, 13.50, 13.60, 13.60,
13.60, 13.70

1.250 in. Spacing

12.10, 12.20, 12.25, 12.25, 12.30, 12.30, 12.30, 12.40, 12.50,
12.50, 12.50, 12.60, 12.60, 12.85, 12.90, 12.90, 13.00, 13.10,
13.15, 13.25

Usethequadraticmodel y = B, + B,X + BX* + ¢

and do the following.

(@) Findanestimateof o inthemodel above. What
is this supposed to measure? How does your
estimate compare to s, here? What does this

comparison suggest to you?

(b) Usean F satistic and test the null hypothesis
Hy: B, = B, = 0. (You may take values off a
printout to do this but show the whole five-step
significance-testing format.) What isthe mean-

ing of this hypothesisin the present context?

(c) Use at statistic and test the null hypothesis
Hy: B, = 0. (Again, you may take values off a
printout to do this but show the whole five-step
significance-testing format.) What isthe mean-

ing of this hypothesisin the present context?

(d) Give a 90% lower confidence bound for the
mean weight of the part of such samples that
would wind up in the collection tray using a

1.000 in. door spacing.
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(e) Givea90% lower prediction bound for the next
weight of the part of such a sample that would
wind up in the collection tray using a1.000 in.
door spacing.

(f) Give an approximate 95% lower tolerance for
90% of the weights of all such samples that
would wind up in the collection tray using a
1.000 in. door spacing.

. Return to the armor testing context of Chapter Ex-

ercise 21 of Chapter 4. In what follows, base your

answerson themodel y = B, + B,X; + B,X, + €.

(@) Based on this model, what is your estimate
of the standard deviation of ballistic limit, vy,
associated with different specimens of agiven
thickness and Brinell hardness?

(b) Find and plot the standardized residuals. (Plot
them versus x,, versus x,, and versus § and
normal-plot them.) Comment on the appear-
ance of your plots.

(c) Make 90% two-sided confidence intervals for
B, and for B,. Based on the second of these,
what increasein mean ballistic limit would you
expect to accompany a 20-unit increase in the
Brinell hardness number?

(d) Make a95% two-sided confidence interval for
the mean ballistic limit when a thickness of
X, = 258 (.001 in.) and a Brinell hardness of
X, = 391 areinvolved.

(e) Make a 95% two-sided prediction interval for
an additional balistic limit when a thickness
of x, =258 (.001 in.) and a Brinell hardness
of x, = 391 are involved.

(f) Find an approximate 95% lower tolerance
bound for 98% of additional ballistic limits
when athickness of x, = 258 (.001in.) and a
Brinell hardness of x, = 391 are involved.

(g) Find a 95% two-sided confidence interval for
the mean ballistic limit when a thickness of
X, = 260 (.001 in.) and a Brinell hardness of
X, = 380 areinvolved.

(h) What does the hypothesis H,: 8, = 8,=0
mean in the context of this study and the model
being used in this exercise? Find the p-value
associated with an F test of this hypothesis.
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9.

10.
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(i) What does the hypothesis H,,: ; = 0 mean
in the context of this study and the model be-
ing used in this exercise? Find the p-value
associated with atwo-sided t test of this hy-
pothesis.

Return to the PETN density/detonation velocity

data of Chapter Exercise 23 of Chapter 4.

(@) Find estimates of the parameters 3, 8,, and

o in the simple linear regression model y =

By + B, X + €. How does your estimate of o

compare to s,? What does this comparison

suggest about the reasonableness of the re-
gression model for the datain hand?

Compute standardized residuals and plot

them in the same ways that you plotted the

residuals in part (g) of Chapter Exercise 23

of Chapter 4. How much do the appearances

of the new plots differ from the earlier ones?

Make a 90% two-sided confidence interval

for the increase in mean detonation velocity

that accompanies a 1 g/cc increase in PETN
density.

Make a 90% two-sided confidence interval

for the mean detonation velocity of charges

with PETN density 0.65 g/cc.

(e) Make a90% two-sided prediction interval for
the next detonation velocity of a charge with
PETN density 0.65 g/cc.

(f) Make an approximate 99% lower tolerance
bound for the detonation vel ocities of 95% of
charges having aPETN density of 0.65 g/cc.

Return to the thread stripping problem of Chapter
Exercise 24 of Chapter 4.

(@) Find estimates of the parameters B, B, B,,
and o in the model y = B, + B;X + B,x* +
€. How does your estimate of o compare to
s,? What does this comparison suggest about
the reasonabl eness of the quadratic model for
the datain hand? What is your estimate of o
supposed to be measuring?

Use an F dtatistic and test the null hypothe-
sisH,: B, = B, = Ofor the quadratic model.
(You may take values off a printout to help
you do this but show the whole five-step sig-

(b)

(©

(d)

(b)

11.

12.

nificancetesting format.) What isthemeaning
of this hypothesisin the present context?
Use at statistic and test the hypothesis H,,:
B, = 0inthe quadratic model. (Again, show
the whole five-step significance testing for-
mat.) What is the meaning of this hypothesis
in the present context?
Give a 95% two-sided confidence interval for
themean torque at failurefor athread engage-
ment of 40 (in the units of the problem) using
the quadratic model.
Give a 95% two-sided prediction interval for
an additional torque at failure for a thread
engagement of 40 using the quadratic model.
(f) Give an approximate 99% lower tolerance
bound for 95% of torques at failure for studs
having thread engagements of 40 using the
guadratic model.

Return to the situation of Chapter Exercise 28 of
Chapter 4 and the metal cutting experiment of
Mielnick. Consider an analysis of the torque data
based on the model y; = B, + B, X1 + BX5 + €.
(8 Make a 90% two-sided confidence interval
for the coefficient g, .
(b) Make a 90% two-sided confidence interval
for the mean log torque when a .318 in drill
and afeed rate of .005 in./rev are used.
Make a 95% two-sided prediction interval for
an additional log torque when a .318 in drill
and afeed rate of .005 in./rev are used. Expo-
nentiate the endpoints of this interval to get
a prediction interval for a raw torque under
these conditions.
Find a 95% two-sided confidence interval for
themeanlogtorquefor x, = .300inandx, =
.010in./rev.

Return to Chapter Exercise 25 of Chapter 4 and

the tire grip force study.

(@ Findestimatesof the parameters 8, B,, ando
inthe simplelinear regression model In(y) =
By + B X + €.

(b) Compute standardized residuals and plot
them in the same ways you plotted the resid-
uas in part (h) of Chapter Exercise 25 of

(©

(d)

(€)

(©)

(d)
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Chapter 4. How much do the appearances of
the new plots differ from the earlier ones?

(c) Make a 90% two-sided confidence interval
for the increase in mean log grip force that
accompaniesan increasein drag of 10% (e.g.,
from 30% drag to 40% drag). Note that this
is108,.

(d) Make a 95% two-sided confidence interval
for the mean log grip force of atire of this
type under 30% drag (based on the simple
linear regression model).

(e) Makea95% two-sided prediction interval for
theraw grip force of another tireof thisdesign
under 30% drag. (Hint: Begin by making an
interval for log grip force of such atire.)

(f) Find an approximate 95% lower tolerance
bound for the grip forces of 90% of tires of
thisdesign under 30% drag (based onthesim-
ple linear regression model for In(y)).

Consider again the asphalt permeability data of

Woelfl, Wei, Faulstich, and Litwack given in

Chapter Exercise 26 of Chapter 4. Use the qua

dratic model y = B, + B,X + B,x* + € and do

the following:

(8) Find an estimate of ¢ in the quadratic model.
What is this supposed to measure? How does
your estimate compareto s, here? What does
this comparison suggest to you?

(b) Use an F datistic and test the null hypothe-
sisH,: B, = B, = Ofor the quadratic model.
(You may take values off a printout to help
you do this, but show the whole five-step sig-
nificancetesting format.) What isthemeaning
of this hypothesisin the present context?

(c) Use at satistic and test the null hypothesis
Hy: B, =0 in the quadratic model. Again,
show the whole five-step significance testing
format. What is the meaning of this hypothe-
sisin the present context?

(d) Givea90% two-sided confidenceinterval for
the mean permeability of specimens of this
type with a 6.5% asphalt content.
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(e) Give a90% two-sided prediction interval for
thenext permeability measured on aspecimen
of thistype having a 6.5% asphalt content.

(f) Find an approximate 95% lower tolerance
bound for the permeability of 90% of the
specimens of thistype having a 6.5% asphalt
content.

Consider again the axial breaking strength data

of Koh, Morden, and Ogbourne given in Chapter

Exercise 27 of Chapter 4. At one point in that

exercise, it is argued that perhaps the variable

X3 = X2 /X, is the principa determiner of axial

breaking strength, y.

(@) Plot the 36 pairs (X,, y) corresponding to the
data given in Chapter 4. Note that a constant
o assumptionis probably not agood one over
the whole range of x,’sin the students' data.

Inlight of the point raised in part (a), for purposes

of simple linear regression analysis, henceforth

restrict attention to those 27 data pairs with x; >

.004.

(b) Find estimates of the parameters g, 8,, and
o in the simple linear regression model y =
B, + B1X5 + €. How does your estimate of o
based on the simple linear regression model
compare to s,? What does this comparison
suggest about the reasonableness of the re-
gression model for the datain hand?

(c) Makea98% two-sided confidenceinterval for
the mean axia breaking strength of .250 in.
dowels 8in. in length based on the regression
analysis. How doesthisinterval comparewith
the use of formula (6.20) and the four mea-
surements on dowel s of thistype contained in
the data set?

(d) Makea98% two-sided predictioninterval for
the axial breaking strength of a single addi-
tional .250 in. dowel 8 in. in length. Do the
same if the dowel isonly 6in. in length.

(e) Make an approximate 95% lower tolerance
bound for the breaking strengths of 98% of
250 in. dowels 8 in. in length.





